7 research outputs found

    Seamless video access for mobile devices by content-aware utility-based adaptation

    Get PDF
    Today's Internet multimedia services are characterized by heterogeneous networks, a wide range of terminals, diverse user preferences, and varying natural environment conditions. Heterogeneity of terminals, networks, and user preferences impose nontrivial challenges to the Internet multimedia services for providing seamless multimedia access particularly for mobile devices (e.g., laptops, tablet PCs, PDAs, mobile phones, etc.). Thus, it is essential that advanced multimedia technologies are developed to deal with these challenges. One of these technologies is video adaptation, which has gained significant importance with its main objective of enabling seamless access to video contents available over the Internet. Adaptation decision taking, which can be considered as the "brain" of video adaptation, assists video adaptation to achieve this objective. Scalable Video Coding (SVC) offers flexibility for video adaptation through providing a comprehensive set of scalability parameters (i.e., temporal, spatial, and quality) for producing scalable video streams. Deciding the best combination of scalability parameters to adapt a scalable video stream while satisfying a set of constraints (e.g., device specifics, network bandwidth, etc.) poses challenges for the existing adaptation services to enable seamless video access. To ease such challenges, an adaptation decision taking technique employing a utility-based approach to decide on the most adequate scalability parameters for adaptation operations is developed. A Utility Function (UF), which models the relationships among the scalability parameters and weights specifying the relative importance of these parameters considering video content characteristics (i.e., motion activity and structural feature), is proposed to assist the developed technique. In order to perform the developed adaptation decision taking technique, a video adaptation framework is also proposed in this paper. The adaptation experiments performed using the proposed framework prove the effectiveness of the framework to provide an important step towards enabling seamless video access for mobile devices to enhance viewing experience of users. © 2012 Springer Science+Business Media, LLC

    ЕКСПЕРИМЕНТАЛЬНЕ ВИЗНАЧЕННЯ ОПТИМАЛЬНИХ ПАРАМЕТРІВ РОБОТИ ТЕЛЕКОНФЕРЕНЦІЇ НА МОБІЛЬНИХ ПРИСТРОЯХ

    Get PDF
    The article considers the problem of ensuring the availability and integrity of wireless subscribers in cellular and other wireless corporate networks. The article aims to determine the threshold values for the moment of failure of video transmission, quantitative parameters, artifacts, and the number of errors for the image. Show the dependence of the integrity of data transmitted in real-time on the characteristics of the environment. Two approaches were used to assess the quality of video information: qualitative (image recognition assessment) and quantitative (error measurement). Because the research program was written in the Kotlin programming language, a library written in Java or Kotlin was required. After searching the library, it turned out that only three libraries meet such parameters as reliability, relevance, and availability of documentation: Jaffree, Xuggler, and VLCJ. After gathering information, it was found that the most common screen extensions for desktops are 1366 × 768 and for phones—360 × 640. An error occurred that RTP did not support more than one connection. Also, the RTSP protocol could not pass the experiment on codecs other than MP4V. The experiment stopped earlier than necessary without error. Judging by the indicators, this was a very high CPU load. All other protocols were successfully tested, and results were obtained. During the experiments, we encountered various video anomalies. The worst was the video playback problem with the MJPG codec. Other anomalies were also identified: frame delay, incorrect frame rendering, white noise, and white noise mixed with frames. It is clear how up to 128 kbps experiments are successful and then begin to stop the video stream without error information. According to the results of experiments, the H.264 codec performs best.В статті розглянута проблема забезпечення доступності та цілісності безпроводових абонентів у стільникових та інших безпроводових корпоративних мережах. Метою статті є визначення порогових значень для моменту зриву передавання відеосигналу, кількісні параметри, артефакти і кількість помилок для зображення. Показати залежність цілісність даних, переданих в режимі реального часу, від характеристик середовища. Для оцінки якості відеоінформації були застосовані два підходи: якісний (оцінка розпізнавання зображення) і кількісний (вимірювання кількості помилок). Оскільки програма для проведення дослідження була написана на мові програмування Kotlin, то була потрібна бібліотека написана на Java або Kotlin. Після проведення пошуку бібліотеки виявилося, що бібліотек які задовольняють таким параметрам як: надійність, актуальність та наявність документації, лише три: Jaffree, Xuggler і VLCJ. Після збору інформації було встановлено, що найпоширенішими розширеннями екрану для настільних комп’ютерів є 1366×768 і для телефонів — 360×640. Виявилася помилка, що протокол RTP не підтримував більше одного підключення. Також протокол RTSP не зміг пройти дослід на інших кодеках крім MP4V, дослід припинявся раніше ніж потрібно без помилки, судячи по показникам причиною цьому була дуже велика загрузка процесора. Всі інші протоколи успішно пройшли дослід і були отримані результати. Під час проведення дослідів, ми зіткалися з різними аномаліями відео. сама найгірша була, проблема з відтворення відео у кодека MJPG. Також були виявлені інші аномалії: затримка кадрів, некоректне відмальовування кадрів, білий шум і білий шум в перемішку з кадрами. Добре видно як до 128 кбіт/с досліди проходять успішно, а потім починаються припинення відеопотоку без інформації про помилку. За результатами дослідів найкраще себе проявляє кодек H.26

    Scalable Video Coding Guidelines and Performance Evaluations for Adaptive Media Delivery of High Definition Content

