70 research outputs found

    360-degree Video Stitching for Dual-fisheye Lens Cameras Based On Rigid Moving Least Squares

    Full text link
    Dual-fisheye lens cameras are becoming popular for 360-degree video capture, especially for User-generated content (UGC), since they are affordable and portable. Images generated by the dual-fisheye cameras have limited overlap and hence require non-conventional stitching techniques to produce high-quality 360x180-degree panoramas. This paper introduces a novel method to align these images using interpolation grids based on rigid moving least squares. Furthermore, jitter is the critical issue arising when one applies the image-based stitching algorithms to video. It stems from the unconstrained movement of stitching boundary from one frame to another. Therefore, we also propose a new algorithm to maintain the temporal coherence of stitching boundary to provide jitter-free 360-degree videos. Results show that the method proposed in this paper can produce higher quality stitched images and videos than prior work.Comment: Preprint versio

    An effective method to obtain contour of fisheye images based on explicit level set method

    Get PDF
    Obtaining the effective contour from an image taken by fisheye lens is important for the following transactions. Many studies try to develop suitable methods to get accurate contours of fisheye images. Using the traditional level set method (CV model) is hard to meet the desire task that the final segmentation region is a circle. Therefore, the preprocessing of fisheye images and the improvement of traditional level set method are redesigned to get a final circular segmentation which may be suitable to other applications. In this paper, we use the local entropy method to make the value of pixels be even inside the effective circular region, further threshold method to remove the hole(s), and at last the explicit circular level set method to get final segmentation. The final experimental results show that the segmentation is effective

    Capture4VR: From VR Photography to VR Video

    Get PDF
    Virtual reality (VR) enables the display of dynamic visual content with unparalleled realism and immersion. However, VR is also still a relatively young medium that requires new ways to author content, particularly for visual content that is captured from the real world. This course, therefore, provides a comprehensive overview of the latest progress in bringing photographs and video into VR. Ultimately, the techniques, approaches and systems we discuss aim to faithfully capture the visual appearance and dynamics of the real world, and to bring it into virtual reality to create unparalleled realism and immersion by providing freedom of head motion and motion parallax, which is a vital depth cue for the human visual system. In this half-day course, we take the audience on a journey from VR photography to VR video that began more than a century ago but which has accelerated tremendously in the last five years. We discuss both commercial state-of-the-art systems by Facebook, Google and Microsoft, as well as the latest research techniques and prototypes

    Capture4VR: From VR Photography to VR Video

    Get PDF
    Virtual reality (VR) enables the display of dynamic visual content with unparalleled realism and immersion. However, VR is also still a relatively young medium that requires new ways to author content, particularly for visual content that is captured from the real world. This course, therefore, provides a comprehensive overview of the latest progress in bringing photographs and video into VR. Ultimately, the techniques, approaches and systems we discuss aim to faithfully capture the visual appearance and dynamics of the real world, and to bring it into virtual reality to create unparalleled realism and immersion by providing freedom of head motion and motion parallax, which is a vital depth cue for the human visual system. In this half-day course, we take the audience on a journey from VR photography to VR video that began more than a century ago but which has accelerated tremendously in the last five years. We discuss both commercial state-of-the-art systems by Facebook, Google and Microsoft, as well as the latest research techniques and prototypes

    Comparing of radial and tangencial geometric for cylindric panorama

    Full text link
    Cameras generally have a field of view only large enough to capture a portion of their surroundings. The goal of immersion is to replace many of your senses with virtual ones, so that the virtual environment will feel as real as possible. Panoramic cameras are used to capture the entire 360°view, also known as panoramic images.Virtual reality makes use of these panoramic images to provide a more immersive experience compared to seeing images on a 2D screen. This thesis, which is in the field of Computer vision, focuses on establishing a multi-camera geometry to generate a cylindrical panorama image and successfully implementing it with the cheapest cameras possible. The specific goal of this project is to propose the cameras geometry which will decrease artifact problems related to parallax in the panorama image. We present a new approach of cylindrical panoramic images from multiple cameras which its setup has cameras placed evenly around a circle. Instead of looking outward, which is the traditional ”radial” configuration, we propose to make the optical axes tangent to the camera circle, a ”tangential” configuration. Beside an analysis and comparison of radial and tangential geometries, we provide an experimental setup with real panoramas obtained in realistic conditionsLes caméras ont généralement un champ de vision à peine assez grand pour capturer partie de leur environnement. L’objectif de l’immersion est de remplacer virtuellement un grand nombre de sens, de sorte que l’environnement virtuel soit perçu comme le plus réel possible. Une caméra panoramique est utilisée pour capturer l’ensemble d’une vue 360°, également connue sous le nom d’image panoramique. La réalité virtuelle fait usage de ces images panoramiques pour fournir une expérience plus immersive par rapport aux images sur un écran 2D. Cette thèse, qui est dans le domaine de la vision par ordinateur, s’intéresse à la création d’une géométrie multi-caméras pour générer une image cylindrique panoramique et vise une mise en œuvre avec les caméras moins chères possibles. L’objectif spécifique de ce projet est de proposer une géométrie de caméra qui va diminuer au maximum les problèmes d’artefacts liés au parallaxe présent dans l’image panoramique. Nous présentons une nouvelle approche de capture des images panoramiques cylindriques à partir de plusieurs caméras disposées uniformément autour d’un cercle. Au lieu de regarder vers l’extérieur, ce qui est la configuration traditionnelle ”radiale”, nous proposons de rendre les axes optiques tangents au cercle des caméras, une configuration ”tangentielle”. Outre une analyse et la comparaison des géométries radiales et tangentielles, nous fournissons un montage expérimental avec de vrais panoramas obtenus dans des conditions réaliste

