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In this paper we construct the main algebraic and differential properties and the weight
functions of orthogonal polynomial solutions of bivariate second-order linear partial
differential equations, which are admissible potentially self-adjoint and of hypergeometric
type. General formulae for all these properties are obtained explicitly in terms of the
polynomial coefficients of the partial differential equation, using vector matrix notation.
Moreover, Rodrigues representations for the polynomial eigensolutions and for their partial
derivatives of any order are given. As illustration, these results are applied to a two
parameter monic Appell polynomials. Finally, the non-monic case is briefly discussed.
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1. Introduction

The theory of orthogonal polynomials in one variable is in permanent expansion due to its relationship with other
areas of mathematics and also with several applications in physics and engineering. They provide a natural way to solve
many types of important differential equations of mathematical physics, expanding solutions in appropriate Fourier series
of orthogonal polynomial basis. They play therefore an important role in the study of wave mechanics, heat conduction,
electromagnetic theory, quantum mechanics or mathematical statistics.

In this context, it is first relevant to study whether a (one variable) polynomial family, {pn(x)}n∈N (x ∈ R), is orthogonal.
This problem is solved in different ways but the Favard theorem [31], linking orthogonality and the fundamental three-term
recurrence relation

xpn(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x), γn �= 0, (1)

provides certainly the most powerful characterization [7]. Here, if pn(x) = gn,nxn + gn,n−1xn−1 + gn,n−2xn−2 + · · · , then
orthogonality of the pn-family leads easily to the well-known expressions (see e.g. [7,15], [24, Eq. (1.4.17), p. 14] or
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[25, p. 36]):

αn = gn,n

gn+1,n+1
, βn = gn,n−1 − αn gn+1,n

gn,n
, γn = gn,n−2 − βn gn,n−1 − αn gn+1,n−1

gn−1,n−1
. (2)

It is also important to provide ways of constructing efficiently these polynomials. For, several approaches are at hand.
Besides the use of the recurrence (1) itself, we can mention (in a non-exhaustive way) the generating function methods,
those based on a Rodrigues formula or the hypergeometric approach which gives nice and useful representations of the
polynomials in terms of hypergeometric series.

As it is very well known, among all the one variable orthogonal polynomials, the four classical continuous families of
Jacobi, Laguerre, Hermite and Bessel, are those sharing the widest set of properties. Besides the three-term recurrence (1)
[7,25,31], they can be characterized in a number of ways, e.g. they are orthogonal polynomial solutions of the hypergeo-
metric type differential equation [6,25] and the k-th derivatives of each family are again orthogonal and belong to the same
family [1,25]. Moreover, the orthogonality weight functions satisfy Pearson-type equations [6,24] giving rise to Rodrigues
formulae [1,25] for the corresponding orthogonal polynomials and for their derivatives of any order. Also, the orthogonal
polynomials satisfy a number of algebraic and differential properties such as derivative representations [1,23] or also struc-
ture relations [1,7,17], among other properties. The list of references in this paragraph is not exhaustive but only indicative
of the kind of references that could be examined on this topic.

In these classical settings, it is remarkable that the coefficients appearing in all the aforementioned algebraic and
differential characterizations can be explicitly computed in terms of the polynomial coefficients σ(x) and τ (x) of the
hypergeometric-type differential equation [5,12,25,30,37–39]

σ(x)y′′(x) + τ (x)y′(x) + λn y(x) = 0, λn = −nτ ′ − 1

2
n(n − 1)σ ′′,

satisfied by the classical families.
Our main contribution is to extend this remarkable property to the bivariate situation for polynomial solutions of ad-

missible potentially self-adjoint partial differential equations of hypergeometric-type [20–22]. These polynomials play an
important role in many applications, for instance in spectral/hp-finite element methods for solving partial differential equa-
tions [8,13].

One essential difference between polynomials in one variable and in several variables is the lack of an obvious basis in
the latter [9]. One possibility to avoid this problem is to consider graded lexicographical order and use the matrix vector
representation, first introduced by Kowalski [18,19] and afterwards considered by Xu [35,36]. In fact, using this point of
view, in [2] the authors proved some structure and orthogonality relations for the successive partial derivatives of the
vector orthogonal polynomials associated with a quasi-definite moment functional which satisfies a Pearson-type partial
differential equation.

In this paper we deal with bivariate polynomials written in vector representation (and graded lexicographical order)
which are solutions of admissible potentially self-adjoint linear second-order partial differential equation of hypergeometric
type. In this context, we prove that (as it happens in the one variable hypergeometric type case) the coefficients charac-
terizing the three-term recurrence relations, the first structure relations and the derivative representations fulfilled by the
vector polynomials can be written explicitly in terms of the coefficients of the partial differential equation they satisfy. In
the bivariate discrete case some results in this direction have been already given in [27–29].

The structure of the paper is as follows: In Section 2, after introducing basic definitions and notations, we present in
Propositions 2.4 and 2.5 the general framework to be considered through the paper, i.e. admissible potentially self-adjoint
second-order partial differential equations of hypergeometric type. In Section 3 we give the partial differential equations for
the partial derivatives of the eigensolutions and we construct the corresponding weight functions for the orthogonal poly-
nomials. Then, the relations linking these weight functions are obtained and they allow us to deduce a Rodrigues formula
for the orthogonal polynomial solutions and for their partial derivatives of any order. In Sections 4 and 5, using vector ma-
trix notation [9,18,19], general formulae for the main algebraic and differential properties (three-term recurrence relations,
structure relations and derivative representations) are explicitly obtained in terms of the coefficients fully characterizing
the partial differential equation, both in monic and non-monic cases. Finally, in Section 6 our results are applied to a two
parameter monic Appell polynomials [4]. Another two non-monic different eigensolutions of the same partial differential
equation [11,16,26], which are orthogonal on the same domain with respect to the same weight function �(x) = xα−1 yβ−1,
with α > 0 and β > 0, are also briefly analyzed.

2. Vector representation and admissible partial differential equations of hypergeometric type

Let x = (x, y) ∈ R2, and let xn (n ∈ N0) denote the column vector of the monomials xn−k yk , whose elements are arranged
in graded lexicographical order (see [9, p. 32]):

xn = (
xn−k yk), 0 � k � n, n ∈ N0. (3)

Let {Pn
n−k,k(x, y)} be a sequence of polynomials in the space Π2

n of all polynomials of total degree at most n in two variables,

x = (x, y), with real coefficients. Such polynomials are finite sums of terms of the form axn−k yk , where a ∈ R.
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From now on the (column) vector representation [18,19] will be adopted, so that Pn will denote the (column) polynomial
vector

Pn = (
Pn

n,0(x, y), Pn
n−1,1(x, y), . . . , Pn

1,n−1(x, y), Pn
0,n(x, y)

)T
. (4)

Then, each polynomial vector Pn can be written in terms of the basis (3) as:

Pn = Gn,nxn + Gn,n−1xn−1 + · · · + Gn,0x0, (5)

where Gn, j are matrices of size (n + 1) × ( j + 1) and the leading matrix coefficient Gn,n is a nonsingular square matrix of
size (n + 1) × (n + 1).

Definition 2.1 (Monic polynomial vector). A polynomial vector P̂n is said to be monic if its leading matrix coefficient Ĝn,n is
the identity matrix (of size (n + 1) × (n + 1)); i.e.:

P̂n = xn + Ĝn,n−1xn−1 + · · · + Ĝn,0x0. (6)

Then, each of its polynomial entries P̂ n
n−k,k(x, y) are of the form:

P̂ n
n−k,k(x, y) = xn−k yk + terms of lower total degree. (7)

In what follows the “hat” notation P̂n will be used for monic polynomials.

Definition 2.2 (Orthogonality). Let L be a moment linear functional acting on Π2
n . A sequence of polynomials {Pn

n−k,k(x, y)} ⊂
Π2

n (n ∈ N0), is said to be orthogonal with respect to L or, equivalently, {Pn}n�0 (as defined by Eqs. (4)–(5)) is a vector
orthogonal polynomial family with respect to L, if for each n ∈ N0 there exists an invertible matrix Hn of size n + 1 such
that:

L
[(

xmPT
n

)] = 0 ∈ M(m+1,n+1), n > m, (8)

L
[(

xnPT
n

)] = Hn ∈ M(n+1,n+1). (9)

If there exists an integral representation of this orthogonality functional L, then its action can be written in terms of a
weight function � := �(x, y) over a certain domain D ⊂ R2:

L(P ) =
∫ ∫

D

P (x, y)�(x, y)dx dy, P ∈ Π2
n , (10)

which is defined in the set Π2
n provided that all the above integrals exist. Then, the family {Pn}n�0 is said to be orthogonal

with respect to � in the domain D .
In this multivariate context, Bochner [6] posed the problem of identifying those families of polynomials which are eigen-

functions of a second-order linear partial differential operator. Krall and Sheffer [20] started to study eigenfunctions which
are orthogonal over a domain giving conditions of admissibility and a first attempt of classifying admissible equations. En-
gelis [10] gave a detailed list of second-order linear partial differential equations for which orthogonal polynomials in two
variables are solutions. This question was afterwards studied and systematically described by Suetin [33]. In this paper,
we analyze polynomial eigenfunctions of admissible potentially self-adjoint partial differential equations of hypergeometric
type.

