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Abstract

Powerline Communication (PLC) has long been established for low

data rate applications by the electric supply companies. Since 1991,

the European CENELEC standard EN 50065 has ruled the use of 3

- 148.5KHz frequency range for narrow band PLC applications. Sim-

ilar standard has been established by the IEEE in the US, where a

frequency range of 50 - 450KHz is available.

The fast growth of Internet since the 1990s accelerated the demands

for digital communication services. Furthermore, with the develop-

ment of in-home networking, there is a need to establish high speed

data links between multiple household devices. This makes PLC sys-

tems march rapidly into the high frequency range above 1MHz. Exist-

ing broadband PLC system in the 1.6 - 30MHz frequency range only

provides data rates smaller than 200Mbps. With the growing demand

of multimedia services such as High Definition (HD) video streaming,

much faster transmission speed up to Gigabits per second is required

and this can be achieved by increasing the operating frequencies.

Ultra Wideband (UWB) transmission in free space provides extremely

broad bandwidth for short-range, high data rate applications. If UWB

signals could be transmitted over the powerline channels in the high

frequency range above 30MHz, data rates up to gigabits per second

could be achieved.

In this thesis, the possibility of implementing ultra wideband trans-

mission over the low voltage indoor powerline is investigated. The

starting point is to understand the signal propagation characteristics

over powerline cables, in the UWB frequency range. Experimental re-

sults indicate that the signal degrades at an acceptable rate over the
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mains cable in a scaled down UWB frequency band (50MHz - 1GHz),

which provides a potential operation band for UWB over PLC ap-

plications. Key component for the PLC system, a broadband Radio

Frequency (RF) coupler is designed and developed, to introduce UWB

signals to the transmission channel. With the channel properties and

coupling unit, extensive experimental investigations are carried out

to analyse the powerline network environment, including channel loss,

noise and radiated emission. Furthermore, theoretical channel capac-

ity and link budget are derived from measured parameters. It is shown

that the indoor powerline is a suitable media for data transmission in

the high frequency range from 50 to 550MHz in the home environment.

Finally, system level performance is analysed by modelling the Phys-

ical Layer (PHY) data transmission. The Multiband-OFDM UWB

proposal for IEEE 802.15.3a standard is used to predict the transmis-

sion performance under different propagation paths and data rates.

The research work conducted in this project has proven that UWB

over PLC is highly feasible for future in-home applications. With the

global promotion of smart grid applications, UWB over PLC will play

an important role in providing high speed data transmission over the

power networks.
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Chapter 1

Introduction

1.1 Powerline Communication, Advantages and

Challenges

The powerlines were originally devised to transmit electricity from power stations

through power grids to the vast number of users throughout the country [11]. Due

to their wide coverage, power supply companies also exploit their networks for

data transmission, in order to better manage, control and monitor the power

plant and distribution system [1].

The idea of remote electricity supply metering was proposed as long ago as

1838 and the introduction of Powerline Communication (PLC) can be dated back

to the 1920s [11, 12]. Initial PLC applications were mainly for power grid control

signaling and fault protection facilities, therefore, reliability and robustness were

more important than transmission data rate and bandwidth. In Europe the

CENELEC band (3 - 148.5KHz, EN 50065 Standard) is allocated to these classical

narrow band PLC applications. Similar standard has been established by the

IEEE in US, where a frequency range of 50 - 450KHz is available [13].

In the mean time, the growth of the Internet and the advancements in Very

Large Scale Integration (VLSI) and Digital Signal Processing (DSP) stimulate

the demands for digital communication services. Powerline Communication has

entered rapidly into a new development phase, researches have focused on the

behavior of power networks above 1MHz [14]. Power companies are trying to
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utilise their networks to provide value added services such as smart metering,

Internet access, Voice over IP (VoIP) and home entertainment for the so-called

“home network”. The home network has drawn a lot of interests these years,

due to the increasing demand for multimedia services, such as High Definition

(HD) video streaming, Internet Protocol Television (IPTV) and online gaming,

all of which require data rates much higher than before. A number of solutions

are being developed to target this market, i.e. Wireless Local Area Network

(WLAN) IEEE 802.11a, b, g, IEEE 802.3 Ethernet and Cable [15]. However, all

these technologies require pre-installation and configuration, or even new cable

wiring before implementation, whilst customers are more appealed to the “plug

and play” technology. This is where PLC comes in, the wide availability of

powerlines at home makes it an ideal medium for in-door applications. New

wiring installation can be eliminated by reusing the powerline infrastructure.

Moreover, it is not challenged by walls and other obstacles because the signals

mainly run along the wires. Virtually, any device plugged into a power socket

can become a member of this home network, such as PC, TV, DVD player and

printer, as illustrated in Figure 1.1.

Figure 1.1: Powerline Communication: In-home networking [1].

25



1.1 Powerline Communication, Advantages and Challenges

Although widely available, there is an issue in PLC that needs to be addressed,

namely the transmission rate. So far, the majority of studies on PLC only cover

the frequency band of 1.6 - 30MHz. The development of HomePlug AV (HPAV)

has largely increased the transmission rate of indoor PLC systems, from 14Mbps

in HomePlug 1.0 to 189Mbps maximum in HPAV [16, 17]. This is achieved by

using more OFDM sub-carriers and higher order constellation maps. There are

only 84 sub-carriers in HomePlug 1.0, while this number has been increased to

1155 in HPAV [18]. The number of bits per sub-carrier has also been increased

from 2 bits to a maximum of 10 bits. However, there is little space for HPAV

to upgrade the system data rate, since very high order modulation scheme has

already been used. In order to support future applications mentioned earlier,

there is a growing demand to exploit higher operating frequencies to increase the

transmission data rate.

Recently, Ultra Wideband (UWB) radio communication has gained widespread

interest in wireless applications. It has a number of advantages in terms of sim-

ple base band implementation, low interference to co-existing systems, robustness

against severe multi-path channel propagation, and more importantly, the poten-

tial achievable data rate can be very high, i.e. gigabits per second [19]. Although

wireless UWB can achieve very high data rates, it is not suitable for home net-

working, due to the limited transmission distance (up to 10m maximum [20])

and the high frequency signal is unable to propagate through concrete walls or

different floors [21]. These problems could be solved by using the powerline as a

transmission channel. The advantages of sending UWB signals over powerlines

are: increasing the limited data rate of existing PLC systems and expanding

the transmission range limited by wireless UWB systems. However, UWB over

powerline technology has not attracted much research interest yet. The channel

characteristics of powerline have not been explored above 100MHz, the noise and

emission properties in such a high frequency range are unknown, and there is not

any coupling unit available to couple wideband signals into the powerline channel.

Therefore, the possibility of UWB transmission over the powerline channel is not

clear, and the frequency range that could be utilised for such technology has not

been defined either.
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1.2 Aims and Objectives

Although being considered as a good alternative for broadband PLC, much

work needs to be done to fully understand the science base of this technology.

1.2 Aims and Objectives

In order to achieve a high speed home network that delivers in-demand mul-

timedia services, PLC network needs to provide high data rate transmissions

between different nodes and PLC modems. One of the major tasks in developing

such a system is to determine and understand the communication channel char-

acteristics. Although PLC has been widely studied below 30MHz, the channel

characteristics above this frequency are rarely known and, therefore, the potential

of using low-voltage powerline for data transmission above this threshold is not

clear and deserves an in-depth study.

The aim of the research work presented in this thesis is to investigate the

feasibility of UWB communication over mains cables in the high frequency range

(above 30MHz). A range of technical challenges are required to be tackled, in

order to develop and validate models. The research undertaken contains the

following steps:

1. Examination of UWB signal transmission over powerline cables above 30MHz.

Understand the signal propagation characteristics and select the suitable

frequency band for coupler design.

2. Development of a broadband powerline communication coupler that can

operate in the desired frequency band for UWB over PLC applications.

3. Investigation of powerline network performance with respect to channel

attenuation, transmission distance, noise and potential radiated emission.

Analyse the link budget and channel capacity for UWB over PLC systems

and define the operating frequency range for potential applications.

4. System level modelling of data transmission over the measured powerline

channels based on the existing UWB Physical Layer (PHY) standard pro-

posal. Evaluate the system performance under different propagation chan-

nels (i.e. different transmission distances) and data rates.
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1.3 Organisation of the Thesis

1.3 Organisation of the Thesis

The thesis is organised in six additional chapters as follows:

Chapter 2 introduces the background of PLC and UWB technologies and

highlights the main technologies considered in this study for potential broadband

PLC. Existing standards related to both PLC and UWB applications are also

discussed.

Chapter 3 investigates the signal transmission characteristics over mains

cables in the high frequency range above 30MHz. It provides a comprehensive

study on the frequency response of powerline cable, the effect of coupling modes

and signal attenuation rate. A suitable frequency band has been selected for

further studies on broadband PLC.

Based on the results in Chapter 3, an RF coupler has been developed for UWB

over PLC systems in Chapter 4, in the frequency band of interest. The design

process of the coupler is addressed. The transmission performance of powerline

is examined using the coupler in both frequency and time domain.

In Chapter 5, a powerline laboratory test bed simulating the UK indoor

wiring environment is built and tested. A comprehensive measurement campaign

in time and frequency domain is conducted, together with examinations on the

powerline system’s noise level. This chapter also measures the emission signal

from a single ring main powerline circuit. The measured field strength is compared

with regulatory standards to see if high level of disturbance will be introduced to

existing radio systems.

After theoretical analysis of system parameters such as link budget and chan-

nel capacity, Chapter 6 carries out a system level modelling of data transmission

over the measured powerline channels, by using the UWB PHY proposal submit-

ted to the IEEE 802.15.3a standard group. This model is further modified to

model other transmission rates over the powerline channels. The usefulness of

this model in UWB over PLC system design is evaluated and possible ways of

improvement are proposed.

Chapter 7 concludes the main contributions and findings of the research

work. Suggestions for future work are also given in this chapter.
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Chapter 2

Broadband Powerline

Communication and Ultra

Wideband

2.1 Introduction

This chapter reviews the background of Broadband Powerline Communication

and Ultra Wideband technology. It provides an over view of the existing PLC

applications and their technical challenges, together with an introduction to the

UWB radio concept and its advantages. The standardisation progress of both

technologies and existing studies on UWB over PLC are also summarised. Base

on the limitations of existing studies, it is noted that there is a need to understand

the transmission characteristics of the powerline channel in the high frequency

range above 30MHz.

2.2 Broadband Powerline Communication

2.2.1 Powerline Carrier Communication Applications

Since its introduction to the market, PLC has been exploited in different applica-

tions, providing both low data rate and high data rate transmission to customers,

as listed in Table 2.1. Power companies use the powerline to control, maintain
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2.2 Broadband Powerline Communication

Frequency Data
Rate

Powerline Category Applications

Narrow
band

Europe:
3KHz to
148.5KHz;
US:
50KHz to
450KHz

A few
hundred
Kbps

Medium to high volt-
age powerline, low voltage
powerline

Power Grid Control and Mon-
itor, Remote Meter Reading,
Smart Grid, Smart Home, in
vehicle use.

Broad
band

Europe:
1.6 to
30MHz;
US: 1.6 to
100MHz

Up to
200Mbps

Medium and low voltage
powerline

In-home Networking, Broad-
band Internet Access

Table 2.1: Existing applications of powerline communication.

their systems and provide customers with value added services, such as home

automation and remote meter reading [22]. Electricity usage is automatically

collected and transmitted to the data/billing centre using low and medium volt-

age powerlines, this can save costs and guarantee data accuracy [23]. Such services

require a long transmission distance, i.e. a few hundred meters. Therefore, the

data rate is very low and it is called narrow band PLC. PLC is also used in

energy saving projects, known as the Smart Grid [24]. The Smart Grid delivers

electricity from suppliers to consumers using digital technology to save energy,

reduce cost and increase reliability and transparency. It will take pressure off the

overloaded grid infrastructure and turn the current electricity grid into an inter-

active service network, which provides consumers with the ability to monitor and

repair their network in real time [25].

Also shown in Table 2.1, broadband powerline communication (BPL) operat-

ing in the 1.6 - 30MHz range provides much higher data rate up to 200Mbps. BPL

can be deployed in the “last mile” access network and the home network. Access

to the Internet can be achieved from homes to the local distribution centre, by

using the low voltage network within a residential area. Existing solutions include

cable modem, Digital Subscriber Lines (DSL) and Asymmetric DSL (ADSL). The

major attraction with BPL is its existing infrastructure, making it a cost effective
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2.2 Broadband Powerline Communication

way of broadband provision to rural area where other alternatives are not avail-

able. Moreover, PLC has also become an important player in the home network

market, where there is a need to provide high speed links between household

devices, i.e. computers, TV sets and DVD players [26]. All the electrical devices

can be linked together simply by plugging into the wall socket, forming a high

speed data network environment, where people can enjoy fast speed multimedia

services anywhere in the home.

Additionally, powerline is widely used as a data transmission medium in large

transportation vehicles (i.e. automobiles, trains and cargo ships) and in-building

CCTV surveillance services where other solutions are too expensive to employ

[27, 28, 29]. Globally, PLC has been promoted by industrial organisations and

governments. In UK, British Telecommunications plc (BT) has announced to use

PLC technology to enable the delivery of its digital content and next-generation

digital TV services, BT Vision [30]. In Germany and US, BPL has been used as

the alternative to DSL for internet access. Smart metering is also widely used

in countries such as Italy, Spain and China [31]. In summary, many applications

and services can be provided by the PLC system, with its existing infrastructure

and wide availability, that make the laying of expensive new cables redundant.

2.2.2 Powerline Channel as A Transmission Path

Despite its ubiquity, the powerline channel is a harsh environment for fast speed

communication at high frequencies, being not specifically designed for data trans-

mission. Varying impedance, considerable noise that is not white in nature, fre-

quency dependent attenuation and branching topology, as well as potential elec-

tromagnetic disturbance, present technical challenges for system implementation

[32].

In the frequency range up to tens of megahertz, the powerline can be regarded

as a transmission line, and its impedance varies with frequency [33]. Generally

speaking, the average impedance of an indoor mains cable varies between 100 -

150Ω in DC - 30MHz [34]. The situation becomes more complex when deter-

mining the impedance from a wall socket. The net input impedance is strongly

influenced by the network topology and the connected loads [35, 36]. So the low
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voltage mains do not have a fixed characteristic impedance since various loads

that are being switched on and off randomly introduce a change in impedance.

This makes it extremely difficult to design a suitable coupler that can input the

data signal into a powerline communication system [37].

Noise is another crucial parameter of the channel characteristics. Powerline

channels rarely have noise properties similar to that of the Additive White Gaus-

sian Noise (AWGN). The noise in powerlines can be separated into 5 classes:

coloured background noise, narrow-band noise, periodic impulsive noise that is

synchronous or asynchronous to the mains frequency and asynchronous aperiodic

impulsive noise [1][2].

Figure 2.1 presents an overview of the noise scenario in a PLC channel. In-

terference n(t) is added to the transmitted signal before arriving at the receiver.

The properties of the first three types of noise usually remain stable over periods

of seconds or minutes or even hours and can be summarised as background noise.

However, asynchronous impulsive noise, generally caused by switching transients,

contains considerable energy that can seriously affect high speed communication,

by causing burst errors in the data transmission. Asynchronous impulsive noise

can cause strong interference to the powerline system. Analysis and modelling of

this type of noise are still the subject of active research [38, 39, 40, 41].

Signal attenuation in powerline is frequency dependent as it exhibits a fre-

quency selective fading characteristic similar to that of a multi-path channel.

The presence of branches and impedance mismatch cause multiple signal reflec-

tions in a powerline network. Just like a wireless channel, signal propagation

takes place between the transmitter (Tx) and receiver (Rx) not only along a line-

of-sight (LoS) path, but also other non LoS paths. As a result, frequency selective

fading can be observed. A lot of efforts have been devoted to model the powerline

channel below 30MHz, among them the multi-path model proposed by Philipps

[42] and Zimmermann and Dostert [43] is widely used. In the multi-path model,

powerline channels are regarded as the propagation of a number of multi-path

signals:

H(f) =
N∑
i=1

gie
−αidi · e−j2πfdi/vp , (2.1)
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The parameters for the multipath model can
be obtained from measurements of the complex
channel transfer function. The attenuation
parameters a0 (offset of attenuation), a1
(increase of attenuation), and k (exponent of
attenuation) can be obtained from the magni-
tude of the frequency response. To determine
the path parameters di and gi, the impulse
response is necessary. The impulse response
gives information about the time delay of each
path, which is proportional to di. The weighting
factors gi can be obtained from the amplitude of
each impulse. Typical values for the number of
paths N are in the range of 5–50.

The right side of Fig. 1 shows the capability
of the model. The frequency and impulse
response were generated with the multipath
model (Eq. 2) using N = 5 paths. The parame-
ters were determined from a measurement of a
simple channel with only one branch. The mea-
surement results are also visible in the graphs.
This example clearly demonstrates two impor-
tant power line channel properties: frequency-
selective fading and frequency-dependent
attenuation. As a result, there is a “natural”
upper frequency limit for PLC. High attenua-
tion, of course, cannot be compensated by signal
power enhancement for reasons of electromag-
netic compatibility. For links within the access
domain it can be recommended to choose fre-
quencies well below 20 MHz. In indoor installa-
tions, mainly due to much shorter distances, the
use of frequencies above 50 MHz still appears
feasible.

Furthermore, medium-voltage networks will
be an important field for PLC. These networks
are used to distribute electrical energy to differ-
ent urban areas or villages. Therefore, voltages
of about 10 kV are used. Medium-voltage net-
works are usually less branched than low-voltage
networks, and point-to-point connections are
possible. Compared to low-voltage networks,

medium-voltage networks enable communication
over longer distances because of the weaker sig-
nal attenuation and noise scenario.

THE NOISE MODEL
For PLC, of course, not only the transmission
characteristics, but also the interference scenario
is important. In contrast to most other “well
designed” communication channels, power lines
do not represent additive white Gaussian noise
(AWGN) channels. The interference scenario is
rather complicated, as not only colored broad-
band noise, but also narrowband interference
and different types of impulsive disturbance
occur. Figure 2 presents an overview of the noise
scenario. After passing the channel with the
impulse response h(t) the transmitted signal s(t)
reaches a summing node, where a variety of
interference n(t) is added, before the signal r(t)
arrives at the receiver. According to [5], the
interference scenario can be roughly separated
into five classes, denoted colored background
noise, narrowband noise, periodic impulsive
noise synchronous or asynchronous to the mains
frequency (usually 50 or 60 Hz), and asyn-
chronous aperiodic impulsive noise. A similar
classification in background, narrowband, and
impulsive noise can be found in [2]. The noise
classes are discussed in greater detail in the fol-
lowing.

•Colored background noise is characterized
by a fairly low power spectral density, which,
however, significantly increases toward lower fre-
quencies. This kind of noise can be approximat-
ed by several sources of white noise in
nonoverlapping frequency bands with different
noise amplitudes [5]. It is caused, for example,
by common household appliances like comput-
ers, dimmers, or hair dryers, which can cause
disturbances in the frequency range of up to 30
MHz.

� Figure 2. Noise scenario on power lines.
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Figure 2.1: Noise scenario on powerlines [2].

where gi is the weighing factor for each multi-path signal, αi and di are the atten-

uation coefficient and delay of the ith signal. vp represents the signal propagation

speed. This model is only used in frequency range below 30MHz, and the chan-

nel parameters are based on statistical analysis of the measured channel response

[44]. When the operating frequency increases, this model can be very complicated,

the number of multi-path signals increases dramatically because more frequency

components are included.