    Get PDF
    International audienceScalability within media coding allows for content adaptation towards heterogeneous user contexts and enables in-network adaptation. However, there is no straightforward solution how to encode the content in a scalable way while maximizing rate-distortion performance. In this paper we provide encoding guidelines for scalable video coding based on a survey of media streaming industry solutions and a comprehensive performance evaluation using four state of the art scalable video codecs with a focus on high-definition content (1080p)

    A selective approach for energy-aware video content adaptation decision-taking engine in android based smartphone

    Get PDF
    Rapid advancement of technology and their increasing affordability have transformed mobile devices from a means of communication to tools for socialization, entertainment, work and learning. However, advancement of battery technology and capacity is slow compared to energy need. Viewing content with high quality of experience will consume high power. In limited available energy, normal content adaptation system will decrease the content quality, hence reducing quality of experience. However, there is a need for optimizing content quality of experience (QoE) in a limited available energy. With modification and improvement, content adaptation may solve this issue. The key objective of this research is to propose a framework for energy-aware video content adaptation system to enable video delivery over the Internet. To optimise the QoE while viewing streaming video on a limited available smartphone energy, an algorithm for energy-aware video content adaptation decision-taking engine named EnVADE is proposed. The EnVADE algorithm uses selective mechanism. Selective mechanism means the video segmented into scenes and adaptation process is done based on the selected scenes. Thus, QoE can be improved. To evaluate EnVADE algorithm in term of energy efficiency, an experimental evaluation has been done. Subjective evaluation by selected respondents are also has been made using Absolute Category Rating method as recommended by ITU to evaluate EnVADE algorithm in term of QoE. In both evaluation, comparison with other methods has been made. The results show that the proposed solution is able to increase the viewing time of about 14% compared to MPEG-DASH which is an official international standard and widely used streaming method. In term of QoE subjective test, EnVADE algorithm score surpasses the score of other video streaming method. Therefore, EnVADE framework and algorithm has proven its capability as an alternative technique to stream video content with higher QoE and lower energy consumption

    Seamless video access for mobile devices by content-aware utility-based adaptation

    No full text
    Dogan, Safak/0000-0002-1465-6495; NUR YILMAZ, Gokce/0000-0002-0015-9519WOS: 000336995900006Today's Internet multimedia services are characterized by heterogeneous networks, a wide range of terminals, diverse user preferences, and varying natural environment conditions. Heterogeneity of terminals, networks, and user preferences impose nontrivial challenges to the Internet multimedia services for providing seamless multimedia access particularly for mobile devices (e. g., laptops, tablet PCs, PDAs, mobile phones, etc.). Thus, it is essential that advanced multimedia technologies are developed to deal with these challenges. One of these technologies is video adaptation, which has gained significant importance with its main objective of enabling seamless access to video contents available over the Internet. Adaptation decision taking, which can be considered as the "brain" of video adaptation, assists video adaptation to achieve this objective. Scalable Video Coding (SVC) offers flexibility for video adaptation through providing a comprehensive set of scalability parameters (i.e., temporal, spatial, and quality) for producing scalable video streams. Deciding the best combination of scalability parameters to adapt a scalable video stream while satisfying a set of constraints (e.g., device specifics, network bandwidth, etc.) poses challenges for the existing adaptation services to enable seamless video access. To ease such challenges, an adaptation decision taking technique employing a utility-based approach to decide on the most adequate scalability parameters for adaptation operations is developed. A Utility Function (UF), which models the relationships among the scalability parameters and weights specifying the relative importance of these parameters considering video content characteristics (i.e., motion activity and structural feature), is proposed to assist the developed technique. In order to perform the developed adaptation decision taking technique, a video adaptation framework is also proposed in this paper. The adaptation experiments performed using the proposed framework prove the effectiveness of the framework to provide an important step towards enabling seamless video access for mobile devices to enhance viewing experience of users

    Seamless Video Access for Mobile Devices by Content-Aware Utility-Based Adaptation

    No full text
    Today’s Internet multimedia services are characterized by heterogeneous networks, a wide range of terminals, diverse user preferences, and varying natural environment conditions. Heterogeneity of terminals, networks, and user preferences impose nontrivial challenges to the Internet multimedia services for providing seamless multimedia access particularly for mobile devices (e.g., laptops, tablet PCs, PDAs, mobile phones, etc.). Thus, it is essential that advanced multimedia technologies are developed to deal with these challenges. One of these technologies is video adaptation, which has gained significant importance with its main objective of enabling seamless access to video contents available over the Internet. Adaptation decision taking, which can be considered as the “brain” of video adaptation, assists video adaptation to achieve this objective. Scalable Video Coding (SVC) offers flexibility for video adaptation through providing a comprehensive set of scalability parameters (i.e., temporal, spatial, and quality) for producing scalable video streams. Deciding the best combination of scalability parameters to adapt a scalable video stream while satisfying a set of constraints (e.g., device specifics, network bandwidth, etc.) poses challenges for the existing adaptation services to enable seamless video access. To ease such challenges, an adaptation decision taking technique employing a utility-based approach to decide on the most adequate scalability parameters for adaptation operations is developed. A Utility Function (UF), which models the relationships among the scalability parameters and weights specifying the relative importance of these parameters considering video content characteristics (i.e., motion activity and structural feature), is proposed to assist the developed technique. In order to perform the developed adaptation decision taking technique, a video adaptation framework is also proposed in this paper. The adaptation experiments performed using the proposed framework prove the effectiveness of the framework to provide an important step towards enabling seamless video access for mobile devices to enhance viewing experience of users
    corecore