11 research outputs found

    Integrasi Pareto Fitness, Multiple-Population Dan Temporary Population Pada Algoritma Genetika Untuk Pembangkitan Data Tes Pada Pengujian Perangkat Lunak

    Full text link
    Pengujian perangkat lunak memerlukan biaya yang mahal dan sering kali lebih dari 50% biaya keseluruhan dalam pengembangan perangkat lunak digunakan dalam tahapan ini. Untuk mengurangi biaya proses pengujian perangkat lunak secara otomatis dapat digunakan. Hal yang sangat penting dalam pengujian perangkat lunak secara otomatis adalah proses menghasilkan data tes. Pengujian secara otomatis yang paling efektif dalam menekan biaya adalah pengujian branch coverage. Salah satu metode yang banyak digunakan dan memiliki kinerja baik adalah algoritma genetika (AG). Salah satu permasalahan AG dalam menghasilkan data tes adalah ketiga target cabang dipilih memungkinkan tidak ada satupun individu yang memenuhi kriteria. Hal ini akan menyebabkan proses pencarian data tes memakan waktu lebih lama. Oleh karena itu di dalam penelitian ini diusulkan integrasi pareto fitness, multiple-population dan temporary population di dalam proses pencarian data tes dengan menggunakan AG (AG-PFMPTP). Multiple-population diusulkan untuk menghindari premature convergence. Kemudian pareto fitness dan temporary population digunakan untuk mencari beberapa data tes sekaligus, kemudian mengevaluasinya dan memasukkan ke dalam archive temporary population. Dari hasil pengujian yang telah dilakukan rata-rata generasi metode AG-PFMPTP secara signifikan lebih sedikit dalam menghasilkan data tes yang dibutuhkan dibandingkan metode AG standar ataupun AG dengan multiple-population (AG-MP) pada semua benchmark program yang digunakan. Hal tersebut menunjukkan metode yang diusulkan lebih cepat dalam mencari data tes yang dibutuhka

    On Parameter Tuning in Search Based Software Engineering

    Full text link
    Abstract. When applying search-based software engineering (SBSE) techniques one is confronted with a multitude of different parameters that need to be chosen: Which population size for a genetic algorithm? Which selection mechanism to use? What settings to use for dozens of other parameters? This problem not only troubles users who want to apply SBSE tools in practice, but also researchers performing experimentation – how to compare algorithms that can have different parameter settings? To shed light on the problem of parameters, we performed the largest empirical analysis on parameter tuning in SBSE to date, collecting and statistically analysing data from more than a million experiments. As case study, we chose test data generation, one of the most popular problems in SBSE. Our data confirm that tuning does have a critical impact on algorithmic perfor-mance, and over-fitting of parameter tuning is a dire threat to external validity of empirical analyses in SBSE. Based on this large empirical evidence, we give guidelines on how to handle parameter tuning

    Search-based test case generation for object-oriented Java software using strongly-typed genetic programming

    No full text
    Texto integral não está disponívelIn evolutionary testing, meta-heuristic search techniques are used to generate high-quality test data. The focus of our on-going work is on employing evolutionary algorithms for the structural unit-testing of object-oriented Java programs. Test cases are evolved using the Strongly-Typed Genetic Programming technique. Test data quality evaluation includes instrumenting the test object, executing it with the generated test cases, and tracing the structures traversed in order to derive coverage metrics. The strategy for efficiently guiding the search process towards achieving full structural coverage involves favouring test cases that exercise problematic structures and control-flow paths. Static analysis and instrumentation is performed solely with basis on the information extracted from the test objects' Java Bytecode. Relevant contributions include the introduction of novel methodologies for automation, search guidance and input domain reduction, and the presentation of the eCrash automated test case generation tool

    It is not the length that matters, it is how you control it

    Get PDF
    Abstract-The length of test cases is a little investigated topic in search-based test generation for object oriented software, where test cases are sequences of method calls. While intuitively longer tests can achieve higher overall code coverage, there is always the threat of bloat -a complex phenomenon in evolutionary computation, where the length abnormally grows over time. In this paper, we show that bloat indeed also occurs in the context of test generation for object oriented software. We present different techniques to overcome the problem of length bloat, and evaluate all possible combinations of these techniques using different search lengths. Experiments on a set of difficult search targets selected from several open source and industrial projects show that the important choice in search-based testing is not the length of test cases, but how to make sure that this length does not become bloated

    A detailed investigation of the effectiveness of whole test suite generation

    Get PDF
    © 2016 The Author(s)A common application of search-based software testing is to generate test cases for all goals defined by a coverage criterion (e.g., lines, branches, mutants). Rather than generating one test case at a time for each of these goals individually, whole test suite generation optimizes entire test suites towards satisfying all goals at the same time. There is evidence that the overall coverage achieved with this approach is superior to that of targeting individual coverage goals. Nevertheless, there remains some uncertainty on (a) whether the results generalize beyond branch coverage, (b) whether the whole test suite approach might be inferior to a more focused search for some particular coverage goals, and (c) whether generating whole test suites could be optimized by only targeting coverage goals not already covered. In this paper, we perform an in-depth analysis to study these questions. An empirical study on 100 Java classes using three different coverage criteria reveals that indeed there are some testing goals that are only covered by the traditional approach, although their number is only very small in comparison with those which are exclusively covered by the whole test suite approach. We find that keeping an archive of already covered goals along with the tests covering them and focusing the search on uncovered goals overcomes this small drawback on larger classes, leading to an improved overall effectiveness of whole test suite generation

    Whole Test Suite Generation

    Full text link
    corecore