4 research outputs found

    Address-event imagers for sensor networks: evaluation and modeling

    Get PDF

    Bio-inspired electronics for micropower vision processing

    No full text
    Vision processing is a topic traditionally associated with neurobiology; known to encode, process and interpret visual data most effectively. For example, the human retina; an exquisite sheet of neurobiological wetware, is amongst the most powerful and efficient vision processors known to mankind. With improving integrated technologies, this has generated considerable research interest in the microelectronics community in a quest to develop effective, efficient and robust vision processing hardware with real-time capability. This thesis describes the design of a novel biologically-inspired hybrid analogue/digital vision chip ORASIS1 for centroiding, sizing and counting of enclosed objects. This chip is the first two-dimensional silicon retina capable of centroiding and sizing multiple objects2 in true parallel fashion. Based on a novel distributed architecture, this system achieves ultra-fast and ultra-low power operation in comparison to conventional techniques. Although specifically applied to centroid detection, the generalised architecture in fact presents a new biologically-inspired processing paradigm entitled: distributed asynchronous mixed-signal logic processing. This is applicable to vision and sensory processing applications in general that require processing of large numbers of parallel inputs, normally presenting a computational bottleneck. Apart from the distributed architecture, the specific centroiding algorithm and vision chip other original contributions include: an ultra-low power tunable edge-detection circuit, an adjustable threshold local/global smoothing network and an ON/OFF-adaptive spiking photoreceptor circuit. Finally, a concise yet comprehensive overview of photodiode design methodology is provided for standard CMOS technologies. This aims to form a basic reference from an engineering perspective, bridging together theory with measured results. Furthermore, an approximate photodiode expression is presented, aiming to provide vision chip designers with a basic tool for pre-fabrication calculations

    Low-power CMOS circuit design for fast infrared imagers

    Get PDF
    La present tesi de màster detalla novedoses tècniques circuitals per al disseny de circuits integrats digitals CMOS de lectura compactes, de baixa potència i completament programables, destinats a aplicacions d'IR d'alta velocitat operant a temperatura ambient. En aquest sentit, el treball recull i amplia notablement la recerca iniciada en el Projecte Final de Carrera "Tècniques de disseny CMOS per a sistemes de visió híbrids de pla focal modular" obtenint-se resultats específics en tres diferents àrees: Recerca de l'arquitectura òptima d'FPA, des del punt de vista funcional i de construcció física. Disseny d'un conjunt complet de blocs bàsics d'autopolarització, compensació de la capacitat d'entrada i del corrent d'obscuritat, conversió A/D i interfície d'E/S exclusivament digital, amb compensació de l'FPN. Aplicació industrial real: Integraciió de tres versions diferents de píxel per sensors PbSe d'IR i fabricació de mòduls ROIC monolítics i híbrids en tecnologia CMOS estàndard 0.35&·956;m 2-PoliSi4-metall. Caracterització elèctrica i òptica-preliminar de les llibreries de disseny

    Traitement d'images bas niveau intégré dans un capteur de vision CMOS

    Get PDF
    Le traitement d images classique est basé sur l évaluation des données délivrées par un système à basede capteur de vision sous forme d images. L information lumineuse captée est extraiteséquentiellement de chaque élément photosensible (pixel) de la matrice avec un certain cadencementet à fréquence fixe. Ces données, une fois mémorisées, forment une matrice de données qui estréactualisée de manière exhaustive à l arrivée de chaque nouvelle image. De fait, Pour des capteurs àforte résolution, le volume de données à gérer est extrêmement important. De plus, le système neprend pas en compte le fait que l information stockée ai changé ou non par rapport à l imageprécédente. Cette probabilité est, en effet, assez importante. Ceci nous mène donc, selon l activité de la scène filmée à un haut niveau de redondances temporelles. De même, la méthode de lectureusuelle ne prend pas en compte le fait que le pixel en phase de lecture a la même valeur ou non que lepixel voisin lu juste avant. Cela rajoute aux redondances temporelles un taux de redondances spatialesplus ou moins élevé selon le spectre de fréquences spatiales de la scène filmée. Dans cette thèse, nousavons développé plusieurs solutions qui visent contrôler le flot de données en sortie de l imageur enessayant de réduire les redondances spatiales et temporelles des pixels. Les contraintes de simplicité etd intelligence des techniques de lecture développées font la différence entre ce que nousprésentons et ce qui a été publié dans la littérature. En effet, les travaux présentés dans l état de l artproposent des solutions à cette problématique, qui en général, exigent de gros sacrifices en terme desurface du pixel, vu qu elles implémentent des fonctions électroniques complexes in situ.Les principes de fonctionnement, les émulations sous MATLAB, la conception et les simulationsélectriques ainsi que les résultats expérimentaux des techniques proposées sont présentés en détailsdans ce manuscrit.The classical image processing is based on the evaluation of data delivered by a vision sensor systemas images. The captured light information is extracted sequentially from each photosensitive element(pixel) of the matrix with a fixed frequency called frame rate. These data, once stored, form a matrixof data that is entirely updated at the acquisition of each new image. Therefore, for high resolutionimagers, the data flow is huge. Moreover, the conventional systems do not take into account the factthat the stored data have changed or not compared to the previously acquired image. Indeed, there is ahigh probability that this information is not changed. Therefore, this leads, depending on the "activity"of the filmed scene, to a high level of temporal redundancies. Similarly, the usual scanning methodsdo not take into account that the read pixel has or not the same value of his neighbor pixel read oncebefore. This adds to the temporal redundancies, spatial redundancies rate that depends on the spatialfrequency spectrum of the scene. In this thesis, we have developed several solutions that aim to controlthe output data flow from the imager trying to reduce both spatial and temporal pixels redundancies. Aconstraint of simplicity and "Smartness" of the developed readout techniques makes the differencebetween what we present and what has been published in the literature. Indeed, the works presented inthe literature suggest several solutions to this problem, but in general, these solutions require largesacrifices in terms of pixel area, since they implement complex electronic functions in situ.The operating principles, the emulation in MATLAB, the electrical design and simulations and theexperimental results of the proposed techniques are explained in detail in this manuscriptSAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore