3,701 research outputs found

    Reverse k Nearest Neighbor Search over Trajectories

    Full text link
    GPS enables mobile devices to continuously provide new opportunities to improve our daily lives. For example, the data collected in applications created by Uber or Public Transport Authorities can be used to plan transportation routes, estimate capacities, and proactively identify low coverage areas. In this paper, we study a new kind of query-Reverse k Nearest Neighbor Search over Trajectories (RkNNT), which can be used for route planning and capacity estimation. Given a set of existing routes DR, a set of passenger transitions DT, and a query route Q, a RkNNT query returns all transitions that take Q as one of its k nearest travel routes. To solve the problem, we first develop an index to handle dynamic trajectory updates, so that the most up-to-date transition data are available for answering a RkNNT query. Then we introduce a filter refinement framework for processing RkNNT queries using the proposed indexes. Next, we show how to use RkNNT to solve the optimal route planning problem MaxRkNNT (MinRkNNT), which is to search for the optimal route from a start location to an end location that could attract the maximum (or minimum) number of passengers based on a pre-defined travel distance threshold. Experiments on real datasets demonstrate the efficiency and scalability of our approaches. To the best of our best knowledge, this is the first work to study the RkNNT problem for route planning.Comment: 12 page

    Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data

    Get PDF
    Mining spatio-temporal reachable regions aims to find a set of road segments from massive trajectory data, that are reachable from a user-specified location and within a given temporal period. Accurately extracting such spatio-temporal reachable area is vital in many urban applications, e.g., (i) location-based recommendation, (ii) location-based advertising, and (iii) business coverage analysis. The traditional approach of answering such queries essentially performs a distance-based range query over the given road network, which have two main drawbacks: (i) it only works with the physical travel distances, where the users usually care more about dynamic traveling time, and (ii) it gives the same result regardless of the querying time, where the reachable area could vary significantly with different traffic conditions. Motivated by these observations, in this thesis, we propose a data- driven approach to formulate the problem as mining actual reachable region based on real historical trajectory dataset. The main challenge in our approach is the system efficiency, as verifying the reachability over the massive trajectories involves huge amount of disk I/Os. In this thesis, we develop two indexing structures: 1) spatio-temporal index (ST-Index) and 2) connection index (Con-Index) to reduce redundant trajectory data access operations. We also propose a novel query processing algorithm with: 1) maximum bounding region search, which directly extracts a small searching region from the index structure and 2) trace back search, which refines the search results from the previous step to find the final query result. Moreover, our system can also efficiently answer the spatio-temporal reachability query with multiple query locations by skipping the overlapped area search. We evaluate our system extensively using a large-scale real taxi trajectory data in Shenzhen, China, where results demonstrate that the proposed algorithms can reduce 50%-90% running time over baseline algorithms

    Stability and the Evolvability of Function in a Model Protein

    Get PDF
    Functional proteins must fold with some minimal stability to a structure that can perform a biochemical task. Here we use a simple model to investigate the relationship between the stability requirement and the capacity of a protein to evolve the function of binding to a ligand. Although our model contains no built-in tradeoff between stability and function, proteins evolved function more efficiently when the stability requirement was relaxed. Proteins with both high stability and high function evolved more efficiently when the stability requirement was gradually increased than when there was constant selection for high stability. These results show that in our model, the evolution of function is enhanced by allowing proteins to explore sequences corresponding to marginally stable structures, and that it is easier to improve stability while maintaining high function than to improve function while maintaining high stability. Our model also demonstrates that even in the absence of a fundamental biophysical tradeoff between stability and function, the speed with which function can evolve is limited by the stability requirement imposed on the protein.Comment: Biophysical Journal in pres
    • …
    corecore