In order to present this study, we consider a bivariate class of linear partial differential equations, introduced as “the
basic class” by Lyskova [22] for the multivariate case (see also [3]) and called here hypergeometric type equations:(

a1x2 + b1x + c1
)
∂xxu(x, y) + 2(a3xy + b3x + c3 y + d3)∂xyu(x, y)

+ (
a2 y2 + b2 y + c2

)
∂yyu(x, y) + (e1x + f1)∂xu(x, y) + (e2 y + f2)∂yu(x, y) + λu(x, y) = 0, (11)

where a j , b j , c j , d j , e j , f j and λ are real numbers. The solutions of this equation have the remarkable property that all
their partial derivatives of any order are also solutions of an equation of the same form.

Moreover, we shall also consider admissible partial differential equations.

Definition 2.3. A second-order partial differential equation is admissible if and only if [20,33] for any non-negative integer
n there exists a number λn such that Eq. (11) with λ := λn has n + 1 linearly independent solutions which are polynomials
of total degree n and has no non-trivial solutions in the set of polynomials of total degree less than n.

The following characterization has been proved in [22,33].
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Proposition 2.4. Eq. (11) is an admissible second-order partial differential equation of hypergeometric type if and only if it can be
written in the form(

ax2 + b1x + c1
)
∂xxu(x, y) + 2(axy + b3x + c3 y + d3)∂xyu(x, y)

+ (
ay2 + b2 y + c2

)
∂yyu(x, y) + (ex + f1)∂xu(x, y) + (ey + f2)∂yu(x, y) + λnu(x, y) = 0, (12)

where λn = −n((n − 1)a + e) and the coefficients a,b j, c j,d j, e, f j are arbitrary fixed real numbers, but the numbers a and e are such
that the condition

�k := ak + e �= 0 (13)

holds true for any non-negative integer k.

In the conditions of Proposition 2.4, the results of Suetin [33, Chapter 5] can be used to define an orthogonality weight
function over a certain domain of R2 which is related with the partial differential equation (12). These results are summa-
rized in the following proposition.

Proposition 2.5. Let α(x, y) be the discriminant of Eq. (12), i.e.:

α(x, y) = (
c1 + x(b1 + ax)

)(
c2 + y(b2 + ay)

) − (
d3 + b3x + (c3 + ax)y

)2
, (14)

and D ⊂ R2 be the domain:

D = {
(x, y) ∈ R2: α(x, y) �= 0

}
. (15)

Define the two functions [33, Eq. (15), p. 132]

β(x, y) = (−b1 − c3 + f1 − 3ax + ex)
(
ay2 + b2 y + c2

)
− (−b2 − b3 + f2 − 3ay + ey)(axy + b3x + c3 y + d3), (16)

γ (x, y) = −(
c1 + x(b1 + ax)

)
(b2 + b3 − f2 + 3ay − ey)

+ (b1 + c3 − f1 + 3ax − ex)
(
d3 + b3x + (c3 + ax)y

)
. (17)

Assume that in D the following condition holds true:

∂

∂x

(
γ (x, y)

α(x, y)

)
= ∂

∂ y

(
β(x, y)

α(x, y)

)
. (18)

Consider the weight function given by [33, Eq. (22), p. 134]

�(x, y) = exp

{ y∫
y0

γ (x, y)

α(x, y)
dy +

x∫
x0

[(
β(x, y)

α(x, y)

)
y=y0

]
dx

}
, (19)

which determines (up to a multiplicative constant) the functional

L(P ) =
∫ ∫

D

P (x, y)�(x, y)dx dy, P ∈ Π2
n , (20)

defined in the set Π2
n provided that all such integrals exist.

Then, there exists a unique monic vector polynomial family {̂Pn}n�0 solution of (12) and orthogonal with respect to � in D, i.e.
satisfying∫ ∫

D

xmP̂T
n �(x, y)dx dy =

{
0 ∈ M(m+1,n+1), if n > m,

Hn ∈ M(n+1,n+1), if m = n,
(21)

where Hn (of size (n + 1) × (n + 1)) is nonsingular.

Remark 1. From the admissible second-order partial differential equation of hypergeometric type (12) it is possible to
introduce the linear operator D by

Du = (
ax2 + b1x + c1

)
∂xxu + 2(axy + b3x + c3 y + d3)∂xyu

+ (
ay2 + b2 y + c2

)
∂yyu + (ex + f1)∂xu + (ey + f2)∂yu, (22)

which is potentially self-adjoint if and only if (18) holds true [33, Theorem 1, p. 133].
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So, as it has been mentioned in the introduction, we deal with bivariate orthogonal polynomial families {Pn}n�0 char-
acterized in Proposition 2.5, which are solutions of admissible potentially self-adjoint second-order partial differential
equations of hypergeometric type described in Proposition 2.4 and Remark 1.

3. Weight functions and Rodrigues formula for the polynomials and for their partial derivatives

By differentiating (12) (r + s) times, it turns out that

z(r,s)(x, y) = ∂r+su

∂xr∂ ys
(x, y), r, s = 0,1,2, . . . , (23)

satisfies an admissible second-order partial differential equation of hypergeometric type(
ax2 + b1x + c1

)
∂xxz(r,s)(x, y) + 2(axy + b3x + c3 y + d3)∂xy z(r,s)(x, y)

+ (
ay2 + b2 y + c2

)
∂yy z(r,s)(x, y) + τ

(r,s)
x (x)∂xz(r,s)(x, y)

+ τ
(r,s)
y (y)∂y z(r,s)(x, y) + μr+sz(r,s)(x, y) = 0, (24)

where

τ
(r,s)
x (x) = (

e + 2a(r + s)
)
x + f1 + rb1 + 2sc3, (25)

τ
(r,s)
y (y) = (

e + 2a(r + s)
)

y + f2 + 2rb3 + sb2, (26)

μr+s = λn + (r + s)e + (r + s)(r + s − 1)a, (27)

and a,b j, c j,d3, e, f j are arbitrary fixed real numbers satisfying condition (13). We should mention that Eq. (24) and the
above relations have been obtained in the multivariate case for hypergeometric type equations (not necessarily admissible)
in [22, Theorem 1].

From the admissible second-order partial differential equation of hypergeometric type (24), let us introduce the linear
operator

D(r,s)z = (
ax2 + b1x + c1

)
∂xxz + 2(axy + b3x + c3 y + d3)∂xy z

+ (
ay2 + b2 y + c2

)
∂yy z + τ

(r,s)
x (x)∂xz + τ

(r,s)
y (y)∂y z. (28)

In a similar way as in Proposition 2.5, for (24) we introduce

β(r,s)(x, y) = β(x, y) + r
∂α

∂x
(x, y) + sθ(x, y), (29)

γ (r,s)(x, y) = γ (x, y) + rω(x, y) + s
∂α

∂ y
(x, y), (30)

where the polynomials β(x, y) and γ (x, y) have been defined in (16) and (17). Applying condition (18) to the operator (28),
we obtain that this operator D(r,s) is potentially self-adjoint in a domain D , if and only if

∂

∂x

[
γ (x, y)

α(x, y)
+ r

ω(x, y)

α(x, y)
+ s

α(x, y)

∂α(x, y)

∂ y

]
= ∂

∂ y

[
β(x, y)

α(x, y)
+ s

θ(x, y)

α(x, y)
+ r

α(x, y)

∂α(x, y)

∂x

]
,

where α(x, y) was defined in (14),

ω(x, y) = 2A
∂ B

∂x
− B

∂ A

∂x
,

θ(x, y) = 2C
∂ B

∂ y
− B

∂C

∂ y
,

and

A = A(x, y) = ax2 + b1x + c1,

B = B(x, y) = axy + b3x + c3 y + d3,

C = C(x, y) = ay2 + b2 y + c2.

