248 research outputs found

    Space-by-time non-negative matrix factorization for single-trial decoding of M/EEG activity

    Get PDF
    We develop a novel methodology for the single-trial analysis of multichannel time-varying neuroimaging signals. We introduce the space-by-time M/EEG decomposition, based on Non-negative Matrix Factorization (NMF), which describes single-trial M/EEG signals using a set of non-negative spatial and temporal components that are linearly combined with signed scalar activation coefficients. We illustrate the effectiveness of the proposed approach on an EEG dataset recorded during the performance of a visual categorization task. Our method extracts three temporal and two spatial functional components achieving a compact yet full representation of the underlying structure, which validates and summarizes succinctly results from previous studies. Furthermore, we introduce a decoding analysis that allows determining the distinct functional role of each component and relating them to experimental conditions and task parameters. In particular, we demonstrate that the presented stimulus and the task difficulty of each trial can be reliably decoded using specific combinations of components from the identified space-by-time representation. When comparing with a sliding-window linear discriminant algorithm, we show that our approach yields more robust decoding performance across participants. Overall, our findings suggest that the proposed space-by-time decomposition is a meaningful low-dimensional representation that carries the relevant information of single-trial M/EEG signals

    A real time classification algorithm for EEG-based BCI driven by self-induced emotions

    Get PDF
    Background and objective: The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. Method: The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Results: Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. Conclusions: The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities

    Rigorous optimisation of multilinear discriminant analysis with Tucker and PARAFAC structures

    Get PDF
    Abstract Background We propose rigorously optimised supervised feature extraction methods for multilinear data based on Multilinear Discriminant Analysis (MDA) and demonstrate their usage on Electroencephalography (EEG) and simulated data. While existing MDA methods use heuristic optimisation procedures based on an ambiguous Tucker structure, we propose a rigorous approach via optimisation on the cross-product of Stiefel manifolds. We also introduce MDA methods with the PARAFAC structure. We compare the proposed approaches to existing MDA methods and unsupervised multilinear decompositions. Results We find that manifold optimisation substantially improves MDA objective functions relative to existing methods and on simulated data in general improve classification performance. However, we find similar classification performance when applied to the electroencephalography data. Furthermore, supervised approaches substantially outperform unsupervised mulitilinear methods whereas methods with the PARAFAC structure perform similarly to those with Tucker structures. Notably, despite applying the MDA procedures to raw Brain-Computer Interface data, their performances are on par with results employing ample pre-processing and they extract discriminatory patterns similar to the brain activity known to be elicited in the investigated EEG paradigms. Conclusion The proposed usage of manifold optimisation constitutes the first rigorous and monotonous optimisation approach for MDA methods and allows for MDA with the PARAFAC structure. Our results show that MDA methods applied to raw EEG data can extract discriminatory patterns when compared to traditional unsupervised multilinear feature extraction approaches, whereas the proposed PARAFAC structured MDA models provide meaningful patterns of activity

    A comparison of univariate, vector, bilinear autoregressive, and band power features for brain–computer interfaces

    Get PDF
    Selecting suitable feature types is crucial to obtain good overall brain–computer interface performance. Popular feature types include logarithmic band power (logBP), autoregressive (AR) parameters, time-domain parameters, and wavelet-based methods. In this study, we focused on different variants of AR models and compare performance with logBP features. In particular, we analyzed univariate, vector, and bilinear AR models. We used four-class motor imagery data from nine healthy users over two sessions. We used the first session to optimize parameters such as model order and frequency bands. We then evaluated optimized feature extraction methods on the unseen second session. We found that band power yields significantly higher classification accuracies than AR methods. However, we did not update the bias of the classifiers for the second session in our analysis procedure. When updating the bias at the beginning of a new session, we found no significant differences between all methods anymore. Furthermore, our results indicate that subject-specific optimization is not better than globally optimized parameters. The comparison within the AR methods showed that the vector model is significantly better than both univariate and bilinear variants. Finally, adding the prediction error variance to the feature space significantly improved classification results

