15 research outputs found

    Secluded Connectivity Problems

    Full text link
    Consider a setting where possibly sensitive information sent over a path in a network is visible to every {neighbor} of the path, i.e., every neighbor of some node on the path, thus including the nodes on the path itself. The exposure of a path PP can be measured as the number of nodes adjacent to it, denoted by N[P]N[P]. A path is said to be secluded if its exposure is small. A similar measure can be applied to other connected subgraphs, such as Steiner trees connecting a given set of terminals. Such subgraphs may be relevant due to considerations of privacy, security or revenue maximization. This paper considers problems related to minimum exposure connectivity structures such as paths and Steiner trees. It is shown that on unweighted undirected nn-node graphs, the problem of finding the minimum exposure path connecting a given pair of vertices is strongly inapproximable, i.e., hard to approximate within a factor of O(2log⁡1−ϵn)O(2^{\log^{1-\epsilon}n}) for any ϵ>0\epsilon>0 (under an appropriate complexity assumption), but is approximable with ratio Δ+3\sqrt{\Delta}+3, where Δ\Delta is the maximum degree in the graph. One of our main results concerns the class of bounded-degree graphs, which is shown to exhibit the following interesting dichotomy. On the one hand, the minimum exposure path problem is NP-hard on node-weighted or directed bounded-degree graphs (even when the maximum degree is 4). On the other hand, we present a polynomial algorithm (based on a nontrivial dynamic program) for the problem on unweighted undirected bounded-degree graphs. Likewise, the problem is shown to be polynomial also for the class of (weighted or unweighted) bounded-treewidth graphs

    Parameterized Complexity of Secluded Connectivity Problems

    Get PDF
    The Secluded Path problem models a situation where a sensitive information has to be transmitted between a pair of nodes along a path in a network. The measure of the quality of a selected path is its exposure, which is the total weight of vertices in its closed neighborhood. In order to minimize the risk of intercepting the information, we are interested in selecting a secluded path, i.e. a path with a small exposure. Similarly, the Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals such that the exposure of the tree is minimized. The problems were introduced by Chechik et al. in [ESA 2013]. Among other results, Chechik et al. have shown that Secluded Path is fixed-parameter tractable (FPT) on unweighted graphs being parameterized by the maximum vertex degree of the graph and that Secluded Steiner Tree is FPT parameterized by the treewidth of the graph. In this work, we obtain the following results about parameterized complexity of secluded connectivity problems. We give FPT-algorithms deciding if a graph G with a given cost function contains a secluded path and a secluded Steiner tree of exposure at most k with the cost at most C. We initiate the study of "above guarantee" parameterizations for secluded problems, where the lower bound is given by the size of a Steiner tree. We investigate Secluded Steiner Tree from kernelization perspective and provide several lower and upper bounds when parameters are the treewidth, the size of a vertex cover, maximum vertex degree and the solution size. Finally, we refine the algorithmic result of Chechik et al. by improving the exponential dependence from the treewidth of the input graph.Comment: Minor corrections are don

    Enumerating Isolated Cliques in Temporal Networks

    Full text link
    Isolation is a concept from the world of clique enumeration that is mostly used to model communities that do not have much contact to the outside world. Herein, a clique is considered isolated if it has few edges connecting it to the rest of the graph. Motivated by recent work on enumerating cliques in temporal networks, we lift the isolation concept to this setting. We discover that the addition of the time dimension leads to six distinct natural isolation concepts. Our main contribution is the development of fixed-parameter enumeration algorithms for five of these six clique types employing the parameter "degree of isolation". On the empirical side, we implement and test these algorithms on (temporal) social network data, obtaining encouraging preliminary results

    Finding k-secluded trees faster

    Get PDF
    We revisit the k-SECLUDED TREE problem. Given a vertex-weighted undirected graph G, its objective is to find a maximum-weight induced subtree T whose open neighborhood has size at most k. We present a fixed-parameter tractable algorithm that solves the problem in time 2 O(klog⁡k)⋅n O(1), improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a k-secluded tree by branching on vertices in the open neighborhood of the current tree T. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any k-secluded supertree T ′⊇T once the open neighborhood of T becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight k-secluded trees, which allows us to count them as well.</p