Another channel model is proposed by Galli and Benwell [45, 46]. The pow-

erline channel is regarded as the cascade of a series of two port networks. This

model can be used before actual measurements of the powerline channel. How-

ever, it requires knowledge of the channel’s propagation constant and charac-

teristic impedance, which are frequency dependent. The estimation of different

loads’ impedance and socket interface can also be very complicated in high fre-

quency range. Until now, the modelling of broadband powerline channel is still

a challenge. Practical measurement of the channel remains a valid approach to

understand the variable characteristics of the channel.
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Furthermore, it has been observed that PLC devices and the powerline cables

have the potential to act as unintentional radiators1 [47, 48]. The amount of

radiation depends on the symmetry of the network and the frequency[49]. Pow-

erlines have poor symmetry (bad impedance matching) and therefore will cause

common mode current transmission, where in-phase current with equal amplitude

flowing on all the conductors. As illustrated in Figure 2.2, common mode current

will produce more radiation in the environment than differential mode current,

which is described as antipodal current (currents with equal amplitude but dif-

ferent directions) on both conductors [3]. Moreover, as frequency increases, the

transmitted signal will change from being dominantly conducted transmission to

having an additional path through radiation. High Frequency (HF) radio services

may be affected by the unwanted radiation from the new broadband PLC systems

[50]. In order to protect existing systems, PLC system should operate below the

emission limits introduced by regulatory bodies.

Differential mode Common mode  

Figure 2.2: Electrical field distribution of differential mode and common mode

current in a two conductor powerline.

Although being a very harsh environment for data transmission (e.g. poor

impedance matching, strong noise that is not AWGN and frequency selective fad-

ing), powerlines still exhibit a high potential in establishing the high speed home

network, especially with the advancements in VLSI and DSP systems. Many in-

dustrial organisations are exploiting the powerline channel to provide high data

rate services, the aim is to increase the transmission speed up to 1Gbps to support

HD multimedia contents around the home.

1Devices that are not designed to produce radio waves, but do anyway, such as computers.
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2.2 Broadband Powerline Communication

2.2.3 Modulation Schemes for Powerline Communication

As the properties of powerline channel differ from other well known channels,

special care is needed to select a modulation scheme that can exploit the channel

as much as possible, and minimise the deteriorating effects. An adequate modu-

lation scheme should be able to overcome the following problems in a powerline

channel [51]:

• The frequency selective fading of the powerline channel.

• The interference scenario, especially the narrow band interference and strong

impulsive noise causing a relatively low Signal to Noise Ratio (SNR).

• Regulatory constraints regarding to Electromagnetic Compatibility (EMC)

that limit the transmitted Power Spectral Density (PSD).

There are three classes of modulation schemes proposed for PLC: Single-carrier

Modulation, Spread Spectrum Modulation such as Code Division Multiple Ac-

cess (CDMA) and Multi-carrier Modulation Orthogonal Frequency Division Mul-

tiplexing (OFDM) [38]. Considering the above requirements, it has been proven

that OFDM-based multi-carrier signalling is most promising. OFDM is a well

proven technique in applications such as Digital Audio Broadcasting (DAB),

Terrestrial Digital Video Broadcasting (DVB-T), ADSL and Worldwide Inter-

operability for Microwave Access (Wi-Max). It is also a possible scheme for

Multiband UWB and PLC. Serial data of information is transmitted in parallel

on N orthogonal narrow band sub-carriers whose frequencies are f0, f1, · · · , fN−1.

Thus, each sub-carrier transmits 1/N of the original data, so the symbol dura-

tion of the sub-carrier increases N times. Hence, a frequency selective channel

becomes equivalent to a set of multiple flat-fading sub-channels [52].

Another significant advantage of OFDM is known as adaptive bit loading.

That is, variable bits of information are allocated to different sub-carriers accord-

ing to the SNR. For example, sub-carriers with higher SNR are made to carry

more information and are modulated to a higher level constellation (Figure 2.3).

Moreover, it can switch off a sub-carrier when the SNR drops below a certain

threshold level, or when that frequency band is already occupied by local radio
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2.2 Broadband Powerline Communication

systems. This is the so called “frequency notching” technique, which has been

widely adopted by existing PLC standards [53, 54]. Lastly, OFDM solves the

Inter-Symbol-Interference (ISI) problem resulted from multi-path transmission,

by adding guard interval and cyclic prefix (a part of the end of a symbol is ap-

pended at its beginning) to an OFDM symbol [52]. Thus, OFDM is regarded

as the most suitable candidate for high speed PLC. A PHY layer standard us-

ing OFDM has already been developed for commercial use in HomePlug 1.0 and

HPAV standard [18].
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Figure 2.3: Concept of bit loading: more bits are transmitted in sub-carriers with

higher SNR.

2.2.4 PLC Standards and Regulations

2.2.4.1 PLC Standards

Just as other communication technologies, broadband PLC needs a national or

international standard for its use in the industry and chip set design. Currently,

there are four competing powerline home networking standards - the HomePlug

AV standard, the High Definition Power Line Communications (HD-PLC) stan-

dard, the IEEE P1901 standard, and the new International Telecommunication

Union (ITU) G.9960 standard, also known as G.hn [55].
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HPAV, proposed by the HomePlug Powerline Alliance, is designed for trans-

mitting HDTV and VoIP around the home. HPAV supports raw data rates up to

150Mbps, it employs adaptive fast Fourier transform (FFT) OFDM over a band-

width from 1.8 to 30MHz, with possible modulation range from Binary Phase

Shift Key (BPSK) to 1024 Quadrature Amplitude Modulation (QAM) [16, 56].

HD-PLC is a competing standard proposed by PanasonicTM . Instead of using

traditional OFDM, it uses Wavelet-OFDM modulation method. The theoretical

maximum data transmission rate is up to 210Mbps in 2 - 28MHz range [57]. The

IEEE P1901 working group was formed to develop a standard for high speed

(>100Mbps at the PHY) communication devices via alternating current (AC)

power lines. The standard will use transmission frequencies below 100MHz [58].

IEEE P1901 will also enable the incompatible HPAV and HD-PLD standards to

coexist in a home network without interference.

G.hn is the next generation home network technology standard being devel-

oped by the ITU-T and promoted by the HomeGrid Forum. Unlike other specifi-

cations that only support one type of wire (powerlines only, or coaxial cable only),

G.hn specifies a unified PHY and Data Link Layer that can operate over multiple

wire types, i.e. powerlines, phone lines and coaxial cables [59, 60]. G.hn specifies

a single PHY based on FFT OFDM modulation and Low-Density Parity-Check

(LDPC) forward error correction (FEC) code [54]. G.hn includes the capability

to notch specific frequency bands to avoid interference with amateur radio bands

and other licensed radio services. Moreover, G.hn aims at higher transmission

rates to support services such as IPTV. The promise is a 400Mbps rate with

aggregated of 250Mbps throughput, with a 1Gbps rate on the road map.

Above all, there will be mainly two standards for PLC, namely the IEEE

P1901 and G.hn [53], the standard frequency range and transmission rate is

getting higher also. Furthermore, the two standards are considering coexistence,

so that G.hn and IEEE 1901 devices can coexist over a powerline.

2.2.4.2 Regulatory Standards

The full deployment of PLC also needs the support from regulating bodies. Reg-

ulations allocate the frequency spectrum that can be used for PLC and impose

37



2.2 Broadband Powerline Communication

emission limits on PLC devices and systems, to protect existing HF radio ser-

vices. Worldwide, there are a number of projects being conducted to ensure the

safe and adequate use of PLC systems.

• Existing Standards

According to the EMC Directive 2004/108/EC, equipment must be de-

signed and manufactured to ensure that the electromagnetic disturbance

generated does not exceed the level above which radio and telecommuni-

cations equipment or other equipment can not operate as intended. The

ITU-T has published Recommendation K60 “Emission levels and test meth-

ods for wire-line telecommunication network in case of complaint”, which

established radiated limits that all wire-line systems including PLC must

comply with in case of interference complaints. The ITU-T proposed peak

emission limits measured at 3m distance are [61]:

– 1 - 30MHz: 52− 28.8log(fMHz/10)dBµV/m

– 30 - 220MHz: 40dBµV/m

Additionally, the International Electrotechnical Commission (IEC) is an-

other regulatory body that seeks to establish and promulgate international

standards and good practice in all aspects of electrical, electronic and asso-

ciated technologies. Among the EMC standards in IEC, the most applicable

is CISPR 22 (Information Special Committee on Radio Interference), it’s

European counter part is EN 55022 [62]. CISPR22 deals with “Information

Technology Equipment (ITE) - Radio disturbance characteristics - Lim-

its and methods of measurement”. ITE is subdivided into two categories

denoted as Class A and Class B. Class B ITE is intended for use in the

domestic environment and has to satisfy more stringent limits. Class A is a

category for all other ITE equipment with a less strict emission limit. PLC

systems are in the Class B category and the ITE limits below 30MHz are

[63]:

(a) Conducted disturbance at the mains ports (disturbance voltage): 56dBµV/m

quasi-peak in 0.5 - 5 MHz and 60dBµV/m quasi-peak in 5 - 30MHz.
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(b) Conducted common mode (asymmetric mode) current at the telecom-

munications ports (quasi-peak values): 84 to 74dBµV/m in 0.15 - 0.5MHz

and 74dBµV/m in 0.5 - 30MHz.

• The European Union

In Europe, deployment of PLC systems is subject only to a general authori-

sation pursuant to Directive 2002/20/EC of the European Parliament and of

the Council on the authorisation of the electronic communication networks

and services. In 2001, the European Commission (EC) called for a draft

harmonised European standards for wireline networks. It mandated a Joint

Working Group (JWG)(Mandate 313) consisting members from CEN (Eu-

ropean Standardisation Committee), CENELEC (European Committee for

Electrotechnical Standardiation) and ETSI (European Telecommunications

Standards Institute) to prepare standards for the new broadband wireline

telecommunication network.

As of April 2005, the EC again recommended promotion of PLC by its

member states, considering that PLC system fall within the scope of the

EMC Directive. “In case of radio interference, the national authorities

should perform in situ measurements considering that only a common mode

current limit is prescribed in the High Frequency range.” The limit for

common mode emission is 30dBµA (measured at 3m to the line using

9KHz bandwidth), corresponding to a peak electrical field strength level

of 59.5dBµV/m, which is identical to the standards in CISPR 22 Class B

ITE [3].

In terms of complaints, national regulatory authorities are allowed to take

special measurements at a specific site in order to overcome the problem. In

June 2005, the European Conference of Postal and Telecommunications Ad-

ministrations (CEPT) adopted the ECC (European Communications Coun-

cil) Recommendation (05)04 about the assessment of complaints caused by

telecommunications networks [64]. Permanent, dynamic and programmable

frequency notching will be used at different frequencies.
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• FCC Standard

In the USA, the general EMC requirements are set by the Federal Communi-

cations Commission (FCC). FCC Part 15 Rules cover equipment capable of

(not deliberately) emitting RF energy in the range of 9kHz - 200GHz. FCC

Report and Order adopts new requirements and measurement guidelines

for Access BPL in 1.705 - 80MHz. The FCC advocates BPL and considers

it offers a number of benefits, including: 1) increasing the availability of

broadband services to homes and business; 2) improving the competitive-

ness of broadband services market; 3) improving the quality and reliability

of electric power delivery and 4) advancing homeland security [65].

Compared to European limits, FCC limit is less stringent. According to

FCC, carrier current devices, including BPL equipment, are subject to the

Commission’s existing Part 15 rules for low power, unlicensed equipment

that operates on a non-interference basis. FCC Part 15 Section §15.209

specifies the intentional emission limit below 30MHz, at 29.5dBµV/m mea-

sured at 30m, or 73.5dBµV/m (peak) when converted to 3m distance. For

BPL equipment operating above 30MHz, Section §15.109 limits should be

applied. The peak field strength of radiated emission limits measured at

3m are 44dBµV/m in 30 - 88MHz, 47.5dBµV/m in 88 - 216MHz and

50dBµV/m in 216 - 960MHz [66].

FCC also requires adaptive interference mitigation techniques. “BPL equip-

ments should remotely reduce power and adjust operating frequencies, in

order to avoid site specific, local use of the same spectrum by licensed users.

These techniques may include adaptive or notch filtering, or complete avoid-

ance of frequencies locally used by licensed radio operations” [65].

Figure 2.4 illustrates the field strength limits proposed to broadband wire-

line telecommunication networks, in the frequency range from 1MHz to 1GHz.

The field strength should be measured in 3m distance to the powerline, using a

measurement bandwidth of 9KHz below 30MHz and 120KHz above 30MHz.
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Figure 2.4: Field strength limits proposed to broadband wire-line telecommunica-

tion networks. All limits extrapolated to 3m measurement distance (Reproduced

from [3]).

2.3 Ultra Wideband Technologies

With broadband PLC gaining widespread interest these years, a number of re-

search projects have been carried out to exploit the channel in the high frequency

range, aiming to increase the transmission data rate. Among them, UWB over

powerline is an attractive topic of research.

Ultra Wideband is a novel technology that can provide much higher data rate

than existing communication systems. While most studies on UWB are related

to short range wireless communication, wire-line communications using UWB

technology also starts to attract interests recently.
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2.3.1 UWB Definition

UWB radio communication is known as a “carrier-free”, “baseband” or “im-

pulse” technology. The basic concept is to convey information by mapping an

information symbol stream into a sequence of short-duration pulses, with the re-

sulting waveforms extremely broadband in frequency. A unique characteristic of

UWB is that it usually employs carrier-less, short duration pulses for informa-

tion transmission and reception. A second derivative Gaussian pulse, or Gaussian

Doublet is often used as a UWB signal. It has the very interesting property that

its spectrum does not occupy the low frequencies where the level of man made

background noise is high [67]. The waveform of the pulse can be defined as:

s(t) = (1− 2
(t− T0)2

τ 2
)e−((t−T0)/τ)2

(2.2)

where t is the time, τ and T0 are the time-scaling factor and pulse delay respec-

tively. Figure 2.5 illustrates an example of a 0.4ns Gaussian doublet, it has very

wide frequency band from 3GHz to 10GHz.
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Figure 2.5: Second derivative Gaussian pulse: (a) pulse shape (b) power spec-

trum.

To distinguish UWB signals from other narrowband systems, any signal that

occupies bandwidth equal to or greater than 500MHz or whose fractional band-

width is equal to or greater than 0.2 is recognised as an ultra wideband signal.

The fractional bandwidth is defined as:

Bf = 2
fH − fL
fH + fL

(2.3)
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where fH and fL are the higher and lower bounds that are 10dB below the

maximum radiated emission. The FCC has approved the use of 3.1 - 10.6GHz

frequency band for UWB devices and has provided the radiation limit for UWB

devices in indoor and outdoor environment, as illustrated in Figure 2.6 [19].
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Figure 2.6: FCC defined radiation emission mask for UWB communications.

2.3.2 UWB Standards

The standardisation of UWB PHY used to be looked after by the IEEE 802.15.3a

task group. IEEE 802.15.3a was an attempt to provide a higher speed UWB

PHY enhancement amendment to IEEE 802.15.3 Wireless Personal Area Network

(WPAN), for applications involving imaging and multimedia. Currently there are

two proposals to the UWB standard: Multiband OFDM (MB-OFDM) supported

by WiMedia and Direct Sequence UWB (DS-UWB) supported by UWB forum.

DS-UWB is often referred to as a pulse based technology. It operates by

sending low power Gaussian shaped pulses which are coherently received at the

Rx. DS-UWB can use two formes of modulation, namely the Pulse Position

Modulation (PPM) and Bi-Phase Modulation (BPM) (Figure 2.7) [68]. PPM

encodes the information by modifying the time interval and hence the position

of the pulse. BPM on the other hand, is to reverse the phase of the pulse to

signify the information data. The main advantage with DS-UWB is the simple
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Tx design. However, the pulse based system makes it difficult to collect significant

multi-path energy using a single RF chain, and the switching time requirement

is very stringent, usually less than 100ps. The Rx signal processing is also very

sensitive to group delay variations of the system [69].128 ULTRA WIDEBAND COMMUNICATIONS

(a) Unmodulated pulses

(b) Pulse position modulation

(c) Bi-phase modulation

1 1 0 1 0

1 1 0 1 0

t

t

t

Fig. 5.3 Comparison of pulse position modulation and bi-phase modulation methods for
UWB communication.

5.2.1 Pulse position modulation

As mentioned previously, the important parameter in pulse position modulation
is the delay of the pulse. That is, by defining a basis pulse with arbitrary shape
p(t), we can modulate the data by the delay parameter τi to create pulses si as
shown in Eqn. (5.1), where t represents time

si = p(t− τi) (5.1)

As an example we can let τ1 = −0.75, τ2 = −0.25, τ3 = 0.25, and τ4 = 0.75, to
create a 4-ary PPM system. The four pulse shapes become

s1 = p(t+ 0.75)
s2 = p(t+ 0.25)
s3 = p(t− 0.25)
s4 = p(t− 0.75)

(5.2)

Figure 2.7: Comparison of PPM and BPM methods for UWB communications

[4].

Industrial organisations tend to support the MB-OFDM system proposed by

WiMedia, due to its ability to address performance requirements such as data

throughput and range, while maintaining low cost, low complexity and reduced

power consumption. According to the FCC requirements that UWB signals have

to be at least 500MHz, MB-OFDM UWB divides the spectrum into 5 band groups

consisting of 14 bands, each band being 528MHz wide (Figure 2.8). Each 528MHz

band is further divided into 128×4.125MHz sub-carriers which are orthogonal to

each other. User data and other control information are mapped into individual
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sub-carriers in the frequency domain. Such information will pass through the

Inverse Fast Fourier Transform (IFFT) block and generate the OFDM symbol

in the time domain. “Multibanding” refers to the time-interleaving or hopping

of OFDM symbols across bands in any particular band group [70]. For initial

system development, only Band Group 1(3.168 - 4.752GHz) is used.

MB-OFDM has a number of advantages, including high spectral efficiency, re-

silience to RF interference, robustness to multi-path and narrowband interference

[69]. The only draw back of this type of system is that the Tx is more complex

compared to DS-UWB, because it requires an IFFT operation. Nevertheless,

this can be handled by using advance DSP techniques and chip sets. Given its

ability to overcome multi-path environment and its similarity to conventional

OFDM system, it is possible to employ the MB-OFDM PHY specification in the

powerline channel.
 
 
 

 

Band Group 1 Band Group 2 Band Group 3 Band Group 4 Band Group 5

Figure 2.8: The MB-OFDM UWB frequency band plan (Reproduced from [5]).

2.3.3 Advantages of UWB

One of the most significant advantages of UWB over existing wireless alternatives

is the extremely high transmission data rate. According to Shannon’s Shannon-

Nyquist criterion [71, 72], the upper bound on the maximum achievable data rate

for an ideal band-limted AWGN channel is:

C = B × log2(1 + S/N), (2.4)

where B is the system bandwidth, S is the signal power and N represents the

noise power. Channel capacity C increases linearly with the operating bandwidth
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B, thus UWB can provide much higher data rate compared with narrowband

applications such as Wi-Fi IEEE 802.11g. IEEE 802.11g operates at 2.4GHz, it

provides a maximum data rate of 54Mbps for indoor transmission [73]. While

WiMedia UWB can achieve short range (less than 10m) multimedia file transfer

with data rate up to 480Mbps [74]. Further, industrial organisations such as

Pulse∼LinkTM is working on in-door UWB communication to increase data rates

up to gigabits per second [75].