Note that α(x, y) = AC − B2. Therefore, if we assume that the operator D defined in (22) is potentially self-adjoint, then
the operator D(r,s) defined in (28) is potentially self-adjoint if and only if

r
∂

(
ω(x, y)

)
+ (s − r)

∂
(

1 ∂α(x, y)
)

− s
∂

(
θ(x, y)

)
= 0. (31)
∂x α(x, y) ∂x α(x, y) ∂ y ∂ y α(x, y)
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If the operator D(r,s) defined in (28) is potentially self-adjoint in a domain D , then there exists in this domain a posi-
tive and twice continuously differentiable function �(r,s)(x, y) which is the solution of the system of differential equations
(Pearson type equations) [22, Eqs. (7) and (8)] and [33, p. 132]⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

�(r,s)(x, y)

∂�(r,s)(x, y)

∂x
= β(r,s)(x, y)

α(x, y)
,

1

�(r,s)(x, y)

∂�(r,s)(x, y)

∂ y
= γ (r,s)(x, y)

α(x, y)
,

(32)

where β(r,s)(x, y) and γ (r,s)(x, y) are given in (29) and (30) respectively.
From the Pearson type equations (32) we obtain the following expression for the orthogonality weight function of the

admissible potentially self-adjoint second-order partial differential equations of hypergeometric type (24)

�(r,s)(x, y) = exp

{ y∫
y0

γ (r,s)(x, y)

α(x, y)
dy +

x∫
x0

[(
β(r,s)(x, y)

α(x, y)

)
y=y0

]
dx

}
, (33)

up to a multiplicative constant.

3.1. Relation between weight functions

Now, we can establish the connection between �(r,s)(x, y) and �(0,0)(x, y) ≡ �(x, y), given in (33) and (19) respectively.
From Eq. (33), after straightforward computations, we obtain that

�(r,s)(x, y) = φ(r,s)(x, y)�(x, y), r, s = 0,1,2, . . . , (34)

up to a multiplicative constant, where φ(r,s)(x, y) is a polynomial whose explicit expression depends on the coefficients of
the partial differential equation (12). After solving the non-linear system of equations (31) for any r and s, we can reduce
the solutions of the system to the following ten cases:

(i) If b1 = 2c3 and b2 = 2b3, we have

φ(r,s)(x, y) = [
α(x, y)

]r+s
,

where

α(x, y) = −(
d3 + b3x + (c3 + ax)y

)2 + (
c1 + x(2c3 + ax)

)(
c2 + y(2b3 + ay)

)
,

assuming that af2 = eb3, af1 = ec3 and f2c3 = f1b3.
(ii) If c3 �= 0, d3 �= 0, b3 �= 0, a = b3c3/d3, c1 = (b1 − c3)d3/b3, and c2 = (b2 − b3)d3/c3, we have

φ(r,s)(x, y) = [α(x, y)]r+s

(d3 + c3 y)r(d3 + b3x)s
,

where

α(x, y) = − 1

b3c3d3

(
(d3 + b3x)(d3 + c3 y)

(−b1(b2d3 − b3d3 + b3c3 y) + c3
(
b2(d3 − b3x) + 2b3(b3x+ c3 y)

)))
.

(iii) If a = b1 = c1 = c3 = 0 and b2 = b3 we obtain

φ(r,s)(x, y) = [
α(x, y)

]r
, α(x, y) = (d3 + b3x)2.

(iv) If a = b2 = b3 = c2 = 0 and b1 = c3 we have

φ(r,s)(x, y) = [
α(x, y)

]s
, α(x, y) = (d3 + c3 y)2.

(v) If a = b3 = c3 = d3 = 0, we have

φ(r,s)(x, y) = [α(x, y)]r+s

(c1 + b1x)s(c2 + b2 y)r
, α(x, y) = (c1 + b1x)(c2 + b2 y).
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(vi) If a �= 0, b3 = c2 = d3 = 0, and c1 = (b1 − c3)c3/a, we obtain

φ(r,s)(x, y) = [α(x, y)]r+s

yr(c3 + ax)s
,

where

α(x, y) = (c3 + ax)y(b2(b1 − c3 + ax) + a(b1 − 2c3)y)

a
.

(vii) If c3 �= 0, a = b3 = 0, b1 = c3, and c2 = b2d3/c3, we obtain

φ(r,s)(x, y) = [α(x, y)]r+s

(d3 + c3 y)r
,

where

α(x, y) = (d3 + c3 y)(b2(c1 + c3x) − c3(d3 + c3 y))

c3
.

(viii) If b3 �= 0, a = c3 = 0, b2 = b3, and c1 = b1d3/b3, we obtain

φ(r,s)(x, y) = [α(x, y)]r+s

(d3 + b3x)s
,

where

α(x, y) = (d3 + b3x)(−b3(d3 + b3x) + b1(c2 + b3 y))

b3
.

(ix) If a �= 0, c1 = c3 = d3 = 0, and c2 = (b2 − b3)b3/a, we obtain

φ(r,s)(x, y) = [α(x, y)]r+s

xs(b3 + ay)r
,

where

α(x, y) = x(b3 + ay)(a(b2 − 2b3)x + b1(b2 − b3 + ay))

a
.

(x) If c1 = c2 = d3 = b3 = c3 = 0, we obtain

φ(r,s)(x, y) = [α(x, y)]r+s

xs yr
,

where

α(x, y) = xy
(
ab2x + b1(b2 + ay)

)
.

Remark 2. Observe that in all the above cases the polynomial φ(r,s)(x, y) defined in (34) can be factorized as

φ(r,s)(x, y) = [
φ(1,0)(x, y)

]r[
φ(0,1)(x, y)

]s
, (35)

for any r and s.

Remark 3. It is important to notice here that different cases could give rise to the same φ(r,s)(x, y) associated with the same
partial differential equation. This situation appears in the example studied in detail in Section 6 where the coefficients of
the partial differential equation (74) fulfill the conditions of cases (vi), (ix) and (x).

Remark 4. We must now mention that in [22, Theorem 3], Lyskova presented Eq. (34), but in a non-explicit form.
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3.2. Rodrigues formula

One of the main problems in the theory of orthogonal polynomials in several variables is to obtain explicit expressions
for the orthogonal polynomial solutions of the partial differential equation. In this direction we could mention the works of
Engelis [10], who derived the Rodrigues formula for some classes of orthogonal polynomials in two variables, and Suetin [33,
Theorem 3, p. 151], who showed that this Rodrigues representation is one of the ways of constructing explicitly orthogonal
polynomial families in the potentially self-adjoint case.

As a consequence, in the context considered here (admissible potentially self-adjoint partial differential equations of
hypergeometric type), we have the following explicit Rodrigues formula for the polynomial solutions of (12) of total degree
n + m

Pn,m(x, y) = ℵn,m

�(x, y)

∂n+m

∂xn∂ ym

[
�(x, y)

[
φ(1,0)(x, y)

]n[
φ(0,1)(x, y)

]m]
, (36)

where ℵn,m is a normalizing constant and the polynomials φ(1,0)(x, y) and φ(0,1)(x, y) have been introduced in (34).

Moreover, the partial differential equation (24) for the partial derivatives P (r,s)
n,m (x, y) of the polynomial solutions of

Eq. (12) is also of hypergeometric type. So, we also have a Rodrigues representation for the partial derivatives of any
order given by

P (r,s)
n,m (x, y) = ℵn,m,r,s

�(r,s)(x, y)

∂n+m−r−s

∂xn−r∂ ym−s

[
�(r,s)(x, y)

[
φ(1,0)(x, y)

]n−r[
φ(0,1)(x, y)

]m−s]
, (37)

where �(r,s)(x, y) is given in (33) and ℵn,m,r,s is a normalizing constant. In this way we have obtained a natural extension
to the bivariate case of the Rodrigues representation for classical orthogonal polynomials in one variable [24].

4. Explicit expressions for algebraic properties

Let us consider a vector polynomial family {Pn}n∈N0 solution of (12) orthogonal in the sense of Proposition 2.5, i.e. it is
orthogonal with respect to a weight (19) and satisfies (21) in an appropriate domain D ∈ R2. With such conditions it can
be proved that the family satisfies a number of algebraic and differential properties. Here we focus our attention in three of
the most relevant: the three-term recurrence relations, the structure relations and the derivative representations. As already
mentioned, our aim in this section is to give all of these relations in terms of the matrix coefficients in the expansions (5)
of the {Pn}-family elements.

For, let us first introduce the matrices Ln, j of size (n + 1) × (n + 2) defined by

Ln,1xn+1 = xxn, Ln,2xn+1 = yxn, (38)

so that,

Ln,1 =
⎛⎝ 1 � 0

. . .
...

� 1 0

⎞⎠ and Ln,2 =
⎛⎝0 1 �

...
. . .

0 � 1

⎞⎠ . (39)

Let us observe that

x2xn = Ln,1Ln+1,1xn+2, y2xn = Ln,2Ln+1,2xn+2,

Ln,2Ln+1,1 = Ln,1Ln+1,2, (40)

and for j = 1,2,

Ln, j L
T
n, j = In+1, (41)

where In+1 denotes the identity matrix of size n + 1.
Moreover, for n � 1,{

∂xxn = En,1xn−1,

∂yxn = En,2xn−1,
(42)

where the matrices En, j of size (n + 1) × n are given by

En,1 =

⎛⎜⎜⎜⎜⎝
n �

n − 1
. . .