    Finding k-secluded trees faster

    Get PDF
    We revisit the k-SECLUDED TREE problem. Given a vertex-weighted undirected graph G, its objective is to find a maximum-weight induced subtree T whose open neighborhood has size at most k. We present a fixed-parameter tractable algorithm that solves the problem in time 2 O(klog⁡k)⋅n O(1), improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a k-secluded tree by branching on vertices in the open neighborhood of the current tree T. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any k-secluded supertree T ′⊇T once the open neighborhood of T becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight k-secluded trees, which allows us to count them as well.</p

    Finding secluded places of special interest in graphs.

    Get PDF
    Finding a vertex subset in a graph that satisfies a certain property is one of the most-studied topics in algorithmic graph theory. The focus herein is often on minimizing or maximizing the size of the solution, that is, the size of the desired vertex set. In several applications, however, we also want to limit the “exposure” of the solution to the rest of the graph. This is the case, for example, when the solution represents persons that ought to deal with sensitive information or a segregated community. In this work, we thus explore the (parameterized) complexity of finding such secluded vertex subsets for a wide variety of properties that they shall fulfill. More precisely, we study the constraint that the (open or closed) neighborhood of the solution shall be bounded by a parameter and the influence of this constraint on the complexity of minimizing separators, feedback vertex sets, F-free vertex deletion sets, dominating sets, and the maximization of independent sets

    Finding secluded places of special interest in graphs

    Get PDF
    Finding a vertex subset in a graph that satisfies a certain property is one of the most-studied topics in algorithmic graph theory. The focus herein is often on minimizing or maximizing the size of the solution, that is, the size of the desired vertex set. In several applications, however, we also want to limit the “exposure” of the solution to the rest of the graph. This is the case, for example, when the solution represents persons that ought to deal with sensitive information or a segregated community. In this work, we thus explore the (parameterized) complexity of finding such secluded vertex subsets for a wide variety of properties that they shall fulfill. More precisely, we study the constraint that the (open or closed) neighborhood of the solution shall be bounded by a parameter and the influence of this constraint on the complexity of minimizing separators, feedback vertex sets, F-free vertex deletion sets, dominating sets, and the maximization of independent sets

    Finding Connected Secluded Subgraphs

    Get PDF
    Problems related to finding induced subgraphs satisfying given properties form one of the most studied areas within graph algorithms. Such problems have given rise to breakthrough results and led to development of new techniques both within the traditional P vs NP dichotomy and within parameterized complexity. The Pi-Subgraph problem asks whether an input graph contains an induced subgraph on at least k vertices satisfying graph property Pi. For many applications, it is desirable that the found subgraph has as few connections to the rest of the graph as possible, which gives rise to the Secluded Pi-Subgraph problem. Here, input k is the size of the desired subgraph, and input t is a limit on the number of neighbors this subgraph has in the rest of the graph. This problem has been studied from a parameterized perspective, and unfortunately it turns out to be W[1]-hard for many graph properties Pi, even when parameterized by k+t. We show that the situation changes when we are looking for a connected induced subgraph satisfying Pi. In particular, we show that the Connected Secluded Pi-Subgraph problem is FPT when parameterized by just t for many important graph properties Pi

    Geometric Secluded Paths and Planar Satisfiability

    Get PDF
    We consider paths with low exposure to a 2D polygonal domain, i.e., paths which are seen as little as possible; we differentiate between integral exposure (when we care about how long the path sees every point of the domain) and 0/1 exposure (just counting whether a point is seen by the path or not). For the integral exposure, we give a PTAS for finding the minimum-exposure path between two given points in the domain; for the 0/1 version, we prove that in a simple polygon the shortest path has the minimum exposure, while in domains with holes the problem becomes NP-hard. We also highlight connections of the problem to minimum satisfiability and settle hardness of variants of planar min- and max-SAT
    corecore