UWB also has low power consumption. WiMedia UWB systems have been

designed for this purpose, currently at 1.5 to 2mW/Mbps. While the state-of-the-

art IEEE 802.11g radio typically consumes 15 to 20mW/Mbps, 10 times higher

than UWB appliances [74]. This makes UWB practical for today’s consumer

electronic devices, when only limited power can be transmitted.

Finally, due to the low emission rate of UWB, it will not cause significant in-

terference to existing radio systems. Meanwhile, UWB signal occupies a very wide

frequency band, making it more immune to narrowband interference from other

communication systems, such as IEEE 802.11a, which is operating in 5.4GHz

frequency band.

2.4 UWB over Powerline - State of the Art

Although mainly used in wireless applications, wired UWB transmission has

started to attract interests. UWB transmission over the low voltage powerline

can link up devices in a house, as signals mainly propagate along the powerline

conductors, while UWB radio only covers a room, in ranges up to 10m maxi-

mum. UWB radio is more suitable for short-range, high-speed communications,

such as large file transfer between nearby devices, including digital cameras, PCs

and MP3 players. It is very difficult for UWB radio signals to penetrate through

walls or concretes, because of the high operating frequency [21]. Hence, trans-

mitting UWB signals over powerline cables can potentially solve the limitations

in UWB radio, as well as the slow data rate issue in PLC.

A number of research projects are carried out on UWB over powerline in order

to increase the channel capacity. Encouraging results on UWB pulse transmission

over powerline has been shown in the 100MHz frequency range [76]. Wideband
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impulse modulation for powerline below 50MHz has been extensively studied in

the European Union “WireNet” project - “Powerline data exchange for domestic

and industrial automation based on the UWB approachapplication”, with promis-

ing results shown in [67, 77]. The main achievements have been to investigate,

in a specialised laboratory set-up, the fundamental aspects of the wide-band im-

pulse modulated solution, prototype and test specialised hardware components,

develop a physical layer, a MAC and a link layer, demonstrate the exploitation

potential of the technology by means of a demonstrator that is focused on a

low-cost system for home and industrial applications [78]. Other applications of

UWB over in-door coaxial cables have also been reported as successful [79].

A fabless semiconductor company developing advanced UWB technologies,

ArtimiTM , also indicated that it is possible to transmit UWB pulses along mains

cable [80]. So far ArtimiTM has demonstrated the transmission of video digital

content under simple laboratory conditions. The configuration and key compo-

nents of their demonstration system are shown in Figure 2.9 [81].

Figure 2.9: Artimi’s UWB pulse over powerline demo system (10m mains cable,

one plug and socket).

The system consists of a pair of Tx/Rx, two RF over mains cable couplers,

a plug and socket interface and a 10m mains cable. Artimi et al have reported

that they have transmitted UWB pulses that are fully compatible with the FCC

defined spectrum mask over powerline. Their experiment results are shown in

Figure 2.10.

However, the preliminary study conducted by ArtimiTM is far from exhaustive,

and only base-band pulse transmission is considered. As mentioned earlier, pulse

based transmission has a number of limitations and is not preferred in practice.
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Figure 2.10: UWB pulses used in Artimi’s demo: transmitted pulse (left) and

received pulse(right) (The scale of the diagram is not given).

Moreover, existing studies have not examined the channel properties thoroughly,

especially above 30MHz. The powerline channel characteristics in the UWB band

and the signal attenuation rate are unknown (as noted from Figure 2.10), and

the possible data rate is not given either. Further investigation are required to

understand the signal transmission characteristics over powerline channels in a

much higher frequency band.

2.5 Summary

The technological background of PLC and UWB have been introduced in this

chapter. A review of the various applications provided by PLC showed that it

is a promising technology in energy saving and communications market. Broad-

band PLC is promoted globally by regulatory bodies, such as the EC and FCC,

both of which believe that PLC is the cheapest way to bring high data rate inter-

net connection to the home. Developing PLC standards are aiming to increase

the operating frequency band and transmission rate over the powerline chan-

nel. However, the powerline as a transmission medium is mainly studied under

30MHz range, channel characteristics in high frequency range are still not very

well understood.

UWB over powerline has been considered as a viable solution to the limited

transmission rate of PLC and the short range problem in wireless UWB. UWB

radio has advantages in terms of high potential data rate and low PSD as the
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energy is spread in a wide frequency range. A few preliminary studies have been

done on UWB over PLC, but none of them have fully studied the broadband

channel characteristics, nor have they addressed other technical issues such as

the coupler design. Therefore, further investigations need to be conducted to

fully characterise and analyse such technique to maximise its potential benefits.
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Chapter 3

Powerline Channel

Characteristics in UWB

Frequency Band

3.1 Introduction

It is noted in Chapter 2 that the transmission environment of the powerline

channel plays an important role in the feasibility of UWB over PLC technology.

In this chapter, the signal transmission properties and attenuation characteristics

over the powerline channel will be examined in a very wide frequency range.

Following the analyses, a frequency range for UWB over PLC will be defined for

coupler design and system development.

3.2 Powerline Cables

There are many types of mains cables for indoor, outdoor, industrial and resi-

dential use. Different applications often use powerlines that have different cross

sectional structures. Powerlines used for single-phase indoor wiring are often com-

prised of three or four conductors. All are confined by an outer jacket to maintain

close conductor spacing, some even have a metallic sheath to reduce radiation.

Experimental studies show that the mean impedance of in-home powerline is
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3.2 Powerline Cables

between 100Ω and 150Ω [49, 82].

In the UK, there are two predominant types of cables for indoor wiring: the

three-core flexible and the 2.5mm flat twin and earth cable.

The three-core flexible cable (Figure 3.1) is often used to connect an electrical

appliance to a power outlet. It is soft and usually has a length of several meters. It

consists of three conductors: the brown “live”, blue “neutral” and green/yellow

stripped “earth” wires. Each conductor consists of 40 stranded copper wires,

covered and separated by a Polyvinyl Chloride (PVC) insulated sheath.

Another type of powerline is the 2.5mm flat twin and earth cable. It is not di-

rectly visible in a home environment because it is laid inside the walls, connecting

power outlets and the customer premises. This is the main cable used for in-home

wiring. It can be decades of meters long depending on the size of the house or

the room. As illustrated in Figure 3.2, a 2.5mm flat twin and earth cable consists

of three conductors, “live” (red or brown), “neutral” (blue or black) and “earth”

(a single conductor without plastic sheath). Different from the three-core flexible

cable, the conductor of 2.5mm flat twin and earth cable is a single copper wire,

with “earth” relatively smaller than “live” and “neutral”.

Figure 3.1: Three-core flexible cable: (a) side view (b) cross sectional view.
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3.3 Powerline Channel in FCC Defined UWB Band

Figure 3.2: 2.5mm flat twin and earth cable: (a) side view (b) cross sectional

view.

3.3 Powerline Channel in FCC Defined UWB

Band

In order to achieve UWB communication over powerline, it is important to un-

derstand the high frequency signal transmission characteristics of the channel.

The FCC defined UWB frequency band as 3.1 - 10.6GHz, so firstly, the powerline

channel is examined in the frequency range up to 10GHz. The twin and earth

cable has been studied using software modelling and measurement.

3.3.1 Modelling of Powerline Channel

Firstly, CST Microwave StudioTM [83] is used to model the time domain signal

transmission in the powerline, namely the 2.5mm flat twin and earth cable. The

simulation model is shown Figure 3.3, a 1m cable is terminated by a 50Ω coaxial

connector1 at both ends. A short duration impulse will be transmitted and the

received and reflected signal will be simulated.

3.3.1.1 Signal Coupling Modes

Due to the multi-conductor structure of the powerline, there are many ways to

connect the conductors to the coaxial connector. In order to find the best coupling

mode, two kinds of transmission mode have been simulated, i.e. common mode

and differential mode. In common mode excitation, all three conductors are

1The 50Ω coaxial connector is chosen to match the output impedance of the network anal-
yser, which is 50Ω.
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3.3 Powerline Channel in FCC Defined UWB Band

connected to the coaxial feed, while in differential mode, “live” is connected to

the coaxial feed, “neutral” to the coaxial ground and “earth” is not connected.

 
(a) 

 

         
               (b)                                       (c) 
 

Figure 3.3: CST powerline simulation model (a) 1m flat twin and earth cable (b)

differential mode coupling (c) common mode coupling.

In the CST Microwave StudioTM time domain solver, a 5th derivative Gaus-

sian pulse is transmitted. As illustrated in Figure 3.4, the transmitted pulse have

0.5ns duration and it meets the FCC indoor mask in 3.1 - 10.6GHz. The received

and reflected signals are shown in Figure 3.5. It can be seen that in common

mode transmission, only a single ringing pulse is received at 4.8ns. While in

differential mode, two signals with different velocities are received when only one

pulse is transmitted, a fast travelling ringing pulse and the main transmitted

signal. Compared with common mode transmission, it can be proved that the

early arriving ringing pulse is the common mode signal excited by the unbalanced

current distribution between the two conductors. Such asymmetry will give rise

to an unwanted common mode signal, which is described as in-phase current

with equal amplitude on all the conductors [84]. Common mode signal will cause
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3.3 Powerline Channel in FCC Defined UWB Band

strong far field radiation due to its current distribution and is usually regarded

as noise in a transmission system.

Moreover, we can observe that the common mode signal travels faster. This is

because the powerline provides an inhomogeneous dielectric environment, which

supports slightly different propagation velocities for the two modes [85, 86]. In

differential mode, the electromagnetic (EM) field is mainly inside the powerline

cable and propagates along the dielectric material of the powerline, therefore

vdiff = c0/
√
εr, where c0 is the free space velocity and εr is the powerline’s

dielectric permittivity. While for common mode transmission, most of the EM

field will be outside the cable, making the common mode signal travel at a higher

velocity between c0 and vdiff .

In summary, the time domain simulation has shown that common mode is

not suitable for transmitting signal and should be avoided by using a proper RF

coupler.
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Figure 3.4: The 5th derivative Gaussian Pulse and its PSD.

3.3.1.2 Signal Radiation

In CST Microwave StudioTM , the electrical field distribution near the conductor

can be observed to see the field variations at different frequencies. This is very

useful in studying the radiation characteristics in high frequency band. Figure

3.6 shows the electrical field distribution of power cables when fed differentially,

at three different frequencies, 1GHz, 5GHz and 10GHz. At 1GHz, most of the

electrical field is bounded around the conductor, only little is radiated in the
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3.3 Powerline Channel in FCC Defined UWB Band

air. At 5GHz, more energy is radiated. However, at 10GHz, it is clearly noticed

that most of the field energy has been radiated into the air, only little has been

transmitted over the powerline.

Usually, powerlines can be regarded as long antennas that radiate energy in

high frequency bands [49]. Although differential mode will cause much less far

field radiation compared to common mode, radiation may still arise from the

asymmetrical current distribution in powerline conductors. Further, radiation

in the near field also contributes to energy loss. As from Figure 3.6, signal

transmission above 1GHz can cause most of the energy to be radiated and thus

not suitable for PLC applications.

 

 

 

(a) 

(b) 

Figure 3.5: Simulated result of received pulse (a) common mode (b) differential

mode.
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3.3 Powerline Channel in FCC Defined UWB Band

1 GHz 5 GHz

10 GHz

Figure 3.6: Electric field distribution over powerline at different frequencies.

3.3.1.3 Powerline Impedance

In addition to the above results, CSTTM simulation tool can also obtain the ana-

lytical line impedance of a multi-conductor transmission line [83]. By examining

the pulse transmission, time domain refractometry (TDR) can be used to calcu-

late the powerline impedance. TDR was initially developed for locating faults

on long electrical systems, i.e. twisted wire pairs and coaxial cables [87]. TDR

transmits a short rise-time signal and measures the reflections that result from the

signal travelling through the cable [88]. It is also used to determine the impedance

of the cable, by using the reflection coefficient ρ, which is the ratio of the reflected

pulse amplitude to the incident pulse amplitude, as shown in Equation (3.1):

ρ =
VReflected
VIncident

=
ZL − Z0

ZL + Z0

, (3.1)

where Z0 is the transmission line impedance and ZL is the load impedance. With

the load impedance available, the line impedance can be calculated.

Z0 = ZL ×
1− ρ
1 + ρ

. (3.2)

Figure 3.7 illustrates the simulated differential mode line impedance of the

cable. There is strong impedance mismatch before 1ns, when the pulse is injected
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3.3 Powerline Channel in FCC Defined UWB Band

from the coaxial connector to the cable. Afterwards, the signal is transmitted

without reflection and the line impedance becomes stable at around 115Ω.
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Figure 3.7: TDR simulation of the line impedance of differential mode.

3.3.2 Frequency Domain Characterisation

After numerical simulation of pulse transmission over powerline, its transfer func-

tion is examined experimentally in the frequency domain. As mentioned earlier,

differential mode transmission is preferred in PLC. So all the signals are injected

differentially to the powerline via a 50Ω coaxial connector, where antipodal cur-

rent flows on “live” and “neutral” (Figure 3.8).

Figure 3.8: Differential mode connection to the coaxial connector.
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3.3 Powerline Channel in FCC Defined UWB Band

A Vector Network Analyser (VNA) HP8720ES is used to record the transfer

functions (S21). Both types of the powerlines have been measured in different

environments, i.e. on the ground and in the air. Figures 3.9 and 3.10 illustrate

the transfer functions of both types of cables in 1m and 2m.
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Figure 3.9: Measured S21 of 2.5mm flat twin and earth cable (a) in the air (b) on

the ground.
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Figure 3.10: Measured S21 of three-core flexible cable (a) in the air (b) on the

ground.

It is noticed that signal attenuation in powerline is very similar below 1GHz
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3.3 Powerline Channel in FCC Defined UWB Band

in both scenarios, whereas at high frequencies above 1GHz, the S21 curves are

quite different. Higher attenuation is experienced by cables laid on the ground,

despite the S21 curves being much flatter than those measured in the air. When

the cables are measured in the air, big cycles of notches can be observed.

The frequency intervals of notches are dependent on the cable length. Figure

3.11 illustrates the points of notches in 5 - 8GHz frequency band. The average

frequency interval between deep notches for 1m and 2m twin and earth cables

are 0.68GHz and 0.3GHz respectively, which are inversely proportional to the

cable length. Such cycles of transmission nulls are caused by the resonance of

the powerline, because in high frequency bands, the communication signals are

radiated rather than being transmitted [89].

Thus, when the cable is held in the air, it begins acting an like antenna

that radiates an EM field in the environment. Radiated emissions will not only

cause strong attenuation to the transmitted signal, but also give rise to potential

interference to other radio systems.

Figure 3.11: Frequency points of deep notches of S21, in the air (a) 1m (b) 2m.

When measured on the ground, a smoother curve is observed and deep notches

disappear. The radiated high frequency energy has been absorbed by the earth

ground, hence the radiation resonance is damped. Measurements of longer cables

has been carried out, as shown in Figure 3.12. Still, the channel loss is too high

above 1GHz. At 10m, S21 varies between 30dB and 90dB in 1 - 10GHz frequency
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3.4 Powerline Channel Characteristics below 1GHz

band and the average attenuation reaches 54.7dB in 5 - 10GHz range, making

the powerline a very hostile environment for data transmission.

Despite the strong channel losses, it is noted that attenuation within the

50MHz - 1GHz frequency band is much smaller and the channel transfer functions

do not exhibit deep frequency selective fading effect. This provides a potential

frequency window for the intended UWB over PLC application. Therefore further

channel characteristics analysis is conducted below 1GHz in the following section.

2.5mm Twin Earth S21 on Ground
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Figure 3.12: Frequency response of twin and earth cable measured on the ground.

3.4 Powerline Channel Characteristics below 1GHz

In this section, signal transmission over the powerline is further examined in the

50MHz - 1GHz frequency band, in order to verify that the channel provides a

possible path for UWB signal transmission. A VNA is used to measure the S21

parameters, 1601 frequency points are collected at a sweep time of 3.21 seconds.

Since there is not much difference between the in-the-air and on-the-ground cases

(Figure 3.13), all the measurements are carried out with mains cables lying on
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3.4 Powerline Channel Characteristics below 1GHz

the ground. Figure 3.14 shows the measured transfer functions of both cable

types, from 50MHz to 1GHz. A number of characteristics can be observed from

the measurement results.
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Figure 3.13: Comparison between frequency responses of twin and earth cable

measured on the ground and in the air (upper curves - 1m, lower curves - 2m).

3.4.1 The Effect of Different Cable Types

It is observed from Figure 3.14 that 2.5mm flat twin and earth cable has much

better performance than the three-core flexible cable. At the same transmission

distance, i.e. 10 metre, the three-core flexible cable attenuates at 4dB/100MHz

while the twin and earth cable only degrades at 2.4dB/100MHz. At 500MHz,

the same signal will experience 10dB more losses when transmitted on a three-

core flexible cable. Such difference can be explained by the configuration of the

mains cable itself. In the high frequency range, “skin effect” causes current to

flow on the surface of a good conductor, the power transmitted through this

surface is dissipated as heat [9]. When the conductor surface increases, the total

current floating on the surface increases and more energy is dissipated. A three-

core flexible conductor consists of 40 stranded copper wires, whereas the twin
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Figure 3.14: Frequency response of (a) twin earth and (b) three-core flexible cable

in 50MHz - 1GHz.
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3.4 Powerline Channel Characteristics below 1GHz

and earth conductor is a solid core. So the total surface current on the three-

core conductor is larger. As a result, higher attenuation can be observed on the

three-core flexible powerline.

Such difference illustrates that good quality powerlines (e.g. new cables or

cables with solid conductors) will provide a better channel for signal transmission.

In this case, the flat twin and earth cable has better performance and is used for

further testing.

3.4.2 The Effect of Impedance Mismatch

Multiples of small ripples are observed in the S21 curves (Figure 3.14) and their

number increases with cable length. This is mainly due to the mismatch between

the powerline characteristic impedance and that of the coaxial connector. The

signal will be reflected where there is a disconnection, causing multi-path trans-

mission. A multi-path channel with two transmission paths can be represented

as shown in Figure 3.15, where f(t) is the transmitted signal, V0 is a constant.

V0f(t− t0) and V0f(t− t0−τ) represent the received signals after passing through

the channel. t0 and τ are the fixed delay and relative time delay between the two

paths.
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Figure 3.15: Transmission model of two path transmission.

Using the fourier transform which relates the time domain and frequency do-

main signal, the two received signals can be represented in the frequency domain:

V0f(t− t0)⇔ V0F (ω)e−jωt0

V0f(t− t0 − τ)⇔ V0F (ω)e−jω(t0−τ) (3.3)
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3.4 Powerline Channel Characteristics below 1GHz

where F (ω) is the fourier transform of the transmitted signal f(t).

