2,556 research outputs found

    Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons

    Get PDF
    We hypothesize that the strong sensitivity of radar backscatter to surface dielectric properties, and hence to the phase (solid or liquid) of any water near the surface should make space-borne radar observations a powerful tool for large-scale spatial monitoring of the freeze/thaw state of the land surface, and thus ecosystem growing season length. We analyzed the NASA scatterometer (NSCAT) backscatter from September 1996 to June 1997, along with temperature and snow depth observations and ecosystem modeling, for three BOREAS sites in central Canada. Because of its short wavelength (2.14 cm), NSCAT was sensitive to canopy and surface water. NSCAT had 25 km spatial resolution and approximately twice-daily temporal coverage at the BOREAS latitude. At the northern site the NSCAT signal showed strong seasonality, with backscatter around −8 dB in winter and −12 dB in early summer and fall. The NSCAT signal for the southern sites had less seasonality. At all three sites there was a strong decrease in backscatter during spring thaw (4–6 dB). At the southern deciduous site, NSCAT backscatter rose from −11 to −9.2 dB during spring leaf-out. All sites showed 1–2 dB backscatter shifts corresponding to changes in landscape water state coincident with brief midwinter thaws, snowfall, and extreme cold (Tmax\u3c−25°C). Freeze/thaw detection algorithms developed for other radar instruments gave reasonable results for the northern site but were not successful at the two southern sites. We developed a change detection algorithm based on first differences of 5-day smoothed NSCAT backscatter measurements. This algorithm had some success in identifying the arrival of freezing conditions in the autumn and the beginning of thaw in the spring. Changes in surface freeze/thaw state generally coincided with the arrival and departure of the seasonal snow cover and with simulated shifts in the directions of net carbon exchange at each of the study sites

    Spatio-temporal influence of tundra snow properties on Ku-band (17.2 GHz) backscatter

    Get PDF
    During the 2010/11 boreal winter, a distributed set of backscatter measurements was collected using a ground-based Ku-band (17.2 GHz) scatterometer system at 26 open tundra sites. A standard snow-sampling procedure was completed after each scan to evaluate local variability in snow layering, depth, density and water equivalent (SWE) within the scatterometer field of view. The shallow depths and large basal depth hoar encountered presented an opportunity to evaluate backscatter under a set of previously untested conditions. Strong Ku-band response was found with increasing snow depth and snow water equivalent (SWE). In particular, co-polarized vertical backscatter increased by 0.82 dB for every 1 cm increase in SWE (R2 = 0.62). While the result indicated strong potential for Ku-band retrieval of shallow snow properties, it did not characterize the influence of sub-scan variability. An enhanced snow-sampling procedure was introduced to generate detailed characterizations of stratigraphy within the scatterometer field of view using near-infrared photography along the length of a 5m trench. Changes in snow properties along the trench were used to discuss variations in the collocated backscatter response. A pair of contrasting observation sites was used to highlight uncertainties in backscatter response related to short length scale spatial variability in the observed tundra environment

    Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches

    Get PDF
    Accurate inventories of grasslands are important for studies of carbon dynamics, biodiversity conservation and agricultural management. For regions with persistent cloud cover the use of multi-temporal synthetic aperture radar (SAR) data provides an attractive solution for generating up-to-date inventories of grasslands. This is even more appealing considering the data that will be available from upcoming missions such as Sentinel-1 and ALOS-2. In this study, the performance of three machine learning algorithms; Random Forests (RF), Support Vector Machines (SVM) and the relatively underused Extremely Randomised Trees (ERT) is evaluated for discriminating between grassland types over two large heterogeneous areas of Ireland using multi-temporal, multi-sensor radar and ancillary spatial datasets. A detailed accuracy assessment shows the efficacy of the three algorithms to classify different types of grasslands. Overall accuracies ≄ 88.7% (with kappa coefficient of 0.87) were achieved for the single frequency classifications and maximum accuracies of 97.9% (kappa coefficient of 0.98) for the combined frequency classifications. For most datasets, the ERT classifier outperforms SVM and RF

    Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.

    Get PDF
    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests

    Sentinel-1 backscatter time series for characterization of evapotranspiration dynamics over temperate coniferous forests

    Get PDF
    Forests’ ecosystems are an essential part of the global carbon cycle with vast carbon storage potential. These systems are currently under external pressures showing increasing change due to climate change. A better understanding of the biophysical properties of forests is, therefore, of paramount importance for research and monitoring purposes. While there are many biophysical properties, the focus of this study is on the in-depth analysis of the connection between the C-band Copernicus Sentinel-1 SAR backscatter and evapotranspiration (ET) estimates based on in situ meteorological data and the FAO-based Penman–Monteith equation as well as the well-established global terrestrial ET product from the Terra and Aqua MODIS sensors. The analysis was performed in the Free State of Thuringia, central Germany, over coniferous forests within an area of 2452 km2, considering a 5-year time series (June 2016–July 2021) of 6- to 12-day Sentinel-1 backscatter acquisitions/observations, daily in situ meteorological measurements of four weather stations as well as an 8-day composite of ET products of the MODIS sensors. Correlation analyses of the three datasets were implemented independently for each of the microwave sensor’s acquisition parameters, ascending and descending overpass direction and co- or cross-polarization, investigating different time series seasonality filters. The Sentinel-1 backscatter and both ET time series datasets show a similar multiannual seasonally fluctuating behavior with increasing values in the spring, peaks in the summer, decreases in the autumn and troughs in the winter months. The backscatter difference between summer and winter reaches over 1.5 dB, while the evapotranspiration difference reaches 8 mm/day for the in situ measurements and 300 kg/m2/8-day for the MODIS product. The best correlation between the Sentinel-1 backscatter and both ET products is achieved in the ascending overpass direction, with datasets acquired in the late afternoon, and reaches an R2-value of over 0.8. The correlation for the descending overpass direction reaches values of up to 0.6. These results suggest that the SAR backscatter signal of coniferous forests is sensitive to the biophysical property evapotranspiration under some scenarios

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought

    Get PDF
    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon’s vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999–2009, and low morning backscatter persisted for 2006–2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured
    • 

    corecore