� 1
0 · · · 0 0

⎞⎟⎟⎟⎟⎠ and En,2 =

⎛⎜⎜⎜⎜⎝
0 · · · 0
1 �

2
. . .

� n

⎞⎟⎟⎟⎟⎠ . (43)
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4.1. The three-term recurrence relations

The existence of a recurrence relation for a vector orthogonal polynomial family can be established in more general
settings than those considered here. More precisely, the following existence theorem is proved in [9].

Theorem 4.1. Let L be the positive definite moment functional as defined in (10) and {Pn}n�0 be an orthogonal family with respect
to L. Then, for n � 0, there exist unique matrices An, j of size (n+1)× (n+2), Bn, j of size (n+1)× (n+1),and Cn, j of size (n+1)×n,
such that

x jPn = An, jPn+1 + Bn, jPn + Cn, jPn−1, j = 1,2, (44)

with the initial conditions P−1 = 0 and P0 = 1. Here the notation x1 = x, x2 = y is used.

Now it is possible to generalize the well-known expressions (2) for the one variable case to the bivariate case. This is
done in the following proposition which is proved with the help of the auxiliary matrices Ln, j defined in (38)–(39).

Theorem 4.2. The explicit expressions of the matrices An, j , Bn, j and Cn, j ( j = 1,2) appearing in (44) in terms of the values of the
leading coefficients Gn,n, Gn,n−1 and Gn,n−2 in the expansions (5) are given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

An, j = Gn,n Ln, j G
−1
n+1,n+1, n � 0,

B0, j = −A0, j G1,0,

Bn, j = (Gn,n−1Ln−1, j − An, j Gn+1,n)G−1
n,n, n � 1,

C1, j = −(A1, j G2,0 + B1, j G1,0),

Cn, j = (Gn,n−2Ln−2, j − An, j Gn+1,n−1 − Bn, j Gn,n−1)G−1
n−1,n−1, n � 2.

(45)

Proof. In Eq. (44), substitute Pn as given in (5), equate the coefficients of xk for k = n, n − 1, n − 2 and solve the corre-
sponding linear system. �

The above result is valid for any orthogonal polynomial sequence (21). From now on we shall consider algebraic prop-
erties involving the partial derivatives of the orthogonal polynomials. To set up sufficient conditions for the existence of
this type of relations is not enough with the orthogonality of the vector polynomial family. For these relations to exist,
the orthogonal polynomial family has to be a solution of an admissible potentially self-adjoint second-order partial differ-
ential equation of hypergeometric type (12). With these assumptions, we present explicit expressions for the three-term
recurrence relation of the first partial derivatives, structure relations and derivative representations.

4.2. The three-term recurrence relations for the first partial derivatives

Let L be the positive definite moment functional as defined in (20). Let Pn+1 be a vector column polynomial of size n+2
which contains n + 2 linearly independent solutions of total degree n + 1, orthogonal with respect to L, of the admissible
second-order partial differential equation of hypergeometric type (12). Then, for j = 1,2 and the notation x1 = x, x2 = y,

∂

∂x j
Pn+1 =

(
∂

∂x j
Pn+1

n+1,0(x, y),
∂

∂x j
Pn+1

n,1 (x, y), . . . ,
∂

∂x j
Pn+1

1,n (x, y),
∂

∂x j
Pn+1

0,n+1(x, y)

)T

(46)

is a column vector of size n + 2 and total degree n. Thus, we have

∂

∂x j
Pn+1 = Gd( j)

n,nxn + Gd( j)
n,n−1xn−1 + · · · + Gd( j)

n,0x0, (47)

where

Gd( j)
n,k = Gn+1,k+1Ek+1, j, 0 � k � n, j = 1,2, (48)

are matrices of size (n + 2) × (k + 1), where Gn+1,k+1 have been introduced in (5) and Ek+1, j are given in (43).
Since x j

∂
∂x j

Pn+1 is a polynomial of total degree n + 1, and the family ∂
∂x j

Pn is orthogonal with respect to �(1,0) or �(0,1)

( j = 1,2) defined in (33), then in the orthogonal expansion

x j
∂

∂x j
Pn+1 =

n+2∑
Υk, j

∂

∂x j
Pk
k=0
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we have that Υk, j = 0 for k < n. So, there exist matrices A( j)
n, j of size (n + 2) × (n + 3), B( j)

n, j of size (n + 2) × (n + 2), and C ( j)
n, j

of size (n + 2) × (n + 1), giving the three-term recurrence relations

x j
∂

∂x j
Pn+1 = A( j)

n, j

∂

∂x j
Pn+2 + B( j)

n, j

∂

∂x j
Pn+1 + C ( j)

n, j

∂

∂x j
Pn, j = 1,2, (49)

with the initial conditions ∂
∂x j

P0 = 0 and ∂
∂x j

P1 = G1,1E1, j .

The explicit expressions of the matrices A( j)
n, j , B( j)

n, j and C ( j)
n, j can be obtained in terms of the values of the leading coeffi-

cients Gd( j)
n,n , Gd( j)

n,n−1 and Gd( j)
n,n−2, defined in (48), in a similar way as in Theorem 4.2.

4.3. First structure relations

In the one variable case, the so-called first structure relation plays an important role since, e.g. it gives rise to lowering
and rising operators. Next we present the extension to the bivariate case.

Theorem 4.3. Let {Pn}n∈N0 be a vector orthogonal polynomial family satisfying Proposition 2.5. Then, for n � 1, there exist unique
matrices Wn, j of size (n + 1) × (n + 2), Sn, j of size (n + 1) × (n + 1),and Tn, j of size (n + 1) × n, such that

φ j(x, y)
∂

∂x j
Pn = Wn, jPn+1 + Sn, jPn + Tn, jPn−1, j = 1,2, (50)

where

φ1(x, y) = φ(1,0)(x, y), φ2(x, y) = φ(0,1)(x, y), (51)

and the polynomials φ(r,s)(x, y) have been introduced in (34) and (35). With the notation

φ j(x, y) = α j x
2 + β jxy + γ j y2 + δ jx + ε j y + ω j, j = 1,2, (52)

the coefficients of the structure relations are explicitly given by

Wn, j Gn+1,n+1 = Gn,nEn, j(α j Ln−1,1Ln,1 + β j Ln−1,1Ln,2 + γ j Ln−1,2Ln,2),

Sn, j Gn,n = Gn,nEn, j(δ j Ln−1,1 + ε j Ln−1,2) − Wn, j Gn+1,n

+ Gn,n−1En−1, j(α j Ln−2,1Ln−1,1 + β j Ln−2,2Ln−1,1 + γ j Ln−2,2Ln−1,2),

Tn, j Gn−1,n−1 = ω j Gn,nEn, j − Wn, j Gn+1,n−1 − Sn, j Gn,n−1 + Gn,n−1En−1, j(δ j Ln−2,1 + ε j Ln−2,2)

+ Gn,n−2En−2, j(α j Ln−3,1Ln−2,1 + β j Ln−3,2Ln−2,1 + γ j Ln−3,2Ln−2,2).

Proof. Since

φ j(x, y)
∂

∂x j
Pn

are polynomials of total degree n + 1 we can write for j = 1,2,

φ j(x, y)
∂

∂x j
Pn =

n+1∑
�=0

Λn,�P�, n � 1. (53)

As a consequence of the analysis done in Section 3 (in particular see Eq. (34)), the polynomials ∂
∂x Pn are orthogonal with

respect to φ1(x, y)�(x, y), and the polynomials ∂
∂ y Pn are orthogonal with respect to φ2(x, y)�(x, y). If we multiply from the

right the latter equation by PT
n and apply the corresponding orthogonality we get Λn,� = 0 for � < n − 1.

The explicit expressions for the matrix coefficients are obtained from Eq. (50), by substituting Pn as given in (5), equating
the coefficients of xk for k = n, n − 1, n − 2 and solving the corresponding linear system. �

Observe that if we know the explicit expression of the polynomials φ j(x, y), j = 1,2, by using the results given in
Section 3.1, it is possible to obtain explicitly the matrices Wn, j , Sn, j and Tn, j in (50) in the following way: substitute Pn as
given in (5) equate the coefficients of xk for k = n, n − 1, n − 2 and solve the corresponding linear system, by using (38),
(40) and (42).
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4.4. Derivative representations (or second structure relations)

Next we present finite-type relations between the orthogonal polynomial sequence {Pn} and the sequence of the partial
derivatives { ∂

∂x j
Pn}.