The two offset signals will be added at the Rx, so the transfer function H(ω)

of this multi-path model is:

H(ω) =
V0F (ω)e−jωt0(1 + e−jωτ )

F (ω)
= V0e

−jωt0(1 + e−jωτ ) (3.4)

It can be seen that the transfer function is dependent on the relative time delay

τ and frequency. Figure 3.16 illustrates the magnitude of the transfer function of

a two path channel model, where the frequency interval between nulls is:

∆f =
1

τ
. (3.5)

π
τ0 2π

τ
3π
τ

4π
τ

( )H ω

ω

0
02 j teV ω−

Figure 3.16: Magnitude of the two path transmission model

The measured frequency interval between adjacent ripples (1m flat twin and

earth cable) is approximately 85MHz (Figure 3.17) and the time delay between

the first received and reflected signal is:

τ =
2l

vp
= 2l ×

√
εr
c0

. (3.6)

Where l is the length of powerline, vp = c0/
√
εr is the phase velocity and c0, εr

are the speed of light in free space and the dielectric permittivity of the medium

respectively. The reflected signal travels twice the length of the powerline. Actu-

ally the transmitted signal will be traveling back and forth along the powerline,

however, only the first reflected signal is considered. Due to high attenuation,

the energy of later signals are considered to be negligible. As in [90], dielectric
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3.4 Powerline Channel Characteristics below 1GHz

permittivity of the powerline is εr = 3.1, so the relative time delay is τ ≈ 11.74ns

and the frequency interval is:

∆f =
1

11.74× 10−9
= 85.2MHz. (3.7)

The same relation can be found in other transmission distances and it can

be seen from (3.5) and (3.6) that frequency interval decreases as cable length

grows. Further, we should differentiate these small ripples from the big cycles of

resonance observed previously. The intervals between the resonating frequencies

are much wider and are mainly observed above 1GHz, they are caused by the

radiation of the transmitted signal. While the small ripples are due to multiple

reflections of the transmitted signal.

Frequency, GHz

S2
1,

 d
B

Figure 3.17: Frequency intervals between ripples in of 1m twin and earth cable

3.4.3 The Effect of Bends in Cable

Previously, powerlines are mainly tested on the ground, they are not bent or

twisted. In practice, mains cables are usually laid along the corners of a room

and are bent at some point, this may affect the cable’s performance. Further, we

need to analyse this effect because later in this thesis, a measurement campaign

will be conducted on a powerline laboratory test bed, where all the cables are
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bent and attached to the back of the wall, this may as well affect the actual

performance of the test bed.

Figure 3.18 compares the transfer function of twin and earth cables tested

stretched and folded, i.e. folded in the middle and placed close to each other, or

folded twice and place all the parts closely together, at 5m and 10m respectively.

Originally, only small ripples have been observed. When the cables are folded,

multiple deep notches occur above 500MHz, especially at 10m. The notches can

cause nulls as deep as -60dB in the transfer function, depending on the number

of times the cable is folded and how close the parts are to each other. Such deep

notches are caused by the wave travelling along the line cancelling with each

other. When the folded parts are closely placed, the transmitted signals cancel

with each other if they are 180 degree out of phase. They can also be enhanced

if they are in the same phase. That is why at some frequencies the loss is smaller

than that measured stretched on the ground. In most cases, bends in the cable

can degrade the channel’s performance by introducing deep transmission nulls

and give a low SNR level.

3.5 Transmission and Attenuation Characteris-

tics of 2.5mm Twin and Earth Cable

Transmission characteristics of in-door powerline channel have been extensively

examined below 30MHz, with channel models developed from statistical summary

of measurement data or analysis of the physical configuration of the cable [43, 45,

91]. However, very few studies have considered high frequencies above 100MHz.

This section analyses the attenuation characteristics of twin and earth cable, since

it provides a better path for signal transmission than the three-core cable.

3.5.1 Transmission Loss

Similar to those observed in the low frequency bands, powerline channel’s at-

tenuation increases with frequency and transmission length. The attenuation

characteristics of powerline can be analysed by using a channel transfer function
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Figure 3.18: Frequency responses of 5m (the upper figure) and 10m (the lower

figure) twin and earth cable, laid stretched and folded.
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model, based on the transmission line theory. In the high frequency range, pow-

erlines can be modelled as transmission lines with per-unit-length parameters: L

(inductance), C (capacitance), R (resistance) and G (conductance), as illustrated

in Figure 3.19.

Figure 3.19: Transmission line model.

The characteristic impedance Z0 of the powerline is given by Equation (3.8):

Z0 =

√
R + jωL

G+ jωC
(3.8)

The value of Z0 is between 100 - 150Ω. The propagation constant of the powerline,

γ, is given by Equation (3.9):

γ =
√

(R + jωL)(G+ jωC) = α + jβ, (3.9)

where α denotes the attenuation characteristics of the channel, its unit is neper/m.

And β shows the phase changing characteristics, in rad/m. α and β can be cal-

culated as follows:

α =
R

2Z0

+
GZ0

2
(3.10)

and

β = ω
√
LC =

ω

vp
, (3.11)

where R/2Z0 describes the impact of skin effect, and GZ0/2 denotes the dielectric

loss within the insulation material.

At low frequency ranges, α is usually constant, but at high frequencies, it

becomes a function of frequency and can be represented as [13]:

α(f) = η0 + η1f
ε, (3.12)
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where coefficients η0,η1 and ε are dependent on the cable types.

With attenuation coefficients α(f), the loss of a powerline channel DdB(f, l)

at different frequencies can be calculated using [13]:

DdB(f, l) = |20 log10 e
−α(f)l| = 8.868α(f)l (3.13)

where l is the transmission distance.

Equation 3.13 only considers the attenuation of a powerline cable. But in the

frequency domain measurements, the effect of the coaxial connector (mismatch)

is also included. This can be eliminated by referencing to a fixed cable length l0,

which is usually 1m. So the measured attenuation HdB(f, l) of a powerline l can

be represented as:

|HdB(f, l)| = |HdB(f, l0)|+D(f, l− l0) = |HdB(f, l0)|+ 8.868α(f)(l− l0), (3.14)

where HdB(f, l0) is the measured transfer function of a l0 meter powerline.

Based on the measured attenuation of powerline at different lengths, the at-

tenuation coefficient α(f) of a twin earth cable can be extrapolated statistically,

with the values of η0, η1 and ε being 0.03, 0.299 and 1 respectively. Figure 3.20

illustrates the modelled α(f) (twin and earth) as a function of frequency.
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Figure 3.20: Calculated attenuation coefficient α.
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Figure 3.21 compares the cable loss between the attenuation model and mea-

surement results at 200, 500 and 800MHz. The two results show good agreement

up to 30 metres. This is a reasonable distance for a home network, since there

is a trade off between transmission range and operating bandwidth. For longer

transmission range, a signal relay can be used to boost up the signal. Further-

more, it shows that the signal attenuation rate increases with frequency. In the

frequency band below 200MHz, the signal attenuates at 0.8dB/m (Table 3.1).

The signal can be transmitted over a long distance before the SNR drops to cer-

tain threshold level, however, the transmission rate may not be very high due

to the limited bandwidth available. In the frequency range up to 800MHz, the

bandwidth used is wider and thus higher data rate could be achieved. How-

ever, in the high frequency band, signal strength degrades more rapidly, i.e. at

800MHz, signal attenuates three times faster than that in 200MHz, therefore, the

transmission distance will be decreased.

Table 3.1 lists the signal attenuation rate at different frequencies, which in-

creases with frequency. It is noted that above 100MHz, the average attenuation

rate increases at 0.26dB/(m·100MHz). If more data need to be transmitted,

higher bandwidth should be exploited, therefore signal relays are required to en-

able long distance transmission.
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Figure 3.21: Modelled and measured powerline attenuation at 200, 500 and

800MHz.
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3.5 Transmission and Attenuation Characteristics of 2.5mm Twin and
Earth Cable

Frequency(MHz) 100 200 300 400 500

Attenuation Rate(dB/m) 0.53 0.8 1.06 1.33 1.59

Frequency(MHz) 600 700 800 900 1000

Attenuation Rate(dB/m) 1.86 2.12 2.4 2.65 2.92

Table 3.1: Signal attenuation rate (dB/m) on twin earth cable.

3.5.2 Channel Model

A powerline channel can be represented by a transfer function. Recent approach of

modelling the powerline network’s transfer function can be achieved by breaking

down the network topology into a cascaded 2 port networks (2PN), then replace

a distributed parameter circuit with a single lumped network. The transmission

matrix or ABCD matrix is used because it can represent the total transfer function

of a network, simply by multiplying the transmission matrix of each sub-2PN [92].

In general, a network that has a source, and terminated with a load can

be described using Figure 3.22 The dashed box represents the whole network

topology, which can be the cascade of many 2PN elements:

Figure 3.22: Generic two-port network.

The relationship between the current and voltage at the two ports of a 2PN

is given by Equation (3.15) [9]:[
V1

I1

]
=

[
A B
C D

] [
V2

I2

]
(3.15)

where

[
A B
C D

]
is called the transfer matrix or ABCD matrix T . The rela-

tionship between the transmitted and received voltage signals of a system can be
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Earth Cable

derived as:

Vs = ZsourceI1 + V1

V1 = AV2 +BI2

V2 = ZloadI2

}
⇒ H(f) =

V2

Vs
=

Zload
AZload +B + ZsourceZloadC + ZloadD

(3.16)

Cascaded 2PNs can be used to model powerline channels with many branches,

such as a T network illustrated in Figure 3.23, which consists of two transmission

lines L1, L2, and a branch terminated by a load Zb.

!"#

!$#

Figure 3.23: Configuration of a T-network

The total transmission matrix is [45]:

Ttotal = TTLTBranchTTL (3.17)

where

TTL =

[
cosh(γL) Z0 sinh(γL)

sinh(γL)
Z0

cosh(γL)

]
(3.18)

represents the ABCD matrix of the transmission line, and γ is the propagation

coefficient of twin earth cable, which can be calculated from Equation (3.11) and

(3.12).

TBranch denotes the transmission matrix of the branch, which can be modelled

as a shunt impedance across the line with an input impedance Zin as shown in

Equation (3.19):

TBranch =

[
1 0
1
Zin

1

]
(3.19)

where

Zin = Z0
Zb + Z0 tanh(γL)

Z0 + Zb tanh(γL)
(3.20)
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3.5 Transmission and Attenuation Characteristics of 2.5mm Twin and
Earth Cable

Figure 3.24 compares the measured and modelled transfer function of a 20m

powerline channel, there is a 2m open circuit branch 15m away from the source.

The T network can be represented using Figure 3.23, where L1 = 15m, L2 = 5m,

L3 = 2m, Zs = Zl = 50Ω and Zb = ∞. The blue dotted lines represent the two

main propagation paths, where P2 will be longer than P1. It can be seen that

modelling results agrees well with the measured results. The nulls are caused by

multi-path transmission. Branch L3 totally reflects the signal on P2, causing a

time delay between P1 and P2 signals. According to Equation (3.6), the frequency

interval between adjacent nulls is ∆f = 2L3
√
εr/c0 = 47.6MHz, which is very

close to the results shown in Figure 3.24. Apart from the multi-path effect, it is

noticed that the transmission loss in the T network has a similar trend to a single

length 20m cable, as shown in Figure 3.14 (a).

Comparison of results proves that the channel model developed can be used

to model the powerline channel with a tree topology correctly. However, in a

complex PLC system with couplers, sockets and loads, this model needs to be

improved for better prediction of the variable effects of the system components.
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Figure 3.24: Model and measured powerline channel attenuation (T-network)
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3.6 Summary

3.6 Summary

In this chapter, characteristics of signal propagation over the indoor powerline

cables have been investigated in a very wide frequency range up to 10GHz. Time

domain simulation shows that differential mode signal coupling is preferred to

allow maximum signal transmission over the powerline. It is also noticed that

the powerline channel causes potential radiated emission in the frequency range

above 1GHz. The measured transfer function of the cable reveals that the trans-

mitted signal also experiences strong attenuation above 1GHz. Thus, further

channel characterisation has been carried out in the scaled down UWB band be-

low 1GHz. The effect of cable types, impedance mismatch and cable bends have

been addressed. It is noticed that 2.5mm flat twin and earth cable provides a

better transmission path than three core flexible cable. Detailed analysis of signal

attenuation rate and channel model of twin and earth cable in 50MHz - 1GHz

range has been conducted. Results show that above 100MHz, the average signal

attenuation rate increases at 0.26dB/(m·100MHz), which indicates that the pow-

erline can potentially be utilised for UWB transmission up to 1GHz in the home

network.
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Chapter 4

Development of Wideband

Coupler for UWB PLC

4.1 Introduction

This chapter presents the design of a RF coupler suitable to transmit wide band

signals into the powerline. As previously mentioned in Chapter 3, it is possible

for powerline to operate in a scaled down UWB band below 1GHz, therefore, the

developed coupler should operate in a wide frequency range up to 1GHz. More-

over, the signal should be coupled into the powerline differentially, to avoid far

field radiation and allow better signal transmission. So far, there is no such wide-

band coupler available for the study and measurement of broadband powerline

channels. Therefore, it is very critical to develop a coupler that can serve such

purposes.

4.2 PLC Coupling Unit Basics

One of the most important components of any PLC system is its interface (or

coupler) with the power distribution network. This is by no means a simple

unit considering the challenging properties of the powerline channel. Due to

high voltages, varying impedances, high amplitudes and frequency dependent

disturbances, the coupling unit needs to be carefully designed to provide both
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4.2 PLC Coupling Unit Basics

the specific signal transmission function within the appropriate bandwidth, and

the safety level required by the applicable domestic or international standard [93].

4.2.1 Requirements of RF Coupler for PLC

An RF coupler for PLC should consider the following aspects:

• It should not introduce a high level of loss to the system. Ideally, the

transmission loss of a coupler should not exceed 3dB.

• Signals should be injected into the powerline differentially with the earth

conductor connected to the ground.

• For this project, the designed coupler should provide a very flat transmission

performance in the studied frequency band. It is very challenging to design

a coupler that has such wide band capability.

• Safety protection. A powerline coupler is designed to be used simultaneously

with AC power on. It is very critical to filter out the 220V AC power, so

as not to cause damage to the users and other equipment.

• Impedance matching. This is often an important aspect in the coupler

design. However, for a PLC system, the input impedance can vary from a

few ohms to several kilo ohms, depending on the locations of the Tx and Rx,

as well as the electrical appliance plugged into the system [36, 94]. Thus,

impedance matching to a PLC system is very complex and it is usually

achieved by using a transformer to provide impedance adaptation.

The above requirements show that it is very critical to develop a coupler that

has such wide bandwidth and provides desirable performance at the same time.

Besides, existing powerline couplers are only designed for narrowband use, below

30MHz. There is no literature available on broadband RF coupler that can op-

erate in such a wide bandwidth, from 50MHz to 1GHz. This fact makes it even

more challenging and yet important to design a novel coupler that can operate

in the interested frequency band.
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4.2 PLC Coupling Unit Basics

4.2.2 Existing Coupling Units for PLC

As mentioned earlier, there is no wideband couplers that can operate in the

frequency band up to 1GHz. Most of them only provide coupling capabilities

up to 30MHz. Figure 4.1 shows a prototype of the coupling unit designed by

SiConnectTM . The coupler is comprised of a number of passive components1,

i.e. capacitors, transformers and resistors. The RF signal is transmitted to the

AC mains through an impedance matching circuit. The transformer is used for

galvanic isolation between the RF signal and the AC mains, it also provides

differential mode signal coupling. Finally the capacitors act as band pass filters

to the signal.

The performance of the couplers in the 50MHz - 1GHz frequency range has

been tested. Figure 4.2 illustrates the s-parameters of the couplers, being con-

nected back-back. It shows that SiConnectTM ’s couplers, originally designed for

PLC applications below 30MHz, do not provide satisfactory performance, over

10dB loss can be observed across the frequency band. Consequently this coupler

is not appropriate for UWB over PLC applications in this study.

PLC  

Signal 

Transformer Capacitors 

L 

N 

Resistors 

Figure 4.1: Photograph of SiConnectTM ’s coupler.

Another semi-conductor company ArtimiTM , has also developed a coupling

unit, to demonstrate UWB pulse transmission over powerline. The RF coupler,

as shown in Figure 4.3, is build on an RF4 Printed Circuit Board (PCB). The

1Components that are capable of operating without an external power source.
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Figure 4.2: S-parameters of SiConnectTM ’s coupler in 50MHz - 1GHz.

UWB signal is injected into the coupler via a SubMiniature version A (SMA)

connector, and travels to the powerline in common mode. The earth conductor

is connected to the ground plane of the coupler for safety protection.

RF in 

Via to  
Ground Ground 

Plane 

L 

N 

E 

Figure 4.3: Photograph of ArtimiTM ’s RF coupler.

Artimi et al have claimed that their coupler can operate in the FCC defined

UWB frequency range of 3 - 5GHz. We hence test the s-parameters of the couplers

in 50MHz - 10GHz frequency range. However, as shown in Figure 4.4, measure-

ment results reveal that this coupler also brings in too much loss to the system.

The S21 value is below -10dB in their claimed operating band of 3 - 5GHz. Even

in the frequency range below 1GHz, its performance is not ideal either. Further-

more, it has been shown in previous study (Section 3.3.1) that common mode

78



4.3 Design of RF Coupler

signal transmission is not the preferred propagation mode in PLC, it will cause

strong distortion to the transmitted signal
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Figure 4.4: S-parameters of ArtimiTM ’s coupler in 50MHz - 10GHz.

After examining the two coupling units developed by industrial companies,

none of them is appropriate for the intended UWB over powerline applications

in the high frequency range up to 1GHz. They both have short comings in terms

of high insertion loss and very narrow operating bandwidth. As a result, a novel

RF coupler that meets the application requirements needs to be developed.

4.3 Design of RF Coupler

4.3.1 Powerline Coupler Circuit

A typical and practical coupling unit for PLC below 30MHz, is usually a passive

device providing isolation via a capacitive and magnetic network [35]. It is used

to fulfill the two basic requirements, specifically galvanic isolation and differential

mode signal transmission over the mains cable.

As illustrated in Figure 4.5, coupling to the mains is accomplished by means

of two essential elements: the transformers and the filters, which can be realised

by using coupling capacitors, coupling transformers and resistors [6, 93, 95, 96].

79



4.3 Design of RF Coupler

To System To outlet

Coupling 
Transformer

Coupling 
Capacitor

Figure 4.5: A coupling circuit for powerline communication.

• Coupling capacitors: Single and paired capacitors are used extensively in

PLC to couple signals to the powerline, while blocking the low-frequency

power signal [97, 98]. This requires that the capacitor to be high frequency

(self-resonant point has to be higher than the upper bound of the band

width [99]). More importantly, in order to avoid electrical shock, the ca-

pacitors should also be able to provide AC mains isolation after a failure

and hence need to be high voltage capacitors. The X and Y range capaci-

tors have been developed for such purposes. The requirements and essential

characteristics of coupling capacitors have been standardized in American

National Standards Institute (ANSI) C93.1-1972 [100].

• Coupling transformer: The transformer is an extremely important element,

since the circuit performance and maximum transmission rate depends on

its characteristics [101]. The function of a coupling transformer has four

aspects: (1) galvanic isolation between the power circuitry and commu-

nication circuitry; (2) DC isolation between circuits while affording AC

transmission; (3) voltage/current transformation, and impedance adapta-

tion between the transmitter and powerline system; (4) differential mode

signal transmission.

• Resistors: For PLC systems in general, one would try to avoid the use of

resistors. It implies a loss of power, either of the communication signal or
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4.3 Design of RF Coupler

the power waveform, i.e. 50 percent of energy will be lost on the resistor if

it is 50Ω, the same as an SMA connector. However, a resistor can be used

for other purposes such as a linear current-measuring device and voltage

sensing device [6].

