12 research outputs found

    Spectrum control and iterative coding for high capacity multiband OFDM

    Get PDF
    The emergence of Multiband Orthogonal Frequency Division Modulation (MB-OFDM) as an ultra-wideband (UWB) technology injected new optimism in the market through realistic commercial implementation, while keeping promise of high data rates intact. However, it has also brought with it host of issues, some of which are addressed in this thesis. The thesis primarily focuses on the two issues of spectrum control and user capacity for the system currently proposed by the Multiband OFDM Alliance (MBOA). By showing that line spectra are still an issue for new modulation scheme (MB-OFDM), it proposes a mechanism of scrambling the data with an increased length linear feedback shift register (compared to the current proposal), a new set of seeds, and random phase reversion for the removal of line spectra. Following this, the thesis considers a technique for increasing the user capacity of the current MB-OFDM system to meet the needs of future wireless systems, through an adaptive multiuser synchronous coded transmission scheme. This involves real time iterative generation of user codes, which are generated over time and frequency leading to increased capacity. With the assumption of complete channel state information (CSI) at the receiver, an iterative MMSE algorithm is used which involves replacement of each users s signature with its normalized MMSE filter function allowing the overall Total Squared Correlation (TSC) of the system to decrease until the algorithm converges to a fixed set of signature vectors. This allows the system to be overloaded and user\u27s codes to be quasi-orthogonal. Simulation results show that for code of length nine (spread over three frequency bands and three time slots), ten users can be accommodated for a given QoS and with addition of single frequency sub-band which allows the code length to increase from nine to twelve (four frequency sub-bands and three time slots), fourteen users with nearly same QoS can be accommodated in the system. This communication is overlooked by a central controller with necessary functionalities to facilitate the process. The thesis essentially considers the uplink from transmitting devices to this central controller. Furthermore, analysis of this coded transmission in presence of interference is carried to display the robustness of this scheme through its adaptation by incorporating knowledge of existing Narrowband (NB) Interference for computing the codes. This allows operation of sub-band coexisting with NB interference without substantial degradation given reasonable interference energy (SIR=-l0dB and -5dB considered). Finally, the thesis looks at design implementation and convergence issues related to code vector generation whereby, use of Lanczos algorithm is considered for simpler design and faster convergence. The algorithm can be either used to simplify design implementation by providing simplified solution to Weiner Hopf equation (without requiring inverse of correlation matrix) over Krylov subspace or can be used to expedite convergence by updating the signature sequence with eigenvector corresponding to the least eigenvalue of the signature correlation matrix through reduced rank eigen subspace search

    An all-digital transmitter for pulsed ultra-wideband communication

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 91-96).Applications like sensor networks, medical monitoring, and asset tracking have led to a demand for energy-efficient and low-cost wireless transceivers. These types of applications typically require low effective data rates, thus providing an opportunity to employ simple modulation schemes and aggressive duty-cycling. Due to their inherently duty-cycled nature, pulse-based Ultra-Wideband (UWB) systems are amenable to low-power operation by shutting off circuitry during idle mode between pulses. Furthermore, the use of non-coherent UWB signaling greatly simplifies both transmitter and receiver implementations, offering additional energy savings. This thesis presents an all-digital transmitter designed for a non-coherent pulsed UWB system. By exploiting relaxed center frequency tolerances in non-coherent wideband communication, the transmitter synthesizes UWB pulses from an energy efficient, single-ended digital ring oscillator. Dual capacitively-coupled digital power amplifiers (PAs) are used in tandem to generate bipolar phase modulated pulses for spectral scrambling purposes. By maintaining opposite common modes at the output of these PAs during idle mode (i.e. when no pulses are being transmitted), low frequency turn-on and turn-off transients typically associated with single-ended digital circuits driving single-ended antennas are attenuated by up to 12dB. Furthermore, four level digital pulse shaping is employed to attenuate RF side lobes by up to 20dB. The resulting dual power amplifiers achieve FCC compliant operation in the 3.5, 4.0, and 4.5GHz IEEE 802.15.4a bands without the use of any off-chip filters or large passive components. The transmitter is fabricated in a 90nm CMOS process and requires a core area of 0.07mm2. The entirely digital architecture consumes zero static bias current, resulting in an energy efficiency of 17.5pJ/pulse at data rates up to 15.6Mbps.by Patrick Philip Mercier.S.M