    A review of rapid serial visual presentation-based brain-computer interfaces

    Get PDF
    International audienceRapid serial visual presentation (RSVP) combined with the detection of event related brain responses facilitates the selection of relevant information contained in a stream of images presented rapidly to a human. Event related potentials (ERPs) measured non-invasively with electroencephalography (EEG) can be associated with infrequent targets amongst a stream of images. Human-machine symbiosis may be augmented by enabling human interaction with a computer, without overt movement, and/or enable optimization of image/information sorting processes involving humans. Features of the human visual system impact on the success of the RSVP paradigm, but pre-attentive processing supports the identification of target information post presentation of the information by assessing the co-occurrence or time-locked EEG potentials. This paper presents a comprehensive review and evaluation of the limited but significant literature on research in RSVP-based brain-computer interfaces (BCIs). Applications that use RSVP-based BCIs are categorized based on display mode and protocol design, whilst a range of factors influencing ERP evocation and detection are analyzed. Guidelines for using the RSVP-based BCI paradigms are recommended, with a view to further standardizing methods and enhancing the inter-relatability of experimental design to support future research and the use of RSVP-based BCIs in practice

    Decomposition and classification of electroencephalography data

    Get PDF

    Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices

    Get PDF
    In motor imagery brain-computer interfaces (BCIs), the symmetric positive-definite (SPD) covariance matrices of electroencephalogram (EEG) signals carry important discriminative information. In this paper, we intend to classify motor imagery EEG signals by exploiting the fact that the space of SPD matrices endowed with Riemannian distance is a high-dimensional Riemannian manifold. To alleviate the overfitting and heavy computation problems associated with conventional classification methods on high-dimensional manifold, we propose a framework for intrinsic sub-manifold learning from a high-dimensional Riemannian manifold. Considering a special case of SPD space, a simple yet efficient bilinear sub-manifold learning (BSML) algorithm is derived to learn the intrinsic sub-manifold by identifying a bilinear mapping that maximizes the preservation of the local geometry and global structure of the original manifold. Two BSML-based classification algorithms are further proposed to classify the data on a learned intrinsic sub-manifold. Experimental evaluation of the classification of EEG revealed that the BSML method extracts the intrinsic sub-manifold approximately 5× faster and with higher classification accuracy compared with competing algorithms. The BSML also exhibited strong robustness against a small training dataset, which often occurs in BCI studies

    Spatio-Temporal Approaches to Denoising and Feature Extraction in Rapid Image Triage

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    EEG-Based Brain-Computer Interfacing via Motor-Imagery: Practical Implementation and Feature Analysis

    Get PDF
    The human brain is the most intriguing and complex signal processing unit ever known to us. A unique characteristic of our brain is its plasticity property, i.e., the ability of neurons to modify their behavior (structure and functionality) in response to environmental diversity. The plasticity property of brain has motivated design of brain-computer interfaces (BCI) to develop an alternative form of communication channel between brain signals and the external world. The BCI systems have several therapeutic applications of significant importance including but not limited to rehabilitation/ assistive systems, rehabilitation robotics, and neuro-prosthesis control. Despite recent advancements in BCIs, such systems are still far from being reliably incorporated within humanmachine inference networks. In this regard, the thesis focuses on Motor Imagery (MI)-based BCI systems with the objective of tackling some key challenges observed in existing solutions. The MI is defined as a cognitive process in which a person imagines performing a movement without peripheral (muscle) activation. At one hand, the thesis focuses on feature extraction, which is one of the most crucial steps for the development of an effective BCI system. In this regard, the thesis proposes a subject-specific filtering framework, referred to as the regularized double-band Bayesian (R-B2B) spectral filtering. The proposed R-B2B framework couples three main feature extraction categories, namely filter-bank solutions, regularized techniques, and optimized Bayesian mechanisms to enhance the overall classification accuracy of the BCI. To further evaluate the effects of deploying optimized subject-specific spectra-spatial filters, it is vital to examine and investigate different aspects of data collection and in particular, effects of the stimuli provided to subjects to trigger MI tasks. The second main initiative of the thesis is to propose an element of experimental design dealing with MI-based BCI systems. In this regard, we have implemented an EEG-based BCI system and constructed a benchmark dataset associated with 10 healthy subjects performing actual movement and MI tasks. To investigate effects of stimulus on the overall achievable performance, four different protocols are designed and implemented via introduction of visual and voice stimuli. Finally, the work investigates effects of adaptive trimming of EEG epochs resulting in an adaptive and subject-specific solution
    corecore