4.3.2 RF Coupler Model

Although there are not many passive components in the coupler circuitry, choos-

ing the suitable ones, i.e. the capacitors and transformers to achieve adequate

performance across a very wide bandwidth is not that trivial. At low frequen-

cies (kilohertz range), it is sufficient to model a transformer by a magnetising

and leakage inductance. At high frequencies though, the parasitic influence of a

transformer has to be modelled more accurately. Figure 4.6 shows an equivalent

circuit that can be used to model an RF transformer [6, 7].

Figure 4.6: Equivalent circuit of transformer [6, 7].

Where L1 and L2 are the primary and secondary leakage inductances, caused

by the incomplete magnetic coupling between the two windings. Because their

reactance, ZL = jωL is proportional to frequency, these inductances increase

insertion loss at high frequencies.

Lp is the magnetising inductance, which limits the low frequency performance

of the transformer. It is determined by the permeability and cross sectional area

of the magnetic core, and the number of turns. Lp increases the insertion loss at

low frequencies.

Intra-winding capacitances C1 and C2, and the interwinding capacitance C,

which are caused by the relative voltage difference between the turns and lay-
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4.3 Design of RF Coupler

ers of the same winding and primary & secondary winding, also contribute to

performance limitations at high frequency.

R1 and R2 are the resistance of the primary and secondary windings. Skin

effect increases the resistance at high frequencies, contributing to the increase in

insertion loss. Rc represents the loss of the conductor cores, which increases with

the frequency and temperature. Core loss contributes to the increase in insertion

loss at high frequencies.

In this study, a broadband transformer with small loss is very critical for

the coupler to meet the requirements. Therefore, a surface mount RF Trans-

former ADT1.5-122+ from MinicircuitTM is chosen. It has a very wide working

bandwidth, from 20MHz to 1200MHz, with a flat insertion loss from 50MHz to

850MHz (0.25dB variation), as illustrated in Figure 4.7. It has a turns ratio of√
1 : 1.5, providing an impedance matching between 50Ω and 75Ω 1.

ISO 9001  ISO 14001 CERTIFIED
Mini-Circuits®

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500  Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site
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Figure 4.7: Insertion loss of ADT1.5-122+ RF transformer [8].

We also need to specify the coupling capacitor’s value. So the whole coupling

circuit, including the RF transformer and the coupling capacitor, is simulated

in AgilentTM Advanced Design System (ADS) software. Firstly, the transformer

is simulated to best fit the transmission characteristics provided by the manu-

facturer data sheet [8]. This is done by running a few hundred simulations. We

first set the minimum and maximum values of each component in the transformer

model. At each simulation run ADS adjusts the component’s value, i.e. increase

1Transformer impedance adaptation: Z1
Z2

= n2
1
n2

2
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4.3 Design of RF Coupler

by 0.001pF or 0.01nH, to find the optimized performance. Then the whole cou-

pling circuit is simulated to calculate the best value of the coupling capacitor

(Figure 4.8). It is found out that a 100pF capacitor gives the best performance,

as shown in Figure 4.9. The simulated coupling circuit has a very flat transmis-

sion profile in the 200 - 1200MHz frequency band and the insertion loss is small

enough (less than 3dB) for signal transmission.

RF  Transformer

Coupling
Capacitor

Figure 4.8: ADS circuit model for the developed powerline coupler.

(a) (b)

Figure 4.9: Simulated s-parameters of the coupling circuit (a) S21 (b) S11.
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4.3.3 Coupler Performance Analysis

Based on these simulation studies, a practical RF coupler is built on an RF4

PCB using an ADT1.5-122+ transformer and a pair of 100pF X1/Y2 ceramic disc

safety capacitors, as shown in Figure 4.10. These capacitors are impulse tested

up to 4000V and can be used in 250V low voltage environment. The schematic

circuit of the coupler is shown in Figure 4.11. RF signals are transmitted via

the SMA connector and coupled to the powerline channel differentially, where

antipodal currents (equal amplitude currents flowing in opposite directions) flow

on “live” and “neutral”. The “earth” is connected to the earth ground of the

SMA connector. AC mains power can be filtered by the coupling capacitors,

safeguarding testing equipment. The resistor R1 is removed to allow maximum

energy transmission through the coupler.

Figure 4.10: Picture of the developed coupler, front and back views.

Revised Coupler Circuit

Schematic

1:1.5SMA

I

I

Live

Neutral

Ground

100pF

Figure 4.11: Schematic diagram of the RF coupler for UWB over PLC.
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4.3.3.1 Powerline Frequency Domain Performance with Couplers

The frequency response of powerline cables with the designed couplers is tested

using a network analyser. Firstly, only the coupler is tested by connecting two

of them back to back, without using mains cables. As illustrated in FIgure 4.12,

the measured s-parameters show good agreement with simulation results in the

200 - 900MHz frequency band, a flat insertion loss of only 4dB can be observed

for the two couplers. Moreover, the 10dB bandwidth of the return loss has a

very wide bandwidth, from 80 to 930MHz. Thus, this coupler provides very good

performance in the desired frequency band on its own.

Performance of two couplers
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Figure 4.12: Performance (S11 and S21) of two couplers connected back to back.

Now mains cables (2.5mm flat twin and earth and three-core flexible) are

involved in the measurements and are tested in four different lengths, i.e. 1m,

2m, 5m and 10m. The frequency domain performance is measured using the

AgilentTM VNA HP8720ES. 1601 sample points are collected at a sweep time of

3.024 seconds, from 50MHz to 1GHz. Figure 4.13 shows the measured results.

The frequency response shows that the coupler provides good signal transfer

capabilities to the powerline. The measured transfer function is smoother com-

pared to the powerline connected directly to an SMA connector. Because the

transformer provides an impedance adaptation between the powerline and the
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Figure 4.13: Performance of (a) twin earth (b) three-core flexible cable connected

to couplers in 50MHz - 1GHz.
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measurement equipment, a 50Ω impedance is converted to 75Ω after the coupler

and vice versa.

Table 4.1 compares the average attenuation and the standard deviation of

the powerline channel, with and without couplers. Generally speaking, the two

couplers introduce an average loss of 2 to 3dB into the system. The standard

deviation shows that frequency responses with the coupler produce a better per-

formance, with fewer variations to the mean attenuation.

Still, 2.5mm flat twin earth has the best transmission path, with the existence

of two couplers. An average path loss of 17.71dB can be observed at 10m, 10dB

better than that of the three-core flexible powerline. This type of cable will be

used to build the powerline lab test bed for system study in the following chapter.

With Coupler Loss (dB) Without Coupler Loss (dB)

TWIN EARTH Average Std Dev Average Std Dev
1m 6.17 0.99 3.82 2.80
2m 9.03 2.12 6.70 3.59
5m 11.86 2.14 9.40 4.66
10m 17.71 4.42 16.04 6.70

3-CORE Average Std Dev Average Std Dev
1m 6.48 0.51 5.14 1.50
2m 8.74 0.93 8.30 2.36
5m 15.90 3.30 14.11 4.18
10m 27.94 6.83 26.41 8.62

Table 4.1: Powerline transmission loss (average attenuation and standard devia-

tion in 50MHz - 1GHz), with and without couplers.

4.3.3.2 Powerline Time Domain Performance with Couplers

Time domain response of powerlines connected to the couplers is also studied.

Using the PicosecondTM (Model: 10,060A) pulse generator and LecroyTM digital

oscilloscope (Model: SDA 110000), the measurement setup is shown in Figure

4.14. A short duration (1ns) rectangular pulse is produced by the pulse generator

and transmitted through the mains cables at four different distances, including
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couplers. The source pulse covers a wide frequency spectrum from DC - 1GHz.

The digital oscilloscope picks up the received signal by sampling the waveform at

a very high sampling rate, 40Gsamples/s, that is 0.025ns per sample.

Trigger

RF Coupler AC 
Powerline

RF CouplerPulse 
Generator

Digital 
Oscilloscope

Figure 4.14: Time domain measurement set up.

Figures 4.15 (a) and 4.16 (a) illustrate the time domain wave form of the

transmitted and received signal. The transmitted signal has been distorted, a

differential tail appears in the received signal. This is caused by the filtering

effect of the coupler: the coupling capacitor filters the AC power and also the

low frequency components of the source signal. The received pulses spread into

longer duration at the Rx, showing that the powerline is a weakly dispersive

medium. The received wave forms from both types of cables are very similar, but

the signal strength is stronger in the twin and earth cable. It is also noticed that

signals travel faster in twin and earth cable. At 10m, the signal is received at

57ns, while it takes over 60ns for the signal to propagate through the three-core

cable. Because the dielectric material of the two cable types are different, where

three-core cable has a higher dielectric permittivity than twin and earth cable.

The FFT is applied to the time domain waveform to analyse the power spec-

trum in frequency domain. The source pulse has a very strong DC energy and

low frequency components below 100MHz, whereas in the received signal, DC

and low frequency energy (below 50MHz) has been filtered by the couplers. In

other parts of the signal power spectrum, the curve is very smooth without deep

notches. It is noticed the high frequency signal experiences higher attenuation

than low frequency components, this fact agrees with the frequency domain mea-

surement discussed previously.
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Figure 4.15: Time domain performance (a) Received wave form of twin and earth

cable connected to couplers (b) Power spectrum of the time domain signal DC -

800MHz.
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Figure 4.16: Time domain performance (a) Received wave form of three-core

flexible cable connected to couplers (b) Power spectrum of the time domain signal.

90



4.4 Summary

4.4 Summary

Being the key component of a powerline communication system, the coupling

unit needs to fulfill a number of requirements including safety protection, bi-

directional signal coupling and wide operating bandwidth. Currently, there is no

RF coupler that can meet the 50MHz - 1GHz bandwidth requirement.

In this chapter, the challenges of broadband coupler design have been over-

come by using a number of high frequency passive components, the RF Trans-

former ADT1.5-122+ from Mini Circuits and the 100pF X1/Y2 high voltage

safety capacitors.

It has been shown that the designed coupler can be used in practice, with

signals being transmitted to the powerline in differential mode. It also provides

wide band coupling capabilities to PLC systems up to 1GHz, with only 4dB inser-

tion loss from two couplers. The frequency domain response of powerlines shows

that ripples become less significant with the presence of the developed coupler.

Moreover, the RF coupler can filter DC and low frequency AC mains signal effec-

tively, as indicated in the time domain measurements. The experimental testing

proves that the developed coupler provides a broadband interface between the

communication signal and the powerline channel for PLC systems.
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Chapter 5

Powerline System

Characterisation

5.1 Introduction

Having completed the characterisation of powerline cables and the development

of a broadband RF coupler, further experiments can be conducted on power-

line communication networks. In this chapter, a powerline laboratory test bed

is built and tested in Queen Mary’s Antenna Laboratory. Both frequency and

time domain measurements are performed in order to obtain sufficient path vari-

ation data for acceptable characterisation of broadband powerline channels. An

important finding of the low pass characteristic has been addressed, leading to

a thorough investigation of the channel performance in 50 - 550MHz frequency

band.

The noise characteristics of the test bed has been studied, in the DC - 1GHz

range. Both the background noise and the impulsive disturbance have been mea-

sured and analysed. Further, signal radiation from broadband powerline channels

has been investigated. Being not specifically designed for broadband use or high

data rate transmissions, the powerline may cause EMI to other radio systems.

In this study, the measured radiated emission generated from a powerline ring

circuit is below FCC standard limits. A conclusion can be drawn from the mea-

surement results that it is promising to increase the operating frequency band of

powerline channels for potential ultra wideband applications.
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5.2 Measurement Setup

Firstly, a laboratory test bed was built according to the wiring regulations in

the UK: British Standard 7671 - “Requirements for electrical installations” [102].

Unlike most in-home wiring networks, which have a tree or bus topology, UK

electrical power circuits are normally described as a ring circuit, in which power

is transmitted from point to point by a single length of cable linking each point

to the next [103]. It starts at the main switch or fuse and goes to each device.

The last device is connected back to the supply so that the whole circuit forms

a continuous ring. The primary advantage is to allow more power to be supplied

than it could otherwise be carried with a given size of cable [104].

The wiring circuit of the laboratory test bed is shown in Figure 5.1. AC mains

at 50Hz, 240V is fed to the test bed through an isolation transformer, which is

used to decouple two circuits and prevent the PLC signal leaking back to the

mains network. A circuit breaker is used to check the current between “live” and

“neutral”, it is designed to protect an electrical circuit from overload or short

circuit. Finally the AC power is split into three circuit rings, one for lighting and

the other two for power outlets.

The lighting circuit contains twelve lamps and the one in the middle is con-

nected to a dimmer. The power outlets are the commonly used domestic wall-

mount twin sockets and normally include a switch. The cable between adjacent

sockets and lamps is 5m. 2.5mm twin and earth cables are used, they are bent

and laid in parallel on the back of the wall, as shown in Figure 5.2. It is necessary

to label each wall outlet. So in the following measurement, all the sockets are

marked as described below. The first socket ring is labelled Ring 1, each outlet

in the twin socket is marked as 1A and 1B to 6A and 6B. The same rule applies

for Ring 2. In order to identify a power outlet, both the ring number and the

socket number are used, i.e. R1.1A represents the first wall plug in Ring 1.

For safety reasons, the coupler designed in Chapter 4 is fixed into a safety

box, with one end extended to an SMA connector and the other to a plug that

can be plugged into the wall socket (Figure 5.3).

Using the coupler, extensive measurements on the test bed have been carried

out, in both frequency and time domain. Multi-path transmission can still happen
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Figure 5.1: Illustration of cable wiring of the powerline test bed.

(a) (b)

Figure 5.2: Picture of the lab test bed (a) front view (b) back view.
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even if no electrical loads (which will cause impedance mismatch) are connected to

it. There are always two transmission paths between a transmitting and receiving

outlet pair. If we transmit from R1.3A to R1.1A, as illustrated in Figure 5.4, the

signal will travel through a main path (Path 1) at 10m and meanwhile, it will

also propagate along a secondary path (Path 2) at 25m. The sum of the main

path and secondary path is the length of Ring 1, 35m.

Figure 5.3: Illustration of the coupler put into a safety box for test bed measure-

ment.
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Figure 5.4: Frequency domain measurement setup: multi-path transmission in a

single circuit ring, no electrical appliance is connected.
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5.3 Test Bed Characterisation

5.3.1 Coupler Calibration

Performance of the coupler with safety box and plug is tested by connecting the

couplers back to back. The measured insertion loss is shown in Figure 5.5. It

shows that after connection to the power plug, the coupler’s performance de-

grades, especially above 700MHz. The power plugs introduce an average loss of

4.58dB to the coupler in the 50MHz - 1GHz range. This agrees with the previous

discussion that plug and socket can significantly affect the system performance.

As discussed in [36] and [50], below 30MHz frequency range, the impedance from

a powerline outlet varies from a few ohms to hundreds of ohms, clearly indicat-

ing the difficulties for a coupler to match to the input impedance of a powerline

network.
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Figure 5.5: Performance of two couplers (with safety box and power plug) con-

nected back to back.

5.3.2 Test Bed Measurement and Results

Attenuation between outlet pairs varies significantly as it is a function of fre-

quency and distance. As a result, extensive measurements are required to obtain

a thorough understanding of the complex powerline network properties.
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Frequency and time domain responses between every wall outlet pair in the

same circuit ring are tested first, followed by experiments on cross circuit ring

transmission, with AC power on. Finally, electrical loads are connected to the test

bed to assess the channel performance under interference from other appliances.

In the frequency domain measurement, 1601 sample points are collected by the

VNA in the range of 50MHz - 1GHz. In the time domain measurement, a 1ns

square impulse with 1V voltage (DC and AC power is filtered by the coupler) is

transmitted and picked up by the oscilloscope. Up to 20 sweeps are taken so the

actual recordings are average data.

5.3.2.1 Same Circuit Ring (Ring 1)

1. On the same twin socket pair, 0m powerline.

Figure 5.6 shows the frequency and time domain measurement from outlet

R1.3A to R1.3B in Ring 1. They are the two outlets on a single twin socket,

the main signal only travels through the twin socket. So the S21 curve is

very similar to that in Figure 5.5, the average attenuation is 12.76dB. Time

domain result shows that a differentiated pulse is received at 9ns and the

source pulse has been dispersed and attenuated to around 300mV . The

time delay is caused by the signal traveling along the coaxial connection

cable and also through the twin socket.

2. Adjacent outlet pair, 5m powerline.

Figure 5.7 shows the response from outlet R1.3A to R1.4A. The Tx and

Rx are 5m apart. The average attenuation recorded is 25.52dB, as given in

Table 5.1, which lists the average channel loss starting from R1.3A, ending

at other outlets in Ring 1.

Multiple notches occur as a result of multi-path transmission, as well as the

bends in the cable, which cause the attenuation to vary between 10.89dB

and 88.78dB. Figure 5.8 depicts the channel response of another 5m channel,

between R1.3A and R1.2A. The transfer functions of these two paths are

very similar, especially in the 50 - 550MHz frequency band. In higher

frequencies though, channel response starts varying with transmission paths
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Figure 5.6: Frequency and Time domain response from R1.3A to R1.3B (0m).

and deep notches appear. It is noticed that the low frequency range provides

a better transmission band, showing the low pass characteristics of the

powerline channel.

The time domain results of these two channels are almost identical. In

both cases, an impulse with 130mV is received around 40ns. The received

signal’s wave form and time delay are mainly determined by the transmis-

sion distance and cable loss. Besides the main signal, there are two pulses

received at 100ns and 180ns. They are the multi-path signals travelling

along other secondary paths in a ring. If the secondary signal is too strong,

it may interfere with following signals, causing ISI.

3. Longer transmission paths, 10 and 15 meters.

Figures 5.9 and 5.10 depict the resulting frequency and time responses of

outlet pair (R1.3A-R1.5A) and (R1.3A-R1.6A) respectively. In these two

paths, the shortest powerline channels are 10m and 15m respectively. It

reveals that for longer transmission distances, 10m or more, channel per-

formance degrades significantly. More severe peaks and nulls are observed

in the channel response.

Some correlations between the two channels can be noticed. For instance,

it appears that the in 50 - 400MHz range, both traces attenuate with fre-
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Figure 5.7: Frequency and Time domain response from R1.3A to R1.4A (5m).
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Figure 5.8: Frequency and Time domain response from R1.3A to R1.2A (5m).
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quency, from 15dB to 60dB. While in 500MHz - 1GHz range, channel re-

sponses fluctuate between 40dB and 85dB. Table 5.1 shows that the average

attenuation between outlet pair R1.3A and R1.5A is 32.46dB, varying be-

tween 13.47 and 84.86dB, whilst outlet pair R1.3A and R1.6A has an aver-

age attenuation of 36.23dB (4dB higher), fluctuating in the 15.16 - 85.52dB

range.

The time domain results agree with frequency domain measurements. The

main signal is received around 70ns for 10m channel and 97ns for 15m,

signal strength has been attenuated as functions of transmission distance.

Multi-path signal can be picked up by the receiver. Path R1.3A to R1.6A

receives the strongest secondary signal, and it arrives 30ns after the main

pulse.