    Cross-Layer Design for Multi-Antenna Ultra-Wideband Systems

    Get PDF
    Ultra-wideband (UWB) is an emerging technology that offers great promises to satisfy the growing demand for low cost and high-speed digital wireless home networks. The enormous bandwidth available, the potential for high data rates, as well as the potential for small size and low processing power long with low implementation cost, all present a unique opportunity for UWB to become a widely adopted radio solution for future wireless home-networking technology. Nevertheless, in order for UWB devices to coexist with other existing wireless technology, the transmitted power level of UWB is strictly limited by the FCC spectral mask. Such limitation poses significant design challenges to any UWB system. This thesis introduces various means to cope with these design challenges. Advanced technologies including multiple-input multiple-output (MIMO) coding, cooperative communications, and cross-layer design are employed to enhance the performance and coverage range of UWB systems. First a MIMO-coding framework for multi-antenna UWB communication systems is developed. By a technique of band hopping in combination with jointly coding across spatial, temporal, and frequency domains, the proposed scheme is able to exploit all the available spatial and frequency diversity, richly inherent in UWB channels. Then, the UWB performance in realistic UWB channel environments is characterized. The proposed performance analysis successfully captures the unique multipath-rich property and random-clustering phenomenon of UWB channels. Next, a cross-layer channel allocation scheme for UWB multiband OFDM systems is proposed. The proposed scheme optimally allocates subbands, transmitted power, and data rates among users by taking into consideration the performance requirement, the power limitation, as well as the band hopping for users with different data rates. Also, an employment of cooperative communications in UWB systems is proposed to enhance the UWB performance and coverage by exploiting the broadcasting nature of wireless channels and the cooperation among UWB devices. Furthermore, an OFDM cooperative protocol is developed and then applied to enhance the performance of UWB systems. The proposed cooperative protocol not only achieves full diversity but also efficiently utilizes the available bandwidth

    Impact of optical transmission on multi-band OFDM ultra-wideband wireless system with fiber distribution

    Get PDF
    The performance of MB-OFDM UWB over fiber transmission system is investigated considering optical modulation and demodulation impact. Theoretical analysis of the effect of fiber dispersion, optical transmitter and optical receiver response on system performance is carried out considering amplitude and phase distortion. Experiments are conducted and verified by our theoretical analysis and good agreement is obtained. It is found that RF modulation index of {598}4% is optimum for optical transmitter with Mach-Zehnder modulator, and optical receiver with Chebyshev-II response is the best for MB-OFDM UWB over fiber. It is also found that high received optical power is required for transmission of MB-OFDM UWB signal over fiber. Theoretical analysis of the effect of fiber chromatic dispersion induced laser phase to intensity noise or relative intensity noise (RIN) on system performance is carried out. Experiments are also conducted to verify our theoretical analysis. Simulation is also carried out to show the relationship between RIN and center frequency of UWB bands. It is found that the parameters like laser output power, laser linewidth and fiber dispersion that control RIN, will critically affect the overall performance of a UWB over fiber system. The performance of MB-OFDM UWB over fiber transmission system is also studied considering the effect of in-band jammers such as WiMAX, WLAN MIMO, WLAN and marine radar. Experiments were performed to show the effect of fiber transmission under various interferer power levels. It is found that in-band interferers can cause severe degradation in system performance if certain interferer to UWB peak power ratio is not maintaine

    System design and validation of multi-band OFDM wireless communications with multiple antennas

    Get PDF
    [no abstract

    Performance studies and receiver design of a MB-OFDM UWB system

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Viability of concurrent transmission and reception for UWB radios over multipath channels

    Get PDF
    Multihop transmissions over wireless mesh networks present limited end-to-end (E2E) data rates, as every hop waits for an entire packet to arrive before starting retransmission. That is, the E2E data rate drops when every hop stores and then forwards packets, thus making such transmissions unsuitable for multimedia applications. In this work, in order to increase data rates, we present an ultra-wideband (UWB) radio transceiver capable of concurrently transmit and receive (cTxRx) packets. However, concurrently receiving and transmitting comes at the cost of a channel model with increased interference level. Herein, we explain a new interference model and propose a transceiver that compensates for it. We describe the transceiver mathematically and analyze its performance via simulations. Also, we demonstrate that the E2E data rate exceeds that of current multihop transmissions, thus allowing multimedia traffic to be transmitted over a multi-hop wireless mesh network