Theorem 4.4. Let {Pn}n∈N0 be a vector orthogonal polynomial family satisfying Proposition 2.5. Then, for n � 2 we have

Pn = Vn, j
∂

∂x j
Pn+1 + Yn, j

∂

∂x j
Pn + Zn, j

∂

∂x j
Pn−1, (54)

where the matrices Vn, j of size (n + 1) × (n + 2), Yn, j of size (n + 1) × (n + 1), and Zn, j of size (n + 1) × n are given by

Vn, j = An, j − A( j)
n−1, j,

Yn, j = Bn, j − B( j)
n−1, j,

Zn, j = Cn, j − C ( j)
n−1, j,

and the matrices An, j , Bn, j and Cn, j are given in (45) and the matrices A( j)
n−1, j , B( j)

n−1, j and C ( j)
n−1, j are introduced in (49).

Proof. The above result is a consequence of (44) and (49). �
5. Explicit expressions for algebraic properties in the monic case

As pointed out in the introduction, in this section we give the explicit expression of the coefficients Ĝn,n−1 and Ĝn,n−2
in (6) in terms of the coefficients a, b j , c j , d3, e, f j fully characterizing the already mentioned partial differential equa-
tion (12). After that, results already given in the previous section will allow us to express (for monic polynomials) the
three algebraic and differential properties here considered (44), (50) and (54), in terms of the admissible partial differential
equation coefficients in (12).

Proposition 5.1. Let P̂n (n ∈ N0) be a monic vector polynomial, as given by the expansion (6), solution of an admissible hypergeometric
type partial differential equation of the form (12). Then, the matrix coefficients Ĝn,n−1 ∈ M(n+1,n) and Ĝn,n−2 ∈ M(n+1,n−1) in (6)
can be written in term of the coefficients a,b j, c j,d3, e, f j in (12) as:

Ĝn,n−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

g̃1,1
�

g̃2,1 g̃2,2
. . .

. . .

g̃n−1,n−2 g̃n−1,n−1
g̃n,n−1 g̃n,n

� 0 g̃n+1,n

⎞⎟⎟⎟⎟⎟⎟⎠ (n � 1), (55)

where, for 1 � i � n,

g̃i,i = (n + 1 − i)((n − i)b1 + 2(i − 1)c3 + f1)

�2n−2
,

g̃i+1,i = i((i − 1)b2 + 2(n − i)b3 + f2)

�2n−2
,

and

Ĝn,n−2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,1
�

g2,1 g2,2
g3,1 g3,2 g3,3
. . .

. . .
. . .

. . .
. . .

. . .

gn−1,n−3 gn−1,n−2 gn−1,n−1
� gn,n−2 gn,n−1

0 gn+1,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n � 2), (56)

where, for 1 � i � n − 1,
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gi,i = (n − i)(n + 1 − i)

2�2n−2�2n−3

(
�2n−2c1 + (

(n − i)b1 + 2(i − 1)c3 + f1
)(

(n − i − 1)b1 + 2(i − 1)c3 + f1
))

,

gi+1,i = i(n − i)

�2n−2�2n−3

(
f1 f2 + d3�2n−2 + b3

(
2
(
n − 2 + 2(i − 2)(n − i − 1)

)
c3

+ (2n − 2i − 1) f1
) + (2i − 1)c3 f2 + (i − 1)b2

(
(2i − 1)c3 + f1

)
+ (n − 1 − i)

(
(i − 1)b2 + (2n − 2i − 1)b3 + f2

))
,

gi+2,i = i(i + 1)

2�2n−2�2n−3

(
�2n−2c2 + (

(i − 1)b2 + 2(n − i − 1)b3 + f2
)(

ib2 + 2(n − i − 1)b3 + f2
))

.

In all of these expressions �n = na + e �= 0 as already shown in Eq. (13).

Proof. Plug into Eq. (12) the expansion (6) and then make equal zero the coefficients of the column vector of monomials xk

(defined in (3)) for k = n, n − 1, n − 2. �
Now, having in mind that in the monic case Ĝn,n = In+1, from these results and Theorem 4.2, we can deduce the

following corollaries.

Corollary 5.2 (Three-term recurrence relations). For monic polynomials and j = 1,2, the coefficients of the three-term recurrence
relation (44) are given in terms of the coefficients of the second-order partial differential equation (12) by

An, j = Ln, j, (57)

B0,1 =
(

− f1

e

)
, B0,2 =

(
− f2

e

)
, (58)

Bn, j = Ĝn,n−1Ln−1, j − Ln, j Ĝn+1,n, n � 1, (59)

C1,1 =
( −c1e2+ f1(b1e−af1)

e2(a+e)
−d3e2+b3ef1+c3ef2−af1 f2

e2(a+e)

)
, C1,2 =

( −d3 f 2
1 +b3ef1+c3ef2−af1 f2

e2(a+e)
−c2e2+ f2(b2e−af2)

e2(a+e)

)
, (60)

Cn, j = Ĝn,n−2Ln−2, j − Ln, j Ĝn+1,n−1 − Bn, j Ĝn,n−1, n � 2. (61)

It has some interest to remark here that, as described in [9], since

rank(Ln, j) = n + 1 = rank(Cn+1, j), j = 1,2, n � 0, (62)

the columns of the joint matrices

Ln = (
LT

n,1, LT
n,2

)T
and Cn = (

C T
n,1, C T

n,2

)T

of size (2n + 2) × (n + 2) and (2n + 2) × n respectively, are linearly independent, i.e.

rank(Ln) = n + 2, rank(Cn) = n. (63)

Therefore, the matrix Ln has full rank so that there exists a unique matrix D†
n of size (n+2)×(2n+2), called the generalized

inverse of Ln:

D†
n = (Dn,1|Dn,2) = (

LT
n Ln

)−1
LT

n , (64)

such that

D†
n Ln = In+2.

Moreover, using the left inverse D†
n of the joint matrix Ln

D†
n =

⎛⎜⎜⎜⎜⎝
1 0

1/2 � 1/2 �

. . .
. . .

r � 1/2 0 1/2
0 1

⎞⎟⎟⎟⎟⎠ ,

we can write a recursive formula for the monic orthogonal polynomials
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P̂n+1 = D†
n

[(
x
y

)
⊗ In+1 − Bn

]
P̂n − D†

nCnP̂n−1, n � 0, (65)

with the initial conditions P̂−1 = 0, P̂0 = 1, where ⊗ denotes the Kronecker product and

Bn = (
BT

n,1, BT
n,2

)T
, Cn = (

C T
n,1, C T

n,2

)T
(66)

are matrices of size (2n + 2)× (n + 1) and (2n + 2)× n, respectively. This recurrence (65) gives another representation of [9,
(3.2.10)], already presented in the bivariate discrete case in [29].

Corollary 5.3 (Structure relations). For monic polynomials, n � 3 and j = 1,2, with the notation (52) for φ j(x, y) given in (51), the
coefficients of the structure relations (50) are given in terms of the coefficients of the second-order partial differential equation (12) by

Wn, j = En, j(α j Ln−1,1Ln,1 + β j Ln−1,2Ln,1 + γ j Ln−1,2Ln,2), (67)

Sn, j = En, j(δ j Ln−1,1 + ε j Ln−1,2) − Wn, j Ĝn+1,n

+ Ĝn,n−1En−1, j(α j Ln−2,1Ln−1,1 + β j Ln−2,2Ln−1,1 + γ j Ln−2,2Ln−1,2), (68)

Tn, j = ω j En, j + Ĝn,n−1En−1, j(δ j Ln−2,1 + ε j Ln−2,2) − Wn, j Ĝn+1,n−1 − Sn, j Ĝn,n−1

+ Ĝn,n−2En−2, j(α j Ln−3,1Ln−2,1 + β j Ln−3,2Ln−2,1 + γ j Ln−3,2Ln−2,2). (69)

Corollary 5.4 (Derivative representations). For monic polynomials, n � 2 and j = 1,2, the coefficients of the derivative representa-
tions (54) are given in terms of the coefficients of the second-order partial differential equation (12) by

Vn, j = (Ln, jEn+1, j)
−1, (70)

Yn, j = (Ĝn,n−1 − Vn, j Ln, j Ĝn+1,nEn, j)Vn−1, j, (71)

Zn, j = (Ĝn,n−2 − Vn, j Ln, j Ĝn+1,n−1En−1, j − Yn, j Ln−1, j Ĝn,n−1En−1, j)Vn−2, j. (72)

The results obtained in Sections 4 and 5 can be applied to any polynomial solution of an admissible partial differential
equation of hypergeometric type.

