254 research outputs found

    Smart handoff technique for internet of vehicles communication using dynamic edge-backup node

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/electronics9030524A vehicular adhoc network (VANET) recently emerged in the the Internet of Vehicles (IoV); it involves the computational processing of moving vehicles. Nowadays, IoV has turned into an interesting field of research as vehicles can be equipped with processors, sensors, and communication devices. IoV gives rise to handoff, which involves changing the connection points during the online communication session. This presents a major challenge for which many standardized solutions are recommended. Although there are various proposed techniques and methods to support seamless handover procedure in IoV, there are still some open research issues, such as unavoidable packet loss rate and latency. On the other hand, the emerged concept of edge mobile computing has gained crucial attention by researchers that could help in reducing computational complexities and decreasing communication delay. Hence, this paper specifically studies the handoff challenges in cluster based handoff using new concept of dynamic edge-backup node. The outcomes are evaluated and contrasted with the network mobility method, our proposed technique, and other cluster-based technologies. The results show that coherence in communication during the handoff method can be upgraded, enhanced, and improved utilizing the proposed technique.Published onlin

    Evolution of 5G Network: A Precursor towards the Realtime Implementation of VANET for Safety Applications in Nigeria

    Get PDF
      A crucial requirement for the successful real-time design and deployment of Vehicular Adhoc Networks (VANET) is to ensure high speed data rates, low latency, information security, and a wide coverage area without sacrificing the required Quality of Service (QoS) in VANET. These requirements must be met for flawless communication on the VANET. This study examines the generational patterns in mobile wireless communication and looks into the possibilities of adopting fifth generation (5G) network technology for real-time communication of road abnormalities in VANET. The current paper addresses the second phase of a project that is now underway to develop real-time road anomaly detection, characterization, and communication systems for VANET. The major goal is to reduce the amount of traffic accidents on Nigerian roadways. It will also serve as a platform for the real-time deployment and testing of various road anomaly detection algorithms, as well as schemes for communicating such detected anomalies in the VANET.   &nbsp

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Investigating seamless handover in VANET systems

    Get PDF
    Wireless communications have been extensively studied for several decades, which has led to various new advancements, including new technologies in the field of Intelligent Transport Systems. Vehicular Ad hoc Networks or VANETs are considered to be a long-term solution, contributing significantly towards Intelligent Transport Systems in providing access to critical life-safety applications and infotainment services. These services will require ubiquitous connectivity and hence there is a need to explore seamless handover mechanisms. Although VANETs are attracting greater commercial interest, current research has not adequately captured the realworld constraints in Vehicular Ad hoc Network handover techniques. Due to the high velocity of the vehicles and smaller coverage distances, there are serious challenges in providing seamless handover from one Road Side Unit (RSU) to another and this comes at the cost of overlapping signals of adjacent RSUs. Therefore, a framework is needed to be able to calculate the regions of overlap in adjacent RSU coverage ranges to guarantee ubiquitous connectivity. This thesis is about providing such a framework by analysing in detail the communication mechanisms in a VANET network, firstly by means of simulations using the VEINs framework via OMNeT++ and then using analytical analysis of the probability of successful packet reception. Some of the concepts of the Y-Comm architecture such as Network Dwell Time, Time Before Handover and Exit Times have been used to provide a framework to investigate handover issues and these parameters are also used in this thesis to explore handover in highly mobile environments such as VANETs. Initial investigation showed that seamless communication was dependant on the beacon frequency, length of the beacon and the velocity of the vehicle. The effects of each of these parameters are explored in detail and results are presented which show the need for a more probabilistic approach to handover based on cumulative probability of successful packet reception. In addition, this work shows how the length of the beacon affects the rate of change of the Signal-to-Noise ratio or SNR as the vehicle approaches the Road-Side Unit. However, the velocity of the vehicle affects both the cumulative probability as well as the Signal-to-Noise ratio as the vehicle approaches the Road-Side Unit. The results of this work will enable systems that can provide ubiquitous connectivity via seamless handover using proactive techniques because traditional models of handover are unable to cope with the high velocity of the vehicles and relatively small area of coverage in these environments. Finally, a testbed has been set-up at the Middlesex University, Hendon campus for the purpose of achieving a better understanding of VANET systems operating in an urban environment. Using the testbed, it was observed that environmental effects have to be taken into considerations in real-time deployment studies to see how these parameters can affect the performance of VANET systems under different scenarios. This work also highlights the fact that in order to build a practical system better propagation models are required in the urban context for highly mobile environments such as VANETs

    Fuzzy Adaptive Hysteresis of RSS for Handover Decision in V2V VANET

    Get PDF
    A communication technology which enables the information exchanges between vehicles to support intelligent transportation system is the characteristic of vehicular ad hoc network (VANET). The vast applications of VANET including transportation safety, traffic management, and passenger amenities are also followed by some technical challenges. The rapid topology changes and high nodes mobility are the main source of the challenges. One of the prominent challenges is the handover decision, especially in vehicle to vehicle (V2V) communication. In this paper, handover decision method for V2V VANET is proposed using fuzzy system. The proposed method adjusts the value of received signal strength (RSS) hysteresis adaptively using fuzzy system so that the proposed handover decision method is called fuzzy adaptive hysteresis (FAH). To adjust the value of hysteresis, fuzzy system utilizes RSS value, speed difference, and connected time as the input. Based on the simulation results, the proposed method can reduce handover rate as well as maintaining the higher value of signal to noise ratio (SNR) average