From the time domain results, it can be proven that conducted transmission

is the dominant signal transmission mode in the powerline channel. The

fact that time delay increases with distance (around 30ns per 5m) shows

that the signal is being propagated along the powerline channel, not being

randomly received from radiation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency, GHz

S
21

, d
B

0 50 100 150 200 250 300 350 400 450 500
−30

−20

−10

0

10

20

30

40

50

Time, ns

A
m

pl
itu

de
, m

V

Figure 5.9: Frequency and Time domain response from R1.3A to R1.5A (10m).
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Figure 5.10: Frequency and Time domain response from R1.3A to R1.6A (15m).

4. Same transmission distance, different wall outlets.

Figure 5.11 shows the frequency responses between outlet pair R1.3A to

R1.4A and R1.4B. The length of these two paths are 5m. However, there is

one more wall outlet in the R1.3A-R1.4A path. It shows that the addition of

one more socket will not change the frequency response significantly. Both

of the traces have similar profiles, especially below 500MHz. Variations are

more obvious at higher frequencies. Thus, plugging into different outlets in

the same twin socket can have similar channel response if other outlets are

not connected to any equipment.

5. Symmetrical transmission.

Figure 5.12 shows the transfer functions between outlet pair R1.3A and

R1.6A, in both directions. The traces are very similar to each other as they

almost overlap in the 50 - 400MHz range. In the higher frequency band, the

two traces still have similar trends, despite that notches happen at different

frequencies. We can observe that symmetrical transmission happens in low

frequency bands, as frequency increases, the same path can have different

transfer functions when transmission nulls occur at different frequencies.
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Figure 5.11: Channel response from R1.3A to R1.4A and R1.4B (5m).
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Figure 5.12: Channel response from R1.3A to R1.6A and from R1.6A to R1.3A

(15m).

In summary, measurements in circuit Ring 1 reveal that the frequency varia-

tion characteristic is less obvious below 500MHz frequency band, and the signals

are mainly received through conducted transmission.
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Outlet Pairs Attenuation in dB
Name Length(m) Max Min Average Std Dev

3A-1A 10 76.43 14.02 32.55 11.58
3A-1B 10 72.91 13.75 32.44 13.15
3A-2A 5 53.52 10.94 24.32 9.67
3A-2B 5 45.70 11.06 24.21 8.13
3A-3B 0 26.36 6.67 12.76 5.64
3A-4A 5 88.78 10.89 25.52 12.91
3A-4B 5 55.13 10.93 25.42 10.55
3A-5A 10 84.86 13.47 32.46 12.33
3A-5B 10 74.33 12.90 32.36 12.73
3A-6A 15 85.52 15.16 36.23 13.86
3A-6B 15 83.05 15.01 36.21 13.42

Table 5.1: Attenuation from outlet R1.3A to other outlets in the same circuit

ring: Ring 1.

5.3.2.2 Cross Circuit Rings

Signal transmission on different circuit rings is also investigated, Figure 5.13

illustrates the transmission path for cross ring scenario.
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Figure 5.13: Cross ring signal transmission between R1.1A and R2.1A (10m).

Figures 5.14 and 5.15 show the measured responses between outlet pairs in dif-
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ferent circuit rings, i.e. R1.3A to R2.1A (20m) and R1.3A to R2.3A (30m). From

the time domain results, the source signal could hardly travel through different

circuit rings, the received 5mV signal can be easily regarded as noise. Frequency

domain measurements also prove that attenuation in cross ring transmission is

much higher, the average attenuation between R1.3A and R2.1A is 52.11dB, and

55.58dB between R1.3A and R2.3A (Table 5.2). Interestingly, the transfer func-

tions in both cases have very similar trends. Attenuation increases with frequency

below 400MHz, then the channel response starts to fluctuate in the 50 - 90dB

range.

Figure 5.16 shows the frequency responses of 4 outlet pairs. The signal is

transmitted from R1.3A and received by different outlets in Ring 2, i.e. R2.1A,

R2.2A, R2.3A and R2.4A. The minimum distance is 20m. One can see strong

correlation among these traces, even though the transmission distances vary from

each other. This fact shows that in cross rings transmission, the transmission

distance has minor effect to the frequency responses as all the transfer functions

have similar profiles. Severe nulls can be observed in the studied frequency band,

showing that the powerline channel has very strong frequency selective fading

effect, thus multi-carrier modulation technique is more suitable for such channel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency, GHz

S
21

, d
B

0 50 100 150 200 250 300 350 400 450 500
−20

−15

−10

−5

0

5

10

15

20

Time, ns

A
m

pl
itu

de
, m

V

Figure 5.14: Frequency and Time domain response between R1.3A and R2.1A

(20m).
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Figure 5.15: Frequency and Time domain response from R1.3A to R2.3A (30m).
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Figure 5.16: Measured channel response from different outlet pairs in cross circuit

rings.
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Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

R1.3A - R2. 1A 20.00 91.56 30.97 52.11 8.83
R1.3A - R2. 1B 20.00 88.98 29.90 51.89 8.02
R1.3A - R2. 2A 25.00 99.82 31.78 54.05 9.48
R1.3A - R2. 2B 25.00 98.59 31.00 54.50 8.04
R1.3A - R2. 3A 30.00 89.06 31.51 55.58 8.40
R1.3A - R2. 3B 30.00 90.22 30.63 56.52 8.61
R1.3A - R2. 4A 30.00 101.02 31.54 56.20 9.19
R1.3A - R2. 4B 30.00 93.27 30.98 56.13 8.72
R1.3A - R2. 5A 25.00 113.15 31.58 55.97 10.24
R1.3A - R2. 5B 25.00 98.32 30.69 55.72 9.58
R1.3A - R2. 6A 20.00 94.24 30.56 54.75 9.79
R1.3A - R2. 6B 20.00 97.53 30.02 54.16 9.86

Table 5.2: Attenuation from outlet R1.3A to other outlets in circuit Ring 2.

5.3.2.3 The Effect of Circuit Splitter

In previous sections, signal transmission on both single ring and cross ring has

been examined. It shows that signal attenuation is much stronger in the cross

circuit ring scenario. The main difference between same ring and cross ring

transmission is that the signal will pass through the circuit splitter.

Figure 5.17 compares the measured responses between three outlet pairs, all

of which have a transmission path of 10m, where outlet pair R1.1A-R1.3A and

R1.1A-R1.6A are in Ring 1. It can be seen from Figure 5.17 (b) and (d) that

both of the signals have the same delay (70ns), similar wave form and amplitude.

The average attenuation for the two channels are 32.86dB and 35.45dB respec-

tively. While in cross ring transmission between R1.1A-R2.1A, the main signal is

attenuated more severely. Although also received at 70ns, the source pulse has

an amplitude less than 10mV . The frequency response is also worse compared

to same ring transmission, with many deep nulls across the band. The average

attenuation between R1.1A-R2.1A is 45.8dB, over 10dB higher than those in the

same circuit ring transmission. This shows that the circuit splitter will intro-

duce strong losses to cross ring transmission, that signals could hardly propagate

through two different mains loops.
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Figure 5.17: Comparison of channel response between same and cross circuit ring

scenarios.
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5.3.3 Channel Characteristics Analysis

5.3.3.1 Channel Attenuation vs. Distance

With the measurement on powerline test bed performance conducted, data are

gathered on the attenuation characteristics, it is possible to analyse the channel

loss variations in terms of transmission distance and the Tx/Rx locations.

Figure 5.18 shows the histogram of the average attenuation for all the outlet

pairs in the same and cross circuit ring scenario. Table 5.3 gives the statistical

data of the average attenuation in these two cases, in 50MHz - 1GHz band.

For all the outlet pairs in the same circuit ring, i.e. Ring 1, the average atten-

uation is 32.41dB. It can be seen from the histogram that the average attenuation

of different outlet pairs spreads in three clusters, with a higher probability dis-

tribution in the 30dB - 40dB range. The histogram actually relates the average

attenuation to different propagation distances. For Tx and Rx outlet pairs on the

same twin socket, the average attenuation is 12.44dB, as shown in the cluster in

the lower attenuation range. For outlet pairs that are 5m away, the average atten-

uation is 25.51dB, varying in the 24dB - 28dB range. When the outlet pairs are

over 10m away, the average attenuation varies between 30dB to 40dB. It can be

seen that in a ring circuit, attenuation between outlet pairs can vary significantly

to the transmission distance.

However, in cross circuit scenario, the effect of transmission length is not as

significant. The overall average attenuation in this case is 52.29dB. Although the

transmission distance can vary from 10m to 30m, the average attenuation does not

change much with distance, as previously observed in Figure 5.16. The histogram

illustrates that most of the path loss falls in the 45dB to 57dB range. Compared

with the same circuit loop, cross ring transmission will need to overcome 12.5dB

more losses over the same distance, i.e. at 10m and 15m.

5.3.3.2 Channel Attenuation vs. Frequency

As can be observed from Section 5.3.2, frequency responses between different

outlet pairs show a low pass characteristic of the powerline channel. The channels

provide a good transmission band below a few hundred megahertz, i.e. 500MHz.

As frequency increases, signal transmission performance degrades dramatically
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Figure 5.18: Histogram of average attenuation on different outlet pairs in (a)

Ring 1 (same circuit ring) and (b) between Ring 1 and 2 (cross circuit ring).
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Attenuation (dB)

Same Ring Scenario (Ring 1) Max Min Average Std Dev
twin socket (0m) 28.49 6.53 12.44 5.58

5m 71.26 11.62 25.51 10.19
10m 88.06 13.90 32.88 12.87
15m 87.26 15.53 37.33 12.78
Total 83.95 13.37 32.41 11.61

Cross Ring Scenario Max Min Average Std Dev
10m 85.59 24.79 45.64 9.45
15m 91.11 28.08 50.02 8.83
20m 92.72 29.15 52.54 8.60
25m 98.75 30.57 54.25 8.59
30m 95.89 31.15 55.24 8.38
Total 94.10 29.14 52.29 8.72

Table 5.3: Statistical analysis of average attenuation on different outlet pairs in

same ring and cross circuit ring scenarios (50MHz - 1GHz).

and many deep nulls occur. Figure 5.19 shows the transfer functions between

different outlets pairs in Ring 1 that are 10m away and up to 40 configurations

have been recorded. Although measured at different locations, the loss profiles

show remarkable resemblance in the low frequency range, 50 - 400MHz, in which

the transmission loss increases with frequency, from 20dB to 50dB. However, as

frequencies keep increasing, the channel responses vary with frequency and outlet

pairs. Transmission nulls occur at different frequencies, mainly due to multi-path

transmission and the effect of cable bends. Such deep nulls make it very difficult to

use single carrier modulation, therefore a multi-carrier technique such as OFDM

is more suitable. OFDM separates the channel into a number of narrow band flat

fading sub-carriers, to overcome the frequency selective fading effect.

The average path loss at four transmission distances in Ring 1, i.e. 0m, 5m,

10m and 15m have been illustrated in Figure 5.20, from which the channel’s

low pass effect can be examined clearly. The channel transfer function can be

separated into two parts, namely the low band and the high band. For instance,

at 5m, the low band is 50 - 500MHz, with an average attenuation of 23.74dB.

The high band is 500 - 1GHz. In this band, the path loss fluctuates between
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5.3 Test Bed Characterisation

30 - 40dB. The average attenuation is 14dB higher than that of the low band.

Furthermore, the low band becomes narrower as distance increases. At 10m, its

bandwidth is 400MHz, whilst at 15m it is narrowed to 320MHz.

Figure 5.19: Three dimensional channel transfer function when the Tx/Rx is 10m

away in Ring 1.

From Figure 5.21 and Table 5.4, the average channel loss has been analysed

in three frequency bands, 50 - 550MHz, 500MHz - 1GHz and 50MHz - 1GHz.

The first two bands are set at 500MHz to meet the FCC UWB standard. It can

be seen that in the same circuit ring scenario, 50 - 550MHz band has the lowest

transmission loss, and the attenuation rate is much smaller compared to other

frequency bands. In the cross ring transmission, the signal experiences much

higher attenuation in all transmission bands, while still the 50 - 550MHz band

maintains the best performance. This indicates that the 50 - 550MHz frequency

range can be possibly exploited for high data rate transmission in PLC systems.
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Figure 5.20: Average attenuation of different transmission distances in Ring 1.
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(Ring 1) and (b) cross ring situations.
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Attenuation (dB)
50 - 550MHz 500MHz - 1GHz 50MHz - 1GHz

Same Ring Scenario Average Std Dev Average Std Dev Average Std Dev
twin socket (0m) 11.22 2.06 13.27 7.44 12.44 5.58

5m 21.13 8.29 36.08 6.69 25.51 10.19
10m 27.88 15.42 47.56 7.01 32.88 12.87
15m 32.45 17.60 52.15 6.33 37.33 12.78

Cross Ring Scenario Average Std Dev Average Std Dev Average Std Dev
10m 41.48 9.93 50.66 10.47 45.64 9.45
15m 46.25 11.76 54.12 8.96 50.02 8.83
20m 48.81 12.30 56.52 8.04 52.54 8.60
25m 51.46 12.40 57.67 7.50 54.25 8.59
30m 52.96 12.06 58.51 6.47 55.24 8.38

Table 5.4: Comparison of average attenuation of different outlet pairs in same

and cross circuit ring scenarios in three different frequency bands.

5.3.3.3 Frequency Response with Electrical Appliances

Previous sections show that 50 - 550MHz range provides a suitable transmis-

sion band for UWB over PLC, without any electrical appliances attached to it.

In realistic environments, the powerline channel is subject to different types of

interference generated by household appliances. We therefore test the channel

response by connecting different electrical loads to it, such as a hair dryer or a

mobile charger. The channel frequency responses have been examined again, with

loads connected at different locations, i.e. near the Tx/Rx or in the middle of the

path. As an example, Figure 5.22 and 5.23 illustrate the recorded S21 between

outlet pair R1.3A and R1.5A, from 50MHz to 600MHz.

It can be seen that both devices affect the channel performance. The nulls

become deeper when the appliances are switched on and attenuation increases

at some frequencies. For example, the hair dryer causes a few transmission nulls

below 200MHz, while signal transmission is less affected in the high frequency

range, where the S21 curves are similar to those measured without loads. More

interestingly, the transmission performance might be improved sometimes, i.e.

when we connect the loads in the middle of the path at R1.4A.
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Figure 5.22: Channel transfer function between R1.3A - R1.5A (10m) when a

hair dryer was connected to the (a) Tx or Rx (b) middle of the path, or charging

a mobile phone at the (c) Tx or Rx (d) middle of the path.
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Figure 5.23: Channel transfer function between R1.3A - R1.5A (10m) when a

hair dryer and a mobile charger were both connected to the (a) Tx and Rx (b)

middle of the path.

On the other hand, when charging the mobile phone, many transmission nulls

appear in 130 - 170MHz range and the same effect is also observed when it is

in the middle of the path. This may due to the periodic impedance change of

the phone when charging [105]. Moreover, as shown in Figure 5.23, similar loss

profiles can be obtained when we connect both of the appliances to the channel.

In summary, interference caused by electrical loads is mainly in the low fre-

quency range, below 200MHz. As frequency increases, the deteriorating effect to

the channel is less significant as switching on the loads does not introduce new

transmission nulls to the S21 curve. All the traces have a profile similar to that

measured without any loads. Therefore, high frequency range is more robust to

interference and a very wide bandwidth can still be used when other equipments

are connected.

Table 5.5 compares the increase in average attenuation when electrical loads

are connected to the path. It can be seen that the 5m path is most affected

by the interference from household appliances. For longer transmission paths,

the hair dryer causes more losses than charging the mobile phone, although the

mobile charger introduces severer transmission nulls in 130 - 170MHz range. The
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5.4 Noise Characteristics

worst transmission case happens when both appliances are turned on, which adds

another 3dB loss to the original channel.

S21 Increase in Attenuation (dB)
Hair dryer location o Tx Rx Middle o o o Tx Rx Middle

Mobile charger location o o o o Tx Rx Middle Rx Tx Middle
R1.3A - R1.4A (5m) 20.97 2.56 2.74 – 2.19 2.17 – 4.08 4.33 –
R1.3A - R1.5A (10m) 28.55 1.92 2.22 1.47 0.85 0.86 0.87 2.83 2.81 2.46
R1.3A - R1.6A (15m) 32.12 2.10 2.00 1.57 0.78 0.79 1.04 2.92 2.83 2.43

Table 5.5: Increase in the average attenuation (50 - 550MHz) when electrical

loads are connected (“o” means the appliance is not connected).

5.4 Noise Characteristics

Besides signal distortion due to cable loss and multi-path propagation, noise is

another crucial factor influencing digital communication over powerline networks.

Being different from many other communication channels, powerline channel does

not represent an AWGN environment. As mentioned earlier, the powerline noise

can be classified into five types: coloured background noise, narrow band noise,

periodic impulse noise synchronous to the mains frequency, asynchronous periodic

noise and random impulsive noise [106, 107].

The first three types of noise usually remain stationary over periods of seconds

and minutes and may be summarized as background noise. However, the last two

types, known as impulsive noise, are time variant in terms of microseconds and

milliseconds, will cause the system’s noise floor to be perceptibly higher and

introduce bit or burst errors in data transmission [108].

5.4.1 Background Noise

The background noise of the AC powerline network can be measured with all the

appliances turned off [95]. We measure the background noise with mains power

on, and no electrical devices are connected to the test bed. A Spectrum Analyzer
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R&STM FSP40 [109] is used to capture the noise PSD, with the resolution band-

width of 30KHz. The sweep time is set at 1.15 seconds and 501 sweep points are

collected in the DC - 1GHz frequency band. The measurement result is obtained

by averaging 50 runs. The recorded noise seems to remain stationary almost over

the whole observation period.

Figure 5.24 illustrates the background noise from DC to 1GHz. The best

and worst background noise PSD was recorded by using the “Hold” function of

the spectrum analyzer, the dynamic range is about 10dB. In the frequency band

below 100MHz, the channel suffers very high background noise, narrow band

interference caused by the ingress of broadcast stations (i.e. FM and AM radio)

increases the noise floor in DC - 100MHz (Figure 5.25).

The measured background noise PSD has a flatter profile above 100MHz with

less narrow band interference, providing a better environment for data transmis-

sion. The calculated average noise PSD is -102.76dBm/Hz across the frequency

band, this indicates that UWB over PLC will benefit from the low level of noise

interference in the high frequency band.
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Figure 5.24: Measured Background noise of powerline channel, DC - 1GHz.
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Figure 5.25: Measured Background noise of powerline channel in DC - 100MHz:

strong narrow band interference can be observed.

5.4.2 Impulsive Noise

The impulsive disturbance caused by switching events in the powerline system

has also been examined. Unlike background noise, this type of disturbance will

cause more deteriorating effects to the system. As shown by Dostert in [108],

the impulses have durations of some microseconds up to a few milliseconds with

random arrival times. The PSD of this noise can reach values of more than 50dB

above the background noise.

The impulse transients from the test bed have been measured by the Lecroy

Digital Oscilloscope. No electrical loads are connected to the test bed when

measuring the noise generated from switching on/off the lights and dimmers.

In order to capture the impulse transients, the single trigger function is used. It

captures a single impulse when it detects a voltage higher than a certain threshold

level, which is 0V in our measurements.

5.4.2.1 Impulsive Noise Properties

• Time Domain Analysis

We first test the impulsive noise generated from switching on the dimmer
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in the lighting circuit, the impulses have been captured at different times,

as shown in Figure 5.26. Although the lighting circuit and the sockets are

in different rings, very strong disturbance can still be picked up by the Rx.
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Figure 5.26: Measured impulsive noise transients when switching on the dimmer.