6. Example: Monic Appell polynomials

In order to illustrate how the results presented in the previous sections work in practice, we have chosen a partial
differential equation having the well-known two-parameter monic Appell polynomials [4] as one of its solutions. For these
polynomials, we shall give explicitly the matrices appearing in the three-term recurrence relations and structure relations.
Of course, other examples of bivariate orthogonal polynomials can be treated in a similar way.

In 1882, Appell [4] introduced a three parameter family of polynomials of degree n + m in terms of generalized Kampé
de Fériet hypergeometric series [32] which in the monic case and reduced to two parameters can be written as [11, Eq. (12),
p. 271]

Â(α,β)
n,m (x, y) = (−1)n+m (α)n(β)m

(α + β + n + m)n+m
F 1:1;1

0:1;1
(

α + β + n + m : −n;−m
− : α;β

∣∣∣∣ x, y

)
, (73)

where α > 0 and β > 0 and (α)n denotes the Pochhammer symbol.

6.1. Second-order partial differential equation

The admissible partial differential equation of hypergeometric type satisfied by Â(α,β)
n,m (x, y) is [11, Eq. (15), p. 272]

x(1 − x)
∂2Â(α,β)

n,m

∂x2
− 2xy

∂2Â(α,β)
n,m

∂x∂ y
+ y(1 − y)

∂2Â(α,β)
n,m

∂ y2
+ (

α − (α + β + 1)x
)∂Â(α,β)

n,m

∂x

+ (
β − (α + β + 1)y

)∂Â(α,β)
n,m

∂ y
+ (n + m)(α + β + n + m)̂A(α,β)

n,m = 0. (74)

From (24) we obtain that the partial derivatives

z(r,s)(x, y) = ∂r+s

r s
Â(α,β)

n,m (x, y)

∂x ∂ y
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satisfy the admissible partial differential equation of hypergeometric type

x(1 − x)
∂2

∂x2
z(r,s)(x, y) − 2xy

∂2

∂x∂ y
z(r,s)(x, y) + y(1 − y)

∂2

∂ y2
z(r,s)(x, y)

+ (
α + r − (

α + β + 1 + 2(r + s)
)
x
) ∂

∂x
z(r,s)(x, y)

+ (
β + s − (

α + β + 1 + 2(r + s)
)

y
) ∂

∂ y
z(r,s)(x, y)

+ (n + m − r − s)(α + β + n + m + r + s)z(r,s)(x, y) = 0.

It is easy to check that, from the above differential equation, the matrices Ĝn,n−1 and Ĝn,n−2 in the expansion

Ân = Â
(α,β)
n (x, y) = (̂

A(α,β)

n,0 (x, y), . . . , Â(α,β)

n−i,i (x, y), . . . , Â(α,β)

0,n (x, y)
)T

= xn + Ĝn,n−1xn−1 + · · · + Ĝn,0x0 (75)

are explicitly given from the general expressions (55) and (56).

6.2. Orthogonality

From (19) we obtain the following weight function

�(x, y) = xα−1 yβ−1. (76)

In this case the polynomial α(x, y) defined in (14) is given by α(x, y) = xy(1 − x − y). From the positivity of �(x, y) and
(15) it yields the following triangular domain

R = {
(x, y): x > 0, y > 0, x + y < 1

}
. (77)

Therefore, the orthogonality property reads as∫ ∫
R

ÂnÂT
m�(x, y)dx dy = Λnδn,m. (78)

6.3. Three-term recurrence relations

For n � 0, monic Appell polynomials satisfy the three-term recurrence relations

xÂn = Ln,1Ân+1 + Bn,1Ân + Cn,1Ân−1,

yÂn = Ln,2Ân+1 + Bn,2Ân + Cn,2Ân−1,

with the initial conditions Â0 = 1 and Â−1 = 0, where Ân is defined in (75) and Ln, j are defined in (39). Using (58) and
(59) the recursion coefficients Bn, j are given by

Bn,1 =

⎛⎜⎜⎜⎜⎝
b0,0 0 �

b1,0 b1,1 0
. . .

. . .
. . .

bn−1,n−2 bn−1,n−1 0
� bn,n−1 bn,n

⎞⎟⎟⎟⎟⎠ , (79)

where

bi,i = − (n − i)(α + n − 1 − i)

2n − 1 + α + β
+ (n + 1 − i)(α + n − i)

2n + 1 + α + β
, 0 � i � n,

bi+1,i = − 2(i + 1)(β + i)

(2n − 1 + α + β)(2n + 1 + α + β)
, 0 � i � n − 1,

and

Bn,2 =

⎛⎜⎜⎜⎜⎜⎝
b̃0,0 b̃0,1

�

0 b̃1,1 b̃1,2

. . .
. . .

. . .

b̃n−1,n−1 b̃n−1,n
� ˜

⎞⎟⎟⎟⎟⎟⎠ , (80)
0 bn,n
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with

b̃i,i = 1 + i(2n − i + α)

2n − 1 + α + β
− (i + 1)(α + 2n + 1 − i)

2n + 1 + α + β
, 0 � i � n,

b̃i,i+1 = − 2(n − i)(α + n − 1 − i)

(2n − 1 + α + β)(2n + 1 + α + β)
, 0 � i � n − 1.

Moreover, using (60) and (61) we have

Cn,1 =

⎛⎜⎜⎜⎜⎜⎜⎝

c0,0
�

c1,0 c1,1
c2,0 c2,1 c2,2

. . .
. . .

. . .
� cn−1,n−3 cn−1,n−2 cn−1,n−1

cn,n−2 cn,n−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (81)

where

ci,i = (n − i)(α + n − 1 − i)(n + i + β)(n − 1 + i + α + β)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
, 0 � i � n − 1,

ci+1,i = − (i + 1)(β + i)(2(n − i − 1)(n + i + β) + α(2n + α + β − 2))

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
, 0 � i � n − 1,

ci+2,i = (i + 2)(i + 1)(β + i)(β + i + 1)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
, 0 � i � n − 2,

and

Cn,2 =

⎛⎜⎜⎜⎜⎜⎜⎝

c̃0,0 c̃0,1
�

c̃1,0 c̃1,1 c̃1,2

. . .
. . .

. . .

c̃n−2,n−3 c̃n−2,n−2 c̃n−2,n−1
c̃n−1,n−2 c̃n−1,n−1

� c̃n,n−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (82)

with

c̃i,i = − (n − i)(α + n − 1 − i)(β(2n − 2 + β) + α(2i + β) + 2i(2n − 1 − i))

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
,

c̃i+1,i = (i + 1)(α + 2n − 1 − i)(β + i)(α + β + 2n − 2 − i)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
,

for 0 � i � n − 1 and

c̃i,i+1 = (n − i)(n − 1 − i)(α + n − 1 − i)(α + n − 2 − i)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
,

for 0 � i � n − 2.

6.4. First structure relations

The partial differential equation (74) for monic Appell polynomials corresponds to cases (vi), (ix) and (x) in Section 3.1.
Therefore, we obtain that

φ(r,s)(x, y) = [
x(1 − x − y)

]r[
y(1 − x − y)

]s
. (83)

As a consequence, the structure relations (50) satisfied by monic Appell polynomials defined in (75) are given by

x(1 − x − y)
∂

∂x
Ân = Wn,1Ân+1 + Sn,1Ân + Tn,1Ân−1, (84)

y(1 − x − y)
∂

∂ y
Ân = Wn,2Ân+1 + Sn,2Ân + Tn,2Ân−1, (85)

for n � 1, where using (67) we get
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Wn,1 =

⎛⎜⎜⎜⎜⎝
w0,0 w0,1 0 �

0 w1,1 w1,2
. . .

. . .

wn−1,n−1 wn−1,n 0
� wn,n wn,n+1

⎞⎟⎟⎟⎟⎠ , (86)

with wi,i = −n + i = wi,i+1, 0 � i � n, and

Wn,2 =

⎛⎜⎜⎜⎜⎝
w̃0,0 w̃0,1 0 �

0 w̃1,1 w̃1,2

. . .
. . .

w̃n−1,n−1 w̃n−1,n 0
� w̃n,n w̃n,n+1

⎞⎟⎟⎟⎟⎠ , (87)

with w̃i,i = −i = w̃i,i+1, 0 � i � n.
Moreover, from (68) we obtain

Sn,1 =

⎛⎜⎜⎜⎜⎝
s0,0 s0,1

�

s1,0 s1,1 s1,2
. . .