    Redefining Recon: Bridging Gaps with UAVs, 360 degree Cameras, and Neural Radiance Fields

    Full text link
    In the realm of digital situational awareness during disaster situations, accurate digital representations, like 3D models, play an indispensable role. To ensure the safety of rescue teams, robotic platforms are often deployed to generate these models. In this paper, we introduce an innovative approach that synergizes the capabilities of compact Unmaned Arial Vehicles (UAVs), smaller than 30 cm, equipped with 360 degree cameras and the advances of Neural Radiance Fields (NeRFs). A NeRF, a specialized neural network, can deduce a 3D representation of any scene using 2D images and then synthesize it from various angles upon request. This method is especially tailored for urban environments which have experienced significant destruction, where the structural integrity of buildings is compromised to the point of barring entry-commonly observed post-earthquakes and after severe fires. We have tested our approach through recent post-fire scenario, underlining the efficacy of NeRFs even in challenging outdoor environments characterized by water, snow, varying light conditions, and reflective surfaces.Comment: 6 pages, published at IEEE International Symposium on Safety,Security,and Rescue Robotics SSRR2023 in FUKUSHIMA, November 13-15 202

    Efficient Distance Accuracy Estimation Of Real-World Environments In Virtual Reality Head-Mounted Displays

    Get PDF
    Virtual reality (VR) is a very promising technology with many compelling industrial applications. As many advancements have been made recently to deploy and use VR technology in virtual environments, they are still less mature to be used to render real environments. The current VR systems settings, which are developed for virtual environments rendering, fail to adequately address the challenges of capturing and displaying real-world virtual reality that these systems entail. Before these systems can be used in real life settings, their performance needs to be investigated, more specifically, depth perception and how distances to objects in the rendered scenes are estimated. The perceived depth is influenced by Head Mounted Displays (HMD) that inevitability decrease the virtual content’s depth perception. Distances are consistently underestimated in virtual environments (VEs) compared to the real world. The reason behind this underestimation is still not understood. This thesis investigates another version of this kind of system, that to the best of authors knowledge has not been explored by any previous research. Previous research used a computer-generated scene. This work is examining distance estimation in real environments rendered to Head-Mounted Displays, where distance estimations is among the most challenging issues that are still investigated and not fully understood.This thesis introduces a dual-camera video feed system through a virtual reality head mounted display with two models: a video-based and a static photo-based model, in which, the purpose is to explore whether the misjudgment of distances in HMDs could be due to a lack of realism, or not, with the use of a real-world scene rendering system. Distance judgments performance in the real world and these two evaluated VE models were compared using protocols already proven to accurately measure real-world distance estimations. An improved model based on enhancing the field of view (FOV) of the displayed scenes to improve distance judgements when displaying real-world VR content to HMDs was developed; allowing to mitigate the limited FOV, which is among the first potential causes of distance underestimation, specially, the mismatch of FOV between the camera and the HMD field of views. The proposed model is using a set of two cameras to generate the video instead of hundreds of input cameras or tens of cameras mounted on a circular rig as previous works from the literature. First Results from the first implementation of this system found that when the model was rendered as static photo-based, the underestimation was less as compared with the live video feed rendering. The video-based (real + HMD) model and the static photo-based (real + photo + HMD) model averaged 80.2% of the actual distance, and 81.4% respectively compared to the Real-World estimations that averaged 92.4%. The improved developed approach (Real + HMD + FOV) was compared to these two models and showed an improvement of 11%, increasing the estimation accuracy from 80% to 91% and reducing the estimation error from 1.29% to 0.56%. This thesis results present strong evidence of the need for novel distance estimation improvements methods for real world VR content systems and provides effective initial work towards this goal

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    PanopticNeRF-360: Panoramic 3D-to-2D Label Transfer in Urban Scenes

    Full text link
    Training perception systems for self-driving cars requires substantial annotations. However, manual labeling in 2D images is highly labor-intensive. While existing datasets provide rich annotations for pre-recorded sequences, they fall short in labeling rarely encountered viewpoints, potentially hampering the generalization ability for perception models. In this paper, we present PanopticNeRF-360, a novel approach that combines coarse 3D annotations with noisy 2D semantic cues to generate consistent panoptic labels and high-quality images from any viewpoint. Our key insight lies in exploiting the complementarity of 3D and 2D priors to mutually enhance geometry and semantics. Specifically, we propose to leverage noisy semantic and instance labels in both 3D and 2D spaces to guide geometry optimization. Simultaneously, the improved geometry assists in filtering noise present in the 3D and 2D annotations by merging them in 3D space via a learned semantic field. To further enhance appearance, we combine MLP and hash grids to yield hybrid scene features, striking a balance between high-frequency appearance and predominantly contiguous semantics. Our experiments demonstrate PanopticNeRF-360's state-of-the-art performance over existing label transfer methods on the challenging urban scenes of the KITTI-360 dataset. Moreover, PanopticNeRF-360 enables omnidirectional rendering of high-fidelity, multi-view and spatiotemporally consistent appearance, semantic and instance labels. We make our code and data available at https://github.com/fuxiao0719/PanopticNeRFComment: Project page: http://fuxiao0719.github.io/projects/panopticnerf360/. arXiv admin note: text overlap with arXiv:2203.1522
    • …
    corecore