It can be seen that the impulsive noise has been randomly generated every

time a switching event happens. The shape of the impulses is often similar

to damped sinusoids or superimposed damped sinusoids [107]. The impulses

have very high voltages and long durations up to a few microseconds. Fur-

thermore, unlike the background noise, which is quite stable during the

measurement, the impulse noise characteristics, i.e. amplitude, duration
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and power are very different between each switching event. The same im-

pulsive noise property has also been observed when switching on the lights

in the network, as shown in Figure 5.27.
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Figure 5.27: Measured impulsive noise when switching on the lights.

Based on the measured noise impulses, it is possible to analyse the time

domain characteristics. Table 5.6 lists the parameters of the impulse exam-

ples from Figure 5.26 and 5.27, where the duration and power are calculated

when 90% of the total energy has been received1. The duration of impulses

varies from less than 1µs to a few µs, and their amplitudes can be as high

as 1.13V . The power of the impulses are dependent on the pulse width,

1power = 1
T2−T1

∫ T2

T1
s2(t)dt, energy =

∫ T2

T1
s2(t)dt
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pulse shape, as well as the amplitude. The maximum impulse power has

reached to 50.83dBm1 and it has a pulse shape shown in Figure 5.26 (b).

Pulse Information Duration, µS Amplitude, V Power, dBm
Dimmer On (a) 0.99 0.57 20.15

(b) 3.75 0.54 50.83
(c) 0.91 1.13 20.04
(d) 2.72 0.37 3.4

Light On (a) 1.01 0.4 12.47
(b) 0.98 0.87 19.17
(c) 0.96 0.54 13.97
(d) 1.61 0.37 7.72

Table 5.6: Characteristic parameters of the impulses from Figure. 5.26 and 5.27.

It can be seen that the impulsive noise has very high amplitude and power.

During its occurrence, strong disturbance to the PLC system is possible.

The impulsive noise can be modelled as a periodically repeated rectangular

signal imp(t) (Figure 5.28), with random amplitude, duration and inter-

arrival time tp [44, 110]:

imp(t) = Ai · rectdi
(t). (5.1)

Where Ai and di denote the amplitude and duration of the impulse.

Ai 

di 

tpi 
t!

Figure 5.28: Impulsive noise modelled as random period rectangular signals.

1powerdBm = 10log(powerwatts × 103)
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Statistical analysis of these parameters can help better understand the im-

pulse characteristics and develop suitable impulsive noise model. In this

study, 100 samples of impulses generated by switching on the lights and

dimmer have been collected and analysed. The cumulative probability dis-

tribution (CDF) of impulse parameters, i.e. amplitude, duration and power

are shown in Figure 5.29 - 5.31.
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Figure 5.29: Measured impulsive noise amplitude fitted to normal distribution.

The measured data is statistically analysed by means of fitting to well-

known empirical distributions [111]. The amplitude and power can be fitted

to the normal distribution1, where µ = 1.14, σ = 0.61 for amplitude data

and µ = 15.93, σ = 6.99 for power data. The majority of impulse amplitude

is between 0.5 - 2V and the power is between 5 - 23dBm. While for impulse

duration, log-normal distribution2 (µ = 0.426, σ = 0.55) provides a better

fit than normal distribution, that is, the natural logarithm of the duration

is normal. Statistical analysis of the sampled data show that the random

impulsive noise generated by switching on/off the lights has parameters that

1CDF Normal Distribution: F (x : µ, σ) = 1
σ
√

2π

∫ x
−∞ exp(− (u−µ)2

2σ2 )du
2CDF Log-normal Distribution: F (x : µ, σ) = 1

σ
√

2π

∫ x
−∞ exp(− (lnu−µ)2

2σ2 )du
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Figure 5.30: Measured impulsive noise duration fitted to log-normal distribution.
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Figure 5.31: Measured impulsive noise power fitted to normal distribution.

123



5.4 Noise Characteristics

can be modeled using empirical distributions. There is another parameter

called inter-arrival time tp, which determines the density of impulsive noise

disturbance, is dependent on human activities during different times of the

day. It requires a much longer observation period of the PLC network to

obtain enough sample data for analysis.

• Frequency Domain Analysis

From the time domain measurements, it can be seen that the impulsive

noise has long duration and high power, this will significantly increase PLC

system’s noise floor. Analyses on the PSD will give a more precise assess-

ment of its impact on a communication system, therefore, the PSD of the

captured impulses are shown in Figure 5.32 and 5.33, where the blue curves

are the measured maximum background noise level.

The impulses have very high power in the low frequency range, most of the

energy concentrates below 200MHz. Further, impulse with higher power

has higher PSD level across the frequency range. For example, the pulse

in Figure 5.26 (b) has the highest power and this is also reflected in the

PSD profile, most of its frequency components have power levels stronger

than other signals. It is noted that the impulses generated by switching on

the dimmer have higher PSD than that measured when switching on the

lights. As from Figure 5.33, above 200MHz, all the signal’s PSD are below

-100dBm/Hz, while the pulses recorded from dimmer switching events still

can reach up to -90dBm/Hz at certain frequencies.

Compared to the background noise measured in the previous section, the impul-

sive noise will increase the noise floor of PLC systems, up to 30dB rise can be

observed when strong impulse transient happens, and most of such increase is

below 200MHz, interference to the high frequency signal is less significant. Prop-

erties of the impulse examples indicate a higher probability of bit and burst errors

for high speed PLC applications. Therefore, more investigations are needed to

understand the behavior of the impulsive noise and their patterns, in order to

find appropriate countermeasures [39, 107].
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Figure 5.32: PSD of the measured impulsive noise from Figure 5.26.
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Figure 5.33: PSD of the measured impulsive noise from Figure 5.27.
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5.5 EMC Issues

In previous sections, signal transmission characteristics of the indoor powerline

channels have been studied thoroughly in the high frequency range. It has been

proven that the powerline channel provides a good transmission band in the 50 -

550MHz range.

However, in the operating frequency range of 50 - 550MHz, the potential

UWB over PLC application may cause electromagnetic radiation that will ad-

versely affect the performance of the established radio communication systems.

Because indoor powerlines are not designed for broadband use or high data rate

transmissions, they will act as long antennas as frequency increases [50]. This

will cause unintentional RF emissions, which may possibly increase the existing

HF background noise floor via signal radiation.

Increase of the noise floor by the widespread use of powerline systems will

bring up problems for radio users, such as FM, DAB, TV Broadcast, mobile

communications and military communication [112]. Many efforts have been de-

voted to answer questions regarding how much electromagnetic interference does

the powerline channel emit and how much emission is allowed for PLC systems.

However, these studies are mainly focused on the 1.6 - 30MHz range, for high

frequency use though, very few studies have been done [61]. Thus, it is neces-

sary to find out what is the radiated emission from powerlines above 30MHz,

so as to assess the potential deployment of UWB over PLC systems in terms of

electromagnetic compatibility.

5.5.1 Measurement Setup

In this study, we are interested to find out the emission level from powerline

systems in the high frequency range above 30MHz. This is achieved by field

measurements from an exemplar powerline transmission circuit.

The measurement needs to follow the measurement guidelines proposed by

international regulatory bodies, including CISPR 22, ITU-T and the FCC. The

field strength should be measured at 3m distance to the powerline, using a mea-

surement bandwidth of 9KHz below 30MHz and 120KHz when measuring above
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5.5 EMC Issues

30MHz. The field strength limits proposed for broadband wireline telecommuni-

cation networks has been given in Figure 2.4, from 1MHz to 1GHz.

A number of factors can affect the radiated emission from a powerline system,

including the power injected to the lines, the electrical characteristics of the lines,

the structure of the networks and the length of signal lines with respect to the

HF wavelength, as well as the density of the PLC network [3]. Therefore, as a

starting point, we build a simple powerline ring circuit for EMC measurement.

It is a single circuit ring with 4 twin sockets, each being 0.7m apart. 2.5mm flat

twin and earth cable is used. The cables and the sockets are fixed on a 0.8m2

wooden frame as illustrated in Figure 5.34.

0.
8m

0.8m

mains cable

Figure 5.34: Illustration of the powerline circuit ring for EMC measurement.

Radiated emission from the powerline circuit has been measured at the test

field in The Open University, Milton Keynes, UK. The test field has been built for

standard EMC measurements in outdoor environment. It has a 9m×4m ground

plane, which is constructed from four 9×1.2m sheets of wire mesh (Figure D.1 in

Appendix C). As illustrated in Figure 5.35, the testing powerline circuit frame

was placed in the middle of the test site, 0.8m above ground. The receiving

antenna is set 3m away from the powerline circuit and aligns with the center of

the frame.

The Lecroy pulse generator is used to input continuous pulses to the powerline

circuit, through the RF coupler. The pulse generator is set to its maximum level,
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5.5 EMC Issues

that is, a 1ns pulse with 10V amplitude is transmitted continuously, at an interval

of 10us. In the receiving end, the electrical field is measured by two antennas

operating in different frequency ranges: R&S KH116 Bi-conical (20 - 300MHz)

and R&S HL223 Log-periodic (200MHz - 1.3GHz) antennas. The output of the

antennas is swept by an R&S EMI Test Receiver ESVS10 (20MHz - 1GHz), with

120KHz resolution bandwidth. Finally, the receiver outputs the data to computer

software, which loads the antenna factor data and displays the actual electrical

field from the powerline circuit under test. Photographs of the measurement

system are also shown in Appendix C.

 

Figure 5.35: EMC radiated emission test site.

5.5.2 Results Analysis

Firstly, the background noise floor is measured in the 30MHz - 1GHz frequency

range, by measuring the electrical field from the surrounding environment, when

the equipment under test (EUT) is not operating. As illustrated in Figure 5.36,

the background noise is quite small across the whole frequency range, with an

average level between 12 and 30dBuV/m. The local radio systems can be clearly

identified as their field strength is much stronger than the noise floor. FM radio

signals operating around 100MHz radiates very strong signal up to 80dBuV/m,
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5.5 EMC Issues

DAB digital radio transmitting around 220MHz is also received, and in the

400MHz to 600MHz range is the terrestrial TV broadcasting channel, as well

as the Global System Mobile Communications (GSM) network operating above

900MHz.
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Figure 5.36: Tested background noise level of the test site.

Now we can test the radiated emission from the powerline circuit by feeding

the pulse signals into the circuit. Figure 5.37 shows that the noise floor rises

when the powerline circuit is transmitting. The maximum electrical field varies

between 30dBuV/m and 50dBuV/m. The strongest radiated emission has been

recorded in the 100 - 200MHz range, it reaches the maximum level of 50dBuV/m.

Some of the narrowband radio systems in this band will be affected as the noise

floor is relatively high compared to the transmitted energy from these systems. In

other frequency bands, the maximum noise floor mainly resides below 40dBuV/m,

except for the 450 - 550MHz range. Nevertheless, it can be noted that the back-

ground noise floor with powerline circuit transmitting is still below the FCC Part

15 emission limit for wire-line communication systems. Other radio systems can

operate normally simultaneously as their radio emission levels are more than 20dB

higher than the increased noise floor.
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Figure 5.37: Radiated emission when signals are being transmitted to the pow-

erline circuit - without electrical loads.

It is noted from previous measurements that loads connected to the powerline

network will affect the system’s transmission performance, as the input impedance

and the transmission current will be changed. This may as well affect the radiated

electrical field from the PLC system. Therefore, we also measure the electrical

field from the powerline circuit, when a hair dryer and a mobile charger are

connected to it.

It can be seen from Figure 5.38 that the powerline circuit causes less emission

with the presence of loads, the maximum electrical field strength varies in the

range of 30 to 40dBuV/m. Disturbance from the powerline circuit in this case is

well below the FCC limit and a good performance on other radio systems can be

maintained.

In order to see how much radiation has been generated from the powerline

circuit, we compare the electrical field in the frequency bands where other systems

are not transmitting. As from Figure 5.39, the average increase in the noise floor

is more significant in the 30 - 50MHz and 250 - 350MHz range, where the noise

floor rises over 10dB when there is no electrical load connected to the circuit.
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Figure 5.38: Radiated emission when signals are being transmitted to the pow-

erline circuit - with electrical loads.

In higher frequencies above 500MHz, radiation from the powerline circuit is less

remarkable. This is because in high frequency range, the transmitted power of

the source pulse is smaller compared to that in the low frequency range. Despite

such increase, we can see that radiation from the powerline circuit still meets

the FCC emission limit. Moreover, during these measurements, the transmitted

pulses have been set to 10V , this gives a very high instant transmit power to the

system. Radiation can be controlled by reducing the transmit power, i.e. the

emission signal will be reduced by 10dB if a 1V pulse is transmitted.

For comparison purpose, we also measure the conducted transmission along

the EUT (Figure 5.40). The doted lines show the background noise when no signal

is transmitted. Strong FM and GSM signals can be picked up by the powerline

circuit and the noise floor has a flat peak level profile at 15dBuV/m. The solid

curves illustrates the conducted transmission signal when the 10V pulses are

being transmitted. Most of the signals are received via conducted transmission,

i.e. below 600MHz, the received signal is 30dB higher than the noise floor.

Initial studies give encouraging results for potential UWB over PLC applica-
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Figure 5.39: Noise floor variations caused by signal radiation from the powerline

circuit.
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Figure 5.40: Conducted transmission over the powerline channel.
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tions, as the radiation from powerline is below regulatory standards. However,

the emissions caused by powerline channel is related to many factors including

system topology, equipment connected to the network, measurement positions

and the total transmit power [89]. Therefore, further measurements of the ra-

diated emission from a more complicated PLC network is necessary, in order to

establish a full empirical model for the behavior of broadband PLC systems and

define the signal power level for potential UWB over PLC applications.

5.6 Summary

A test bed for indoor powerline communication system has been developed and

its transmission characteristics have been investigated thoroughly. Broadband

transmission over indoor powerline network has been experimentally proven pos-

sible. Time domain results show that a short duration impulse does travel along

the cable, proving that a signal is not randomly picked up from a wireless link.

On the other hand, frequency domain measurements show that the powerline

channel exhibits frequency selective fading and low pass characteristics in 50MHz

- 1GHz band. In the same circuit ring transmission scenario, signal loss increases

with transmission distance, while in cross ring transmission, most of the sig-

nal has been attenuated by the house access point, therefore, UWB over PLC

applications is more suitable for in-home networking over the same circuit ring.

Further, analysis on channel transfer function reveals that 50 - 550MHz frequency

band is more suitable for UWB over PLC, because the transmission loss is much

smaller than other high frequency bands, and it is not affected significantly by

other electrical loads connected to the system. Therefore, 50 - 550MHz frequency

band has been defined as the operating band for potential UWB over powerline

applications.

The noise characteristics of the test bed have been examined as well. Mea-

surement of the background noise gives positive results, since there is not much

narrow band interference above 100MHz. Whereas the impulsive noise generated

by switching events will cause more disturbance to the PLC system. This type of

noise can significantly increase the system noise floor as they have strong power
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and long duration. Study of the impulsive noise is still an important topic and

measures are required to overcome this type of interference.

As the operation frequency increases, broadband powerline systems may cause

electromagnetic disturbance to other radio systems or raise the background noise

floor. Therefore, the radiated emissions from a simple powerline ring circuit of

2.8m has been tested. Experimental results show that the powerline circuit does

cause radiation emission above 30MHz, when a 10V pulse of 1ns duration is

transmitted at 10us interval. Nevertheless, the measured emission level is below

the FCC Part 15 limit across the frequency band. And it is noted that the

radiated signal becomes smaller when other electrical loads are connected to the

system. The conducted emission measurement also shows that most of the signal

propagates through the powerline channel, instead of being received from random

radiation. These investigations strengthen the potential of the proposed UWB

over PLC technology.
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Chapter 6

Ultra Wideband Communications

for PLC Network

6.1 Introduction

In previous chapters, the transmission characteristics of powerline channel in a

home system have been studied experimentally, as well as the radiated emissions

from a single ring circuit. It is shown that UWB communication over the indoor

powerline channel is highly feasible in the 50 - 550MHz frequency band. However,

the potential transmission rate is not clear. Therefore, data transmission over the

measured powerline channel will be examined in this chapter, in order to answer

questions regarding system bandwidth and transmission rate.

Firstly, key system parameters such as link budget and SNR are analysed with

their underlying statistics. The theoretical channel capacity has been obtained

using the so called “water-filling” algorithm.

Further, data transmission is modelled in the PHY layer, based on the Multiband-

OFDM UWB standard proposal. This proposal is submitted to the IEEE 802.15.3a

standard group for WPAN communications. System performance parameters

such as Bit Error Rate (BER) and transmit power have been obtained to predict

the performance of UWB over PLC technologies and their potential applications

in the home network.
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6.2 Theoretical Channel Capacity Consideration

Increasing channel capacity is one of the objectives of this project. According to

Shannon’s channel capacity theorem, channel capacity can be increased either by

using a wider bandwidth, or by increasing the SNR level, i.e. the transmit power.

In most cases, the system bandwidth is fixed, therefore, SNR becomes the critical

factor for channel capacity.

6.2.1 Link Budget

In the design of high speed communication system, a top-level link budget analysis

is often used by engineers to determine the feasibility of any given system. A link

budget calculation is also an excellent way to understand the various factors

which need to be traded off to realize a given cost and level of reliability for a

communication link. When evaluating a communication system, there exist five

important factors: the available transmit power, bandwidth of the system, the

loss of the communication link, the noise characteristics of the channel and the

required reliability [113].

For a digital communication system, link budget is typically specified as an

Eb/N0 (ratio of energy per bit to noise PSD) requirement for some distance or

percentage of the coverage area [68], which can be calculated as:

Eb
N0

= TxPower(dBm)−Atten(dB)− [noise(
dBm

Hz
) + 10log(R(bps))] (6.1)

where TxPower is the transmitted power, Atten is the measured channel atten-

uation, which includes all the loss experienced by the signal between the Tx and

Rx, noise is the noise PSD and R is the system data rate. Eb/N0 is a measure of

the required energy per bit relative to the noise PSD and it can be converted to

SNR by using:

SNR = (Eb/N0)× (R/B), (6.2)

where B is the system bandwidth.

With the attenuation and background noise characteristics collected from

measurement, link budget can be obtained by using equation (6.1). Table 6.1

compares the link budget of a 10m transmission link in three transmission bands:
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50 - 550MHz, 500MHz - 1GHz and 50MHz - 1GHz. Channel attenuation is the

average attenuation value listed in Table 5.4. The noise PSD is the average value

calculated from the measured background noise.

Assuming the system data rate is 1Gbps, 50 - 550MHz band provides the best

communication link, it gives an Eb/N0 of 14.66dB when the total transmit power

is 30dBm. At the same transmit power and system data rate, the link budget

achieved in 50 - 550MHz band is 4.5dB better than that in the 50MHz - 1GHz

frequency band, and 18dB better than the 500M - 1GHz band.