. . .

sn−1,n−2 sn−1,n−1 sn−1,n
� 0 0

⎞⎟⎟⎟⎟⎠ , (88)

with

si,i = − (n − i)(−n + (2n − 1)i − 4i2 + (n − 2 − 3i)β + α(n − 1 + i + α + β))

(2n − 1 + α + β)(2n + 1 + α + β)
,

si,i+1 = − (n − i)(n − 1 − i + α)(2i + 1 + α + β)

(2n − 1 + α + β)(2n + 1 + α + β)
,

for 0 � i � n − 1, and

si+1,i = 2(i + 1)(n − 1 − i)(β + i)

(2n − 1 + α + β)(2n + 1 + α + β)
,

for 0 � i � n − 2. Also, using (68) we have

Sn,2 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 �

s̃1,0 s̃1,1 s̃1,2
0 s̃2,1 s̃2,2

. . .
. . .

. . .

s̃n−1,n−2 s̃n−1,n−1 s̃n−1,n
� 0 s̃n,n−1 s̃n,n

⎞⎟⎟⎟⎟⎟⎟⎠ , (89)

with

s̃i,i = i(β − β2 − i + βi + 4i2 − α(−2 + β + 3i − 2n) − 2(−1 + β + 3i)n + 2n2)

(2n + 1 + α + β)(2n − 1 + α + β)
,

for 1 � i � n, and

s̃i+1,i = − (1 + i)(β + i)(−1 + α + β − 2i + 2n)

(−1 + α + β + 2n)(1 + α + β + 2n)
,

s̃i,i+1 = 2i(−i + n)(−1 + α − i + n)

(−1 + α + β + 2n)(1 + α + β + 2n)
,

for 0 � i � n − 1. Furthermore, from (69) it holds

Tn,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0,0 t0,1
�

t1,0 t1,1 t1,2
t2,0 t2,1 t2,2 t2,3

. . .
. . .

. . .

tn−2,n−4 tn−2,n−3 tn−2,n−2 tn−2,n−1
tn−1,n−3 tn−1,n−2 tn−1,n−1

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (90)
0 0
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where

ti,i = (n − i)(n − 1 + α − i)

(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)

× (
β2(1 + i) + i2(1 + 3i) + αβ(1 + n) + α2(−i + n)

+ β
(
i(3 + 4i) + n(−2i + n)

) + n
(−(

(−2 + i)i
) + n(−1 − i + n)

)
+ α

(
i(2 + i) + n(−1 − 2i + 2n)

))
, 0 � i � n − 1,

ti,i+1 = (n − i)(n − i − 1)(α + n − 2 − i)(α + n − i − 1)(α + β + n + i)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
, 0 � i � n − 2,

ti+1,i = (β + i)(n − i − 1)(i + 1)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)

× (
α(α + β + n + i − 1) + β(n − 2i − 3) + (−2 + (2n − 5)i − 3i2)), 0 � i � n − 2,

ti+2,i = − (β + i)(β + i + 1)(n − i − 2)(i + 1)(i + 2)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
, 0 � i � n − 3,

and using (69)

Tn,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 �

t̃1,0 t̃1,1 t̃1,2
t̃2,0 t̃2,1 t̃2,2 t̃2,3

. . .
. . .

. . .

t̃n−2,n−4 t̃n−2,n−3 t̃n−2,n−2 t̃n−2,n−1
t̃n−1,n−3 t̃n−1,n−2 t̃n−1,n−1

� t̃n,n−2 t̃n,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (91)

where

t̃i,i = i(−i + n)(−1 + α − i + n)

(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)

× (
αβ + β2 − i(1 + 3i − 4n) − β(2 + i − 2n) + α(−1 + 2i − n) − n(1 + n)

)
, 1 � i � n − 1,

t̃i,i+1 = − i(−1 − i + n)(−i + n)(−2 + α − i + n)(−1 + α − i + n)

(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)
, 1 � i � n − 2,

t̃i+1,i = (1 + i)(β + i)

(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)

× (−3(1 + i)3 + (1 + n)(α + n)(α + β + 2n) + (1 + i)2(1 + 4α + β + 8n)

− (1 + i)
(
α(3 + α) − (−2 + β)β + 4n + 6αn + 6n2)), 0 � i � n − 1,

t̃i+2,i = (1 + i)(2 + i)(β + i)(1 + β + i)(−2 + α + β − i + 2n)

(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)
, 0 � i � n − 2.

6.5. Derivative representations or second structure relations

The monic Appell polynomials defined in (75) satisfy the derivative representations

Ân = Vn,1Q
( j)
n + Yn,1Q

( j)
n−1 + Zn,1Q

( j)
n−2, n � 2, j = 1,2, (92)

where Q
(1)
n = Ln,1

∂
∂x Ân+1 and Q

(2)
n = Ln,2

∂
∂ y Ân+1. In this example the matrices Vn, j defined in (70) are given by

Vn,1 =

⎛⎜⎜⎜⎜⎝
v0,0

�

v1,1

. . .

vn−1,n−1
�

⎞⎟⎟⎟⎟⎠ , with vi,i = 1

n + 1 − i
, 0 � i � n, (93)
vn,n
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and

Vn,2 =

⎛⎜⎜⎜⎜⎝
ṽ0,0

�

ṽ1,1
. . .

ṽn−1,n−1
� 0 ṽn,n

⎞⎟⎟⎟⎟⎠ , with ṽ i,i = 1

i + 1
, 0 � i � n. (94)

Moreover, from (71) we have

Yn,1 =

⎛⎜⎜⎜⎜⎝
y0,0

�

y1,0 y1,1
. . .

. . .

yn−1,n−2 yn−1,n−1
� 0 yn,n−1

⎞⎟⎟⎟⎟⎠ , (95)

where

yi,i = 2i + 1 − α + β

(2n + 1 + α + β)(2n − 1 + α + β)
,

yi+1,i = − 2(i + 1)(β + i)

(n − i)(2n + 1 + α + β)(2n − 1 + α + β)
, 0 � i � n − 1,

and

Yn,2 =

⎛⎜⎜⎜⎜⎜⎜⎝

ỹ0,0
�

ỹ1,0 ỹ1,1
. . .

. . .

ỹn−2,n−3 ỹn−2,n−2
ỹn−1,n−2 ỹn−1,n−1

� 0 ỹn,n−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (96)

where

ỹi,i = − 2(n − i)(n − 1 − i + α)

(1 + i)(2n + 1 + α + β)(2n − 1 + α + β)
,

ỹi+1,i = 2n − 1 − 2i + α − β

(2n + 1 + α + β)(2n − 1 + α + β)
, 0 � i � n − 1.

Also, from (72) we have

Zn,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z0,0
�

z1,0 z1,1
z2,0 z2,1 z2,2
. . .

. . .
. . .

zn−2,n−4 zn−2,n−3 zn−2,n−2
zn−1,n−3 zn−1,n−2

� 0 zn,n−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (97)

where for 0 � i � n − 2,

zi,i = − (n − i)(n − 1 − i + α)(n + i + β)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
,

zi+1,i = (i + 1)(−2(i + 1) + α − β)(β + i)

(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
,

zi+2,i = (i + 1)(i + 2)(β + i)(β + i + 1)

(n − 1 − i)(2n + α + β)(2n − 1 + α + β)2(2n − 2 + α + β)
,

and
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Zn,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z̃0,0
�

z̃1,0 z̃1,1
z̃2,0 z̃2,1 z̃2,2
. . .

. . .
. . .

z̃n−2,n−4 z̃n−2,n−3 z̃n−2,n−2
z̃n−1,n−3 z̃n−1,n−2

� 0 z̃n,n−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (98)

where for 0 � i � n − 2,

z̃i,i = (−1 − i + n)(−i + n)(−2 + α − i + n)(−1 + α − i + n)

(1 + i)(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)
,

z̃i+1,i = −
(

(−1 − i + n)(−2 + α − i + n)(α − β + 2(−1 − i + n))

(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)

)
,

z̃i+2,i = − (2 + i)(1 + β + i)(−2 + α − i + 2n)

(−2 + α + β + 2n)(−1 + α + β + 2n)2(α + β + 2n)
.

6.6. Non-monic orthogonal solutions of (74)

For any non-monic orthogonal polynomial solution of the partial differential equation (74) it is possible to obtain the
main differential and algebraic properties by using the results given in Section 4. In this section we give some relations for
two concrete non-monic solutions of (74), orthogonal with respect to (76) in the domain (77).

On one hand, also in 1882, Appell considered a family of non-monic polynomials solution of the partial differential
equation (74). This orthogonal family can be obtained from the Rodrigues formula (36) (see [11, Eq. (11), p. 271]) using the
weight (83)

F (α,β)
n,m (x, y) = x1−α y1−β

(α)n(β)m

∂n+m

∂xn∂ ym

[
xn+α−1 ym+β−1(1 − x − y)n+m]

. (99)

These polynomials can also be obtained from the classical Appell’s orthogonal polynomials defined in [33, Eq. (6), p. 63] by
taking γ = α + β .