    Exploiting user contention to optimize proactive resource allocation in future networks

    Get PDF
    In order to provide ubiquitous communication, seamless connectivity is now required in all environments including highly mobile networks. By using vertical handover techniques it is possible to provide uninterrupted communication as connections are dynamically switched between wireless networks as users move around. However, in a highly mobile environment, traditional reactive approaches to handover are inadequate. Therefore, proactive handover techniques, in which mobile nodes attempt to determine the best time and place to handover to local networks, are actively being investigated in the context of next generation mobile networks. The Y-Comm Framework which looks at proactive handover techniques has de�fined two key parameters: Time Before Handover and the Network Dwell Time, for any given network topology. Using this approach, it is possible to enhance resource management in common networks using probabilistic mechanisms because it is now possible to express contention for resources in terms of: No Contention, Partial Contention and Full Contention. As network resources are shared between many users, resource management must be a key part of any communication system as it is needed to provide seamless communication and to ensure that applications and servers receive their required Quality-of-Service. In this thesis, the contention for channel resources being allocated to mobile nodes is analysed. The work presents a new methodology to support proactive resource allocation for emerging future networks such as Vehicular Ad-Hoc Networks (VANETs) by allowing us to calculate the probability of contention based on user demand of network resources. These results are veri�ed using simulation. In addition, this proactive approach is further enhanced by the use of a contention queue to detect contention between incoming requests and those waiting for service. This thesis also presents a new methodology to support proactive resource allocation for future networks such as Vehicular Ad-Hoc Networks. The proposed approach has been applied to a vehicular testbed and results are presented that show that this approach can improve overall network performance in mobile heterogeneous environments. The results show that the analysis of user contention does provide a proactive mechanism to improve the performance of resource allocation in mobile networks

    Exploring efficient seamless handover in VANET systems using network dwell time

    Get PDF
    Vehicular ad hoc networks are a long-term solution contributing significantly towards intelligent transport systems (ITS) in providing access to critical life-safety applications and services. Although vehicular ad hoc networks are attracting greater commercial interest, current research has not adequately captured the real-world constraints in vehicular ad hoc network handover techniques. Therefore, in order to have the best practice for vehicular ad hoc network services, it is necessary to have seamless connectivity for optimal coverage and ideal channel utilisation. Due to the high velocity of vehicles and smaller coverage distances, there are serious challenges in providing seamless handover from one roadside unit (RSU) to another. Though other research efforts have looked at many issues in vehicular ad hoc networks (VANETs), very few research work have looked at handover issues. Most literature assume that handover does not take a significant time and does not affect the overall VANET operation. In our previous work, we started to investigate these issues. This journal provides a more comprehensive analysis involving the beacon frequency, the size of beacon and the velocity of the vehicle. We used some of the concepts of Y-Comm architecture such as network dwell time (NDT), time before handover (TBH) and exit time (ET) to provide a framework to investigate handover issues. Further simulation studies were used to investigate the relation between beaconing, velocity and the network dwell time. Our results show that there is a need to understand the cumulative effect of beaconing in addition to the probability of successful reception as well as how these probability distributions are affected by the velocity of the vehicle. This provides more insight into how to support life critical applications using proactive handover techniques

    Exploring efficient seamless handover in VANET systems using network dwell time

    Get PDF
    Vehicular ad hoc networks are a long-term solution contributing significantly towards intelligent transport systems (ITS) in providing access to critical life-safety applications and services. Although vehicular ad hoc networks are attracting greater commercial interest, current research has not adequately captured the real-world constraints in vehicular ad hoc network handover techniques. Therefore, in order to have the best practice for vehicular ad hoc network services, it is necessary to have seamless connectivity for optimal coverage and ideal channel utilisation. Due to the high velocity of vehicles and smaller coverage distances, there are serious challenges in providing seamless handover from one roadside unit (RSU) to another. Though other research efforts have looked at many issues in vehicular ad hoc networks (VANETs), very few research work have looked at handover issues. Most literature assume that handover does not take a significant time and does not affect the overall VANET operation. In our previous work, we started to investigate these issues. This journal provides a more comprehensive analysis involving the beacon frequency, the size of beacon and the velocity of the vehicle. We used some of the concepts of Y-Comm architecture such as network dwell time (NDT), time before handover (TBH) and exit time (ET) to provide a framework to investigate handover issues. Further simulation studies were used to investigate the relation between beaconing, velocity and the network dwell time. Our results show that there is a need to understand the cumulative effect of beaconing in addition to the probability of successful reception as well as how these probability distributions are affected by the velocity of the vehicle. This provides more insight into how to support life critical applications using proactive handover techniques
    • …
    corecore