712 research outputs found

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Dagstuhl News January - December 2000

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Studying the effects of adding spatiality to a process algebra model

    No full text
    We use NetLogo to create simulations of two models of disease transmission originally expressed in WSCCS. This allows us to introduce spatiality into the models and explore the consequences of having different contact structures among the agents. In previous work, mean field equations were derived from the WSCCS models, giving a description of the aggregate behaviour of the overall population of agents. These results turned out to differ from results obtained by another team using cellular automata models, which differ from process algebra by being inherently spatial. By using NetLogo we are able to explore whether spatiality, and resulting differences in the contact structures in the two kinds of models, are the reason for this different results. Our tentative conclusions, based at this point on informal observations of simulation results, are that space does indeed make a big difference. If space is ignored and individuals are allowed to mix randomly, then the simulations yield results that closely match the mean field equations, and consequently also match the associated global transmission terms (explained below). At the opposite extreme, if individuals can only contact their immediate neighbours, the simulation results are very different from the mean field equations (and also do not match the global transmission terms). These results are not surprising, and are consistent with other cellular automata-based approaches. We found that it was easy and convenient to implement and simulate the WSCCS models within NetLogo, and we recommend this approach to anyone wishing to explore the effects of introducing spatiality into a process algebra model

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Membrane systems with limited parallelism

    Get PDF
    Membrane computing is an emerging research field that belongs to the more general area of molecular computing, which deals with computational models inspired from bio-molecular processes. Membrane computing aims at defining models, called membrane systems or P systems, which abstract the functioning and structure of the cell. A membrane system consists of a hierarchical arrangement of membranes delimiting regions, which represent various compartments of a cell, and with each region containing bio-chemical elements of various types and having associated evolution rules, which represent bio-chemical processes taking place inside the cell. This work is a continuation of the investigations aiming to bridge membrane computing (where in a compartmental cell-like structure the chemicals to evolve are placed in compartments defined by membranes) and brane calculi (where one considers again a compartmental cell-like structure with the chemicals/proteins placed on the membranes themselves). We use objects both in compartments and on membranes (the latter are called proteins), with the objects from membranes evolving under the control of the proteins. Several possibilities are considered (objects only moved across membranes or also changed during this operation, with the proteins only assisting the move/change or also changing themselves). Somewhat expected, computational universality is obtained for several combinations of such possibilities. We also present a method for solving the NP-complete SAT problem using P systems with proteins on membranes. The SAT problem is solved in O(nm) time, where n is the number of boolean variables and m is the number of clauses for an instance written in conjunctive normal form. Thus, we can say that the solution for each given instance is obtained in linear time. We succeeded in solving SAT by a uniform construction of a deterministic P system which uses rules involving objects in regions, proteins on membranes, and membrane division. Then, we investigate the computational power of P systems with proteins on membranes in some particular cases: when only one protein is placed on a membrane, when the systems have a minimal number of rules, when the computation evolves in accepting or computing mode, etc. This dissertation introduces also another new variant of membrane systems that uses context-free rewriting rules for the evolution of objects placed inside compartments of a cell, and symport rules for communication between membranes. The strings circulate across membranes depending on their membership to regular languages given by means of regular expressions. We prove that these rewriting-symport P systems generate all recursively enumerable languages. We investigate the computational power of these newly introduced P systems for three particular forms of the regular expressions that are used by the symport rules. A characterization of ET0L languages is obtained in this context

    Translation of Algorithmic Descriptions of Discrete Functions to SAT with Applications to Cryptanalysis Problems

    Full text link
    In the present paper, we propose a technology for translating algorithmic descriptions of discrete functions to SAT. The proposed technology is aimed at applications in algebraic cryptanalysis. We describe how cryptanalysis problems are reduced to SAT in such a way that it should be perceived as natural by the cryptographic community. In~the theoretical part of the paper we justify the main principles of general reduction to SAT for discrete functions from a class containing the majority of functions employed in cryptography. Then, we describe the Transalg software tool developed based on these principles with SAT-based cryptanalysis specifics in mind. We demonstrate the results of applications of Transalg to construction of a number of attacks on various cryptographic functions. Some of the corresponding attacks are state of the art. We compare the functional capabilities of the proposed tool with that of other domain-specific software tools which can be used to reduce cryptanalysis problems to SAT, and also with the CBMC system widely employed in symbolic verification. The paper also presents vast experimental data, obtained using the SAT solvers that took first places at the SAT competitions in the recent several years

    Sixth Biennial Report : August 2001 - May 2003

    No full text
    corecore