    Ultra wideband gigabit powerline communication

    Get PDF
    PhDPowerline Communication (PLC) has long been established for low data rate applications by the electric supply companies. Since 1991, the European CENELEC standard EN 50065 has ruled the use of 3 - 148.5KHz frequency range for narrow band PLC applications. Sim- ilar standard has been established by the IEEE in the US, where a frequency range of 50 - 450KHz is available. The fast growth of Internet since the 1990s accelerated the demands for digital communication services. Furthermore, with the develop- ment of in-home networking, there is a need to establish high speed data links between multiple household devices. This makes PLC sys- tems march rapidly into the high frequency range above 1MHz. Exist- ing broadband PLC system in the 1.6 - 30MHz frequency range only provides data rates smaller than 200Mbps. With the growing demand of multimedia services such as High De nition (HD) video streaming, much faster transmission speed up to Gigabits per second is required and this can be achieved by increasing the operating frequencies. Ultra Wideband (UWB) transmission in free space provides extremely broad bandwidth for short-range, high data rate applications. If UWB signals could be transmitted over the powerline channels in the high frequency range above 30MHz, data rates up to gigabits per second could be achieved. In this thesis, the possibility of implementing ultra wideband trans- mission over the low voltage indoor powerline is investigated. The starting point is to understand the signal propagation characteristics over powerline cables, in the UWB frequency range. Experimental re- sults indicate that the signal degrades at an acceptable rate over the mains cable in a scaled down UWB frequency band (50MHz - 1GHz), which provides a potential operation band for UWB over PLC ap- plications. Key component for the PLC system, a broadband Radio Frequency (RF) coupler is designed and developed, to introduce UWB signals to the transmission channel. With the channel properties and coupling unit, extensive experimental investigations are carried out to analyse the powerline network environment, including channel loss, noise and radiated emission. Furthermore, theoretical channel capac- ity and link budget are derived from measured parameters. It is shown that the indoor powerline is a suitable media for data transmission in the high frequency range from 50 to 550MHz in the home environment. Finally, system level performance is analysed by modelling the Phys- ical Layer (PHY) data transmission. The Multiband-OFDM UWB proposal for IEEE 802.15.3a standard is used to predict the transmis- sion performance under di erent propagation paths and data rates. The research work conducted in this project has proven that UWB over PLC is highly feasible for future in-home applications. With the global promotion of smart grid applications, UWB over PLC will play an important role in providing high speed data transmission over the power networks

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Analysis of the IEEE 802.15.4a ultra wideband physical layer through wireless sensor network simulations in OMNET++

    Get PDF
    Wireless Sensor Networks are the main representative of pervasive computing in large-scale physical environments. These networks consist of a large number of small, wireless devices embedded in the physical world to be used for surveillance, environmental monitoring or other data capture, processing and transfer applications. Ultra wideband has emerged as one of the newest and most promising concepts for wireless technology. Considering all its advantages it seems a likely communication technology candidate for future wireless sensor networks. This paper considers the viability of ultra wideband technology in wireless sensor networks by employing an IEEE 802.15.4a low-rate ultra wideband physical layer model in the OMNET++ simulation environment. An elaborate investigation into the inner workings of the IEEE 802.15.4a UWB physical layer is performed. Simulation experiments are used to provide a detailed analysis of the performance of the IEEE 802.15.4a UWB physical layer over several communication distances. A proposal for a cognitive, adaptive communication approach to optimize for speed and distance is also presented. AFRIKAANS : Draadlose Sensor Netwerke is die hoof verteenwoordiger vir deurdringende rekenarisering in groot skaal fisiese omgewings. Hierdie tipe netwerke bestaan uit ’n groot aantal klein, draadlose apparate wat in die fisiese wêreld ingesluit word vir die doel van bewaking, omgewings monitering en vele ander data opvang, verwerk en oordrag applikasies. Ultra wyeband het opgestaan as een van die nuutste en mees belowend konsepte vir draadlose kommunikasie tegnologie. As al die voordele van dié kommunikasie tegnologie in ag geneem word, blyk dit om ’n baie goeie kandidaat te wees vir gebruik in toekomstige draadlose sensor netwerke. Hierdie verhandeling oorweeg die vatbaarheid van die gebruik van die ultra wyeband tegnologie in draadlose sensor netwerke deur ’n IEEE 802.15.4a lae-tempo ultra wyeband fisiese laag model in die OMNET++ simulasie omgewing toe te pas. ’n Breedvoerige ondersoek word geloots om die fyn binneste werking van die IEEE 802.15.4a UWB fisiese laag te verstaan. Simulasie eksperimente word gebruik om ’n meer gedetaileerde analiese omtrent die werkverrigting van die IEEE 802.15.4a UWB fisiese laag te verkry oor verskillende kommunikasie afstande. ’n Voorstel vir ’n omgewings bewuste, aanpasbare kommunikasie tegniek word bespreek met die doel om die spoed en afstand van kommunikasie te optimiseer.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte
    corecore