Clearly, both, monic Appell polynomials defined in (73) and the non-monic family (99), form a biorthogonal system in
the domain (77) with respect to the weight function (76) [11, Eq. (17), p. 272]∫ ∫

R

xα−1 yβ−1 F (α,β)
n,m (x, y)̂A(α,β)

k,l (x, y)dx dy = δnkδmlΛn,m, α,β > 0.

Then, if we denote

Fn = F
(α,β)
n (x, y) = (

F(α,β)

n,0 (x, y), . . . , F(α,β)

n−i,i (x, y), . . . , F(α,β)

0,n (x, y)
)T

= G F
n,nxn + G F

n,n−1xn−1 + G F
n,n−2xn−2 + · · · + G F

n,0x0, (100)

we have the following formula linking both solutions in column polynomial vector form

Fn = G F
n,nÂn, (101)

where Ân is defined in (75) and the entries of the matrix G F
n,n = (g F

i, j(n)) of size (n + 1)× (n + 1) have the following explicit
form

g F
i, j(n) = (−1)n

(
n

j

)
(α + n − i)n− j(β + i) j

(α)n− j(β) j
, 0 � i, j � n.

Once the matrix G F
n,n is known, applying the formulae given in Section 4 it is possible to obtain the coefficients of the

thee-term recurrence relations, structure relations and derivative representations for this non-monic family (99).
On the other hand, let us consider the non-monic family defined in [9, p. 86] with k → m, α → α − 1/2, β → β − 1/2

and γ = 1/2:

K (α,β)
n,m (x, y) = P (2m+β,α−1)

n (2x − 1)(1 − x)m P (0,β−1)
m

(
2y

1 − x
− 1

)
, α,β > 0, (102)

where P (α,β)
n (x) are the Jacobi polynomials [14]. This family was previously considered by Proriol in [26]. As already men-

tioned, this family is another polynomial solution of the partial differential equation (74) orthogonal with respect to (76) in
the domain (77). If we denote
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Kn = K
(α,β)
n (x, y) = (

K(α,β)

n,0 (x, y), . . . ,K(α,β)

n−i,i (x, y), . . . ,K(α,β)

0,n (x, y)
)T

= G K
n,nxn + G K

n,n−1xn−1 + G K
n,n−2xn−2 + · · · + G K

n,0x0,

then we have

Kn = G K
n,nÂn, (103)

where the entries of the matrix G K
n,n = (g K

i, j(n)) of size (n + 1) × (n + 1) have the following explicit form

g K
i, j(n) =

{
0, i < j,
(α+β+n+i)n−i(β+ j)i

(n−i)! j!(i− j)! , i � j,

for 0 � i, j � n.
Relations (101) and (103) between monic (73) and non-monic (99) Appell polynomials, and between monic Appell (73)

and the polynomials defined in (102) solve the following connection problems

F (α,β)
n−�,�(x, y) =

n∑
j=0

g F
�, j(n)̂A(α,β)

n− j, j(x, y), 0 � � � n,

K (α,β)
n−�,�(x, y) =

n∑
j=0

g K
�, j(n)̂A(α,β)

n− j, j(x, y), 0 � � � n,

between the corresponding scalar orthogonal polynomial families.
Finally, we would like to mention here that our goal is not to exploit all possible situations covered by our approach,

but to emphasize its systematic character, which allow one to implement it in any computer algebra system, here Mathe-
matica [34] symbolic language has been used.

Acknowledgments

This work was partially supported by Ministerio de Educación y Ciencia of Spain under grant MTM2006-07186, by Ministerio de Ciencia e Innovación
of Spain under grants MTM2009-14668-C02-01, MTM2009-14668-C02-02, and MTM2008-06689-C02, and cofinanced by the European Community fund
FEDER. Alejandro Zarzo acknowledges partial financial support from UPM. André Ronveaux also thanks the Departamento de Matemática Aplicada II of
Universidade de Vigo for the kind invitations and financial support.

The authors wish to thank the referees for their helpful and constructive comments that improved the presentation of this paper.

References

[1] W. Al-Salam, Characterization theorems for orthogonal polynomials, in: P. Nevai, M.E.H. Ismail (Eds.), Orthogonal Polynomials: Theory and Practice,
Kluwer Academic Publ., 1990, pp. 1–24.

[2] M. Álvarez de Morales, L. Fernández, T.E. Pérez, M.A. Piñar, On differential properties for bivariate orthogonal polynomials, Numer. Algorithms 145
(2007) 153–166.

[3] M. Álvarez de Morales, L. Fernández, T.E. Pérez, M.A. Piñar, Bivariate orthogonal polynomials in the Lyskova class, J. Comput. Appl. Math. 233 (2009)
597–601.

[4] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques. Polynômes d’Hermite, Gauthier–Villars, Paris, 1926.
[5] I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Extensions of some results of P. Humbert on Bezout’s identity for classical orthogonal polynomials, J. Comput.

Appl. Math. 196 (1) (2006) 212–228.
[6] S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929) 730–736.
[7] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[8] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (4) (1991) 345–390.
[9] Ch.F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia Math. Appl., vol. 81, Cambridge University Press, Cambridge, 2001.

[10] G.K. Engelis, Certain two-dimensional analogues of the classical orthogonal polynomials, Latv. Mat. Ezhegodnik 15 (1974) 169–202 (in Russian).
[11] A. Erdélyi, Higher Transcendental Functions, vol. II, McGraw–Hill, New York, 1981.
[12] E. Godoy, A. Ronveaux, A. Zarzo, I. Area, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: Continuous

case, J. Comput. Appl. Math. 84 (2) (1997) 257–275.
[13] G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, second edition, Oxford University Press, Oxford, 2005.
[14] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report No. 98-17, Delft University of

Technology, Faculty of Technical Mathematics and Informatics, 1998, on-line version.
[15] W. Koepf, D. Schmersau, Recurrence equations and their classical orthogonal polynomial solutions, Appl. Math. Comput. 128 (2002) 303–327.
[16] T.H. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in: Theory and Application of Special Functions, Proc. Advanced

Sem., Math. Res. Center, Univ. Wisconsin, Madison, WI, 1975, in: Math. Res. Center Univ. Wisconsin Publ., vol. 35, Academic Press, New York, 1975,
pp. 435–495.

[17] T.H. Koornwinder, The structure relation for Askey–Wilson polynomials, J. Comput. Appl. Math. 207 (2) (2007) 214–226.
[18] M.A. Kowalski, The recursion formulas for orthogonal polynomials in n variables, SIAM J. Math. Anal. 13 (2) (1982) 309–315.
[19] M.A. Kowalski, Orthogonality and recursion formulas for polynomials in n variables, SIAM J. Math. Anal. 13 (2) (1982) 316–323.
[20] H.L. Krall, L.M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. 76 (1967) 325–376.
[21] A.S. Lyskova, Orthogonal polynomials in several variables, Sov. Math. Dokl. 43 (1) (1991) 264–268 (in Russian); English translation from Dokl. Akad.

Nauk SSSR 316 (6) (1991) 1301–1306.



1208 I. Area et al. / J. Math. Anal. Appl. 387 (2012) 1188–1208
[22] A.S. Lyskova, On some properties of orthogonal polynomials in several variables, Russian Math. Surveys 52 (4) (1997) 840–841 (in Russian); English
translation from Uspekhi Mat. Nauk 52 (4) (1997) 207–208.

[23] F. Marcellán, A. Branquinho, J. Petronilho, Classical orthogonal polynomials: A functional approach, Acta Appl. Math. 34 (3) (1994) 283–303.
[24] A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer Ser. Comput. Phys., Springer, Berlin, 1991.
[25] A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988.
[26] J. Proriol, Sur une famille de polynomes à deux variables orthogonaux dans un triangle, C. R. Acad. Sci. Paris 245 (1957) 2459–2461.
[27] J. Rodal, I. Area, E. Godoy, Orthogonal polynomials of two discrete variables on the simplex, Integral Transforms Spec. Funct. 16 (3) (2005) 263–280.
[28] J. Rodal, I. Area, E. Godoy, Linear partial difference equations of hypergeometric type: Orthogonal polynomial solutions in two discrete variables,

J. Comput. Appl. Math. 200 (2007) 722–748.
[29] J. Rodal, I. Area, E. Godoy, Structure relations for monic orthogonal polynomials in two discrete variables, J. Math. Anal. Appl. 340 (2) (2008) 825–844.
[30] A. Ronveaux, A. Zarzo, I. Area, E. Godoy, Orthogonal polynomials and the Bézout identity, in: S. Elaydi, et al. (Eds.), Difference Equations, Special

Functions and Orthogonal Polynomials, Proceedings of the International Conference, Munich, Germany, July 25–30, 2005, World Scientific, Hackensack,
NJ, 2007, pp. 566–578.
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