Transmission Band 50 - 550MHz
Total Transmit Power, dBm 10 20 27 30 37

Channel Attenuation, dB 27.88 27.88 27.88 27.88 27.88
Noise PSD, dBm -102.34 -102.34 -102.34 -102.34 -102.34

Bit rate, dB 90 90 90 90 90
Bandwidth, dB 87 87 87 87 87
Eb/N0, dB -5.54 4.66 11.66 14.66 21.66
SNR, dB -2.54 7.66 14.66 17.66 24.66

Transmission Band 500MHz - 1GHz
Total Transmit Power, dBm 10 20 27 30 37

Channel Attenuation, dB 47.56 47.56 47.56 47.56 47.56
Noise PSD, dBm -103.28 -103.28 -103.28 -103.28 -103.28

Bit rate, dB 90 90 90 90 90
Bandwidth, dB 87 87 87 87 87
Eb/N0, dB -24.28 -14.28 -7.28 -4.28 2.72
SNR, dB -21.28 -11.28 -4.28 -1.28 5.72

Transmission Band 50MHz - 1GHz
Total Transmit Power, dBm 10 20 27 30 37

Channel Attenuation, dB 32.88 32.88 32.88 32.88 32.88
Noise PSD, dBm -102.76 -102.76 -102.76 -102.76 -102.76

Bit rate, dB 90 90 90 90 90
Bandwidth, dB 90 90 90 90 90
Eb/N0, dB -10.12 -0.12 6.88 9.88 16.88
SNR, dB -10.12 -0.12 6.88 9.88 16.88

Table 6.1: Comparison of average Eb/N0 and SNR of 10m transmission in Ring

1, in 50 - 550MHz, 500MHz - 1GHz and 50MHz - 1GHz frequency bands.
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6.2.2 Theoretical Capacity of Background Noise Channel

6.2.2.1 Water Filling Algorithm

With all the measurements and analyses, theoretical channel capacity under back-

ground noise can be calculated, based on the well known water-filling algorithm

under several practical assumptions [114]. Suppose that N(f) and H(f) are the

PSD of the background noise and the broadband channel transfer function re-

spectively and the total signal power is limited. From [115], channel capacity can

be defined as:

C =

∫
W

log2(1 +
Sx(f)|H(f)|2

N(f)
)df (6.3)

where Sx(f) is the PSD of the signal power, and W is the channel bandwidth.

The broadband channel can be split into a set of flat fading channels, in which

the channel transfer function can be regarded as constant with AWGN, thus the

channel capacity can be determined as the sum of the sub-channels’ capacity.

It is well-known that the water-filling algorithm can be used to determine the

optimal transmission power distribution over the sub-channels. Given the total

transmission power P , the optimal transmission PSD can be obtained as [82]:

Sx(f) =

{
L− N(f)

|H(f)|2 , f ∈ W
0, otherwise

(6.4)

where

P =

∫
W

Sx(f)df (6.5)

L is a parameter that depends implicitly on the specified power and channel

parameters by:

L =
1

W
{P +

∫
W

N(f)

|H(f)|2
df} (6.6)

Sx(f) should always be non-negative. If the calculated Sx(f) is negative it will

be set to zero, meaning no power is allocated to the sub-channel.

Sx(f) can be optimized through the following steps:

1. Assume there are N sub-channels, each with bandwidth ∆f = W/N . The

carrier to noise ratio of each sub-channel can be obtained as |Hn|2/σ2
n, where

Hn is the channel transfer function in sub-channel n and σ2
n is the average noise

power within that sub-channel, σ2
n = N(f)∆f .

139



6.2 Theoretical Channel Capacity Consideration

2. Calculate the initial power allocation for each sub-channel in the bin (here

bin is referred to the collection of all the sub-channels with none zero transmit

power) Sn using Equation (6.6) and (6.4).

3. Check if there is any sub-channel that has negative power allocation. If

yes, set the power to zero and remove this sub-channel from the bin, then go

back to step 2. Move forward until all the sub-channels are allocated with none

negative power.

4. Finally, calculate the channel capacity using Equation (6.3).

6.2.2.2 Channel Capacity of Powerline System

For example’s sake, consider the capacity of a powerline channel in the test bed,

i.e. from outlet R1.3A to R1.5A (10m). The respective frequency response and

the background noise PSD are shown in Figure 6.1.

Assume the total transmit power is 5W (37dBm) and there exist 843 sub-

channels with frequency interval ∆f = 593.75kHz 1. In this ideal case, when

the powerline network is not subject to other interference caused by switching

events or electrical appliances, the optimised transmit power and bit allocation

of each sub-channel is shown in Figure 6.2. Water filling algorithm optimises

the power allocation by closing sub-channels with poor SNR, to achieve the best

power utilization.

Channel capacity can be calculated from Equation (6.3), based on the trans-

mit PSD. It is noticed that the number of bits allocated at each frequency varies

significantly, from zero bits to the maximum of 12bits/Hz. More bits are allo-

cated to the sub-channels with higher SNR. Fewer bits are transmitted above

400MHz when the channel attenuation is around 50dB. The total channel ca-

pacity obtained in this case is 3.26Gbps, which can be increased by transmitting

more power. However, the increase of transmit power should not violate the EMC

regulations of the country, which sets an important limit for the usable bit rate

[116].

1The frequency interval is set as the sampling interval of the network analyser, which records
the powerline frequency response at an interval of 593.75KHz. During this frequency interval,
the channel response is regarded as constant.
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Figure 6.1: Channel response and average noise PSD between outlet pair R1.3A

- R1.5A (50MHz - 550MHz).

For comparison purpose, power allocation is also calculated in the frequency

range 500MHz - 1GHz, for the R1.3A to R1.5A (10m) channel. The channel

transfer function and noise PSD are illustrated in Figure 6.3. With the trans-

mitted power set at 5W, the optimised transmit power and bit allocation are

shown in Figure 6.4. Although the noise level is relatively lower, the channel

suffers much higher attenuation, this gives very low SNR in some sub-channels.

Therefore, these sub-channels are totally shut down and no power is transmitted.
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Figure 6.2: Optimized power and bit allocation of a 10m link between R1.3A and

R1.5A in 50 - 550MHz range (total transmitted power: 5W).

Using this frequency band, the theoretical data rate is smaller, at 1.1Gbps. Fur-

ther, the number of information bits transmitted in each sub-channel decreases

significantly, hence reducing the channel efficiency. Comparison result once again

proves that 50 - 550MHz is the preferred frequency band for potential UWB over

PLC applications.

Broadband powerline channel capacity is highly variable to the channel fre-

quency response, network topology, as well as the transmission distance. Different

transmission outlet pairs with variable distance will result in different transmis-

sion rates. As shown in Figure 6.5, the bit allocation for two transmission paths

(R1.3A to R1.2A and R1.3A to R1.6A) can be quite different. The 5m path

supports higher data rate because of the smaller channel loss. While in the 15m

channel, a number of sub-channels have been turned off1 due to the low SNR

level. According to Figure 6.6, which illustrates the percentage usage of the

sub-carriers, the number of sub-channels can be used is related to transmission

1A sub-channel is regarded as “off” when no information is transmitted, it is possible that
the Tx power is non-zero.
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6.2 Theoretical Channel Capacity Consideration

range and power. In order to achieve 50% usage of the sub-channels, the required

transmit power is 24dBm for 15m and only 15dBm for 10m transmission.
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Figure 6.3: Channel response and average noise PSD between outlet pair R1.3A

- R1.5A (500MHz - 1GHz).
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Figure 6.4: Optimized power and bit allocation of a 10m link between R1.3A and

R1.5A in 550MHz - 1GHz range (total transmitted power: 5W).
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Figure 6.5: Comparison of bit allocation of two different transmission paths: 5m

and 15m in 50 - 550MHz frequency range (total transmitted power: 5W).
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Figure 6.6: Percentage usage of the sub-channels vs. transmit power.

Table 6.2 compares the channel capacity for different transmission paths in

Ring 1, under the background noise environment. Very high channel capacity

can be obtained over the studied channels, especially when no electrical loads are

connected. Even when electrical loads are connected to the path, the available

capacity is still very high, all the channels can achieve 1Gbps capacity at 27dBm

transmit power.

It can be concluded that the indoor powerline channel has high potential for

fast speed data transmissions, in the 50 - 550MHz band. Nevertheless, the trans-

mission rate is closely related to the available power and thus the electromagnetic

interference (EMI) to other radio systems. In this case, the proposed UWB over

PLC technology occupies 500MHz bandwidth, so the transmitted PSD is very low

because total power is spread into a wide frequency band, thus reducing potential

EMI. Further, EMI can also be avoided by notching out specific frequencies where

existing radio systems are operating.
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Total Transmit Power (dBm) 10 (10mW) 20 (100mW) 27 (500mW) 30 (1W) 37 (5W)
5m without loads 1.17 2.66 3.78 4.28 5.47
5m with hair dryer 0.59 1.68 2.67 3.12 4.21
5m with mobile charger 0.70 1.69 2.59 3.02 4.07
5m with both appliances 0.51 1.40 2.30 2.73 3.83
10m without loads 0.55 1.38 2.06 2.39 3.26
10m with hair dryer 0.28 0.88 1.52 1.83 2.64
10m with mobile charger 0.33 0.98 1.60 1.90 2.74
10m with both appliances 0.25 0.80 1.37 1.67 2.49
15m without loads 0.36 0.99 1.57 1.84 2.52
15m with hair dryer 0.19 0.63 1.10 1.34 2.01
15m with mobile charger 0.22 0.68 1.19 1.43 2.11
15m with both appliances 0.18 0.56 1.01 1.24 1.89

Table 6.2: Channel Capacities at different transmission paths and distance (same

circuit ring), Gbps.

6.3 Multiband-OFDM Model for PLC

In the previous section, high channel capacity of the indoor powerline channel has

been proven possible in 50 - 550MHz range. However, it is very difficult to achieve

the maximum transmission rate in practice. A number of factors such as the

transmit power, modulation scheme and noise will affect the system transmission

rate. Therefore, a system level model is required to predict the transmission rate

and the related system performance.

6.3.1 MB-OFDM Physical Layer Specification

Operating in the 50 - 550MHz frequency band, potential UWB over PLC applica-

tion satisfies the bandwidth requirement of the Multiband-OFDM UWB proposal,

which is submitted to the IEEE 802.15.3a WPAN standards group in September

2003 [117].

As defined by FCC regulations, UWB is a wideband signal that occupies more

than 500MHz or has a fractional bandwidth of at least 20% [66]. To achieve such

broadband signal transmission, MB-OFDM UWB radio divides the 3.1 - 10.6GHz
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6.3 Multiband-OFDM Model for PLC

band into 14 sub-bands, each occupying 528MHz. As illustrated in Figure 2.8 in

Chapter 2, the first 12 sub-bands are grouped into four band groups, while the

last two are grouped into the fifth band group. Currently, only Band Group 1 is

mandatory for UWB communications.

In each 528MHz sub-band, MB-OFDM UWB standard defines mandatory

data rates of 53.3, 106.67, 110 and 200Mbps in the PHY. Figure 6.7 shows the

transmission front end of a MB-OFDM system. The source data is encoded us-

ing convolutional coding at different code rates, according to the system data

rate required. The coded data is interleaved to allow recovery from impulsive

noise. After serial to parallel data conversion, quadrature phase shift key (QPSK)

constellation map is used to map the data groups into complex signals. IFFT

operation is performed on the complex signals to form an OFDM symbol, with

cyclic prefix and guard interval added to it. The transmitted signal is then con-

verted back into serial sequence and is ready for transmission, it will be hopping

in the three sub-bands in Band Group 1 [118]. In the receiving end, reverse of

the transmission operation is performed to recover information data. Details of

the MB-OFDM PHY are given in Appendix B.

 

Figure 6.7: Transmission front end for an MB-OFDM UWB system.

Similar to other OFDM systems, UWB uses OFDM to mitigate the effects of

multipath. Parameters of the OFDM symbol in MB-OFDM standard are given

in Table 6.3. The OFDM modulator is implemented using a 128 point IFFT in

528MHz frequency band, with 122 active sub-carriers. There are 100 data carriers

(each carries 2 bits of data using QPSK), 12 pilots and 10 guard sub-carriers. The
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6.3 Multiband-OFDM Model for PLC

remaining 5 high frequency taps and the DC tap are set to zero, creating a time

domain sequence of 242.42ns. After the IFFT, a 32 length zero-padded prefix

(60.61ns in time) is added to the beginning and a 5 length zero-padded guard

suffix (equating to 9.47ns) is added to the end of the IFFT output, creating a

165 sample time domain sequence of 312.5ns [119, 120]. For mandatory data

rates below 200Mbps, a time-domain spreading operation is performed with a

spreading factor of 2. That is, the same information is transmitted over two

OFDM symbols.

Parameter Value
Total Bandwidth, B 528MHz
Number of IFFT points, N 128
Sub-carrier frequency spacing, ∆f 4.125MHz(=B/N)
Time period for each sub-carrier, Tsub 1.89ns(=1/B)
Number of data sub-carriers, NSD 100
Number of defined pilot sub-carriers, NSDP 12
Number of guard sub-carriers, NSG 10
Number of total sub-carriers used, NST 122(=NSD+NSDP+NSG)
IFFT/FFT period, TFFT 242.42ns(=1/∆f)
Cyclic prefix duration, TCP 60.61ns
Guard interval duration, TGI 9.47ns
MB-OFDM Symbol Duration, TSYM 312.5ns(=TFFT+TCP+TGI)

Table 6.3: PHY parameters of MB-OFDM system.

6.3.2 Simulation Model for PLC

In order to perform a system level simulation of OFDM transmission over the pow-

erline channel, we use a modified MB-OFDM model in Matlab Simulink published

in [121]. It models the end to end PHY UWB data transmission at 200Mbps. By

replacing the standard UWB channel with the powerline channels, it is possible to

analyse system performance such as BER of a realistic powerline communication

environment.

Figure 6.8 illustrates the modified MB-OFDM transmitter and receiver system

model in Matlab Simulink. The source data are encoded using convolution coding
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6.3 Multiband-OFDM Model for PLC

and interleaved before being sent to the OFDM transmitter. Frequency hopping

is disabled so the simulation is in baseband. The time domain signal is up sampled

by a rate of 6, therefore the system sample rate is one sixth of the sub-carrier

time period, TSYM/(165 × 6) = 0.315ns. Further, the transmission channel has

been replaced by the Channel Impulse Response (CIR) of the measured powerline

channel, in 50 - 550MHz range.
 

 
 

 

Figure 6.8: PHY Channel model for MB-OFDM UWB over Powerline.

It is shown in Chapter 5 that the frequency responses of the powerline system

have been recorded using a VNA. Therefore, the CIR for system level model can

be calculated using IFFT. The time steps of the CIR is fixed according to the

sampling frequencies in the measurement, where ∆f = 593.75kHz. In order to

obtain the same sampling rate as the MB-OFDM system model, the time domain

transfer function of the powerline channel is interpolated to conform with the

sampling time of the simulator, ∆t = 0.315ns. Further, the pass-band CIR is

transformed into the base-band, this is done by:

hbase−band[tn] = hpass−band[tn] ∗ exp(j2πfctn), (6.7)

where fc = 314MHz is the center frequency of the measured powerline channel

transfer function, and hbase−band[tn] and hpass−band[tn] are the time domain CIR in

base-band and pass-band respectively. tn = n∆t is the time samples defined in the

model. Equation (6.7) shifts the CIR from fc to base-band, this can be explained
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6.3 Multiband-OFDM Model for PLC

in the frequency domain. Assume Hbase−band(f) and Hpass−band(f) represents the

frequency response of the powerline channel in base-band and pass-band,

Hbase−band(f) = Hpass−band(f − fc). (6.8)

The right part of (6.8) can be converted to the time domain using fourier trans-

form [122],

Hpass−band(f − fc) =⇒ hpass−band[t] ∗ exp(j2πfct), (6.9)

thus relating the base-band CIR to its pass-band counter part. Figure 6.9 illus-

trates the calculated time domain CIR of different powerline channels in the test

bed.
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Figure 6.9: Normalised CIR of powerline channel.

By inputting the powerline channels’ CIR into the Matlab simulation model,

the system compares the transmitted and received data to calculate BER, given

a specific value of the Eb/N0. Two transmission rates have been simulated in

this study, at 200Mbps and 240Mbps. This is achieved by varying the number of

information bits transmitted per OFDM symbol and the convolutional encoding

rates. The convolutional coding has a basic rate of 1/3 and the constrain length

of 7 is used for FEC. Further code rates of 5/8 and 3/4 are achieved through bit

puncturing. Table 6.4 gives the detailed information on data rate, modulation

and coding rate of the two PHY transmission mode.
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For example, at 200Mbps transmission rate, 125 bits of information is sent

to the 5/8 convolutional encoder, generating 200 bits of data. After QPSK, 100

complex data is obtained and passed on to the OFDM transmitter, occupying

the 100 data carriers. Other auxiliary information is also added to the OFDM

symbol, to form a 165 sample time symbol in time domain. The same information

data is transmitted on 2 OFDM symbols, as the time spreading gain is 2. This

gives the system data rate of (125bit/312.5ns)× (1/2) = 200Mbps.

Data
rate
(Mbps)

Modulation Code
Rate

Spreading
Gain

OFDM Sym-
bol Time
(ns)

Coded bits per
OFDM Symbol

Info bits per
OFDM Sym-
bol

200 QPSK 5/8 2 312.5 200 125
240 QPSK 3/4 2 312.5 200 150

Table 6.4: Rate dependent parameters of MB-OFDM model.

6.4 Performance Analysis

6.4.1 BER Performance

As a measure of performance the BER variation versus different Eb/N0 value un-

der the measured powerline channel is simulated, using the modified MB-OFDM

model. The simulation stops when either of the following criterion is met: there

are in total 1 million number of information bits have been transmitted or the

number of error bits received has reached 100.

Firstly, the BER performance under background noise is simulated, with no

electrical loads connected to the powerline channel. As shown in Figure 6.10

(a), all the simulated channels can achieve very low transmission error rates up

to 10−5 at 200Mbps, under 30dB Eb/N0 level. System performance degrades on

longer transmission range and higher data rate. At higher system data rate of

240Mbps, good BER performance lower than 10−4 can still be obtained.

When electrical loads are connected to the transmission channel, system per-

formance degrades accordingly. Figures 6.11 - 6.13 compare the BER performance
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Figure 6.10: BER vs. Eb/N0 for three different powerline channels in the test

bed at (a) 200Mbps and (b) 240Mbps.

of three typical transmission distances (i.e. 5m, 10m and 15m) under different

scenarios, such as connecting a hair dryer or a mobile charger to the channel. It

can be seen that the connected appliances can introduce more transmission er-

rors to the system, as they bring in more multi-path transmissions to the original

channel.

The worst transmission occurs when both of the hair dryer and the mobile

charger are connected and switched on, since the interference from both appli-

ances are added to the channel. This agrees with previous results shown in Table

5.5, that the highest channel attenuation happens when both of the electrical

loads are connected. It is also noticed that charging the mobile phone can cause

more deteriorating effect to the system than using the hair dryer. Therefore, in

order to achieve the best transmission over an indoor powerline channel, it is

better to avoid connecting electrical appliances like mobile charger between the

Tx and Rx. In general, transmission channels with electrical loads require up to

10dB more energy to achieve the same BER performance as those without loads.

From the simulation results, BER performance lower than 10−4 can still be

obtained over the powerline channels studied, at 40dB Eb/N0 level. This has

greatly improved the performance of existing broadband PLC technology. It has
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been shown by Guerrini in [123] that, up to 70dB SNR is required for HomePlug

AV system to provide raw data rate of 189Mbps (BER target at 10−3) in the

powerline channel, under AWGN and narrow band interference. While in the

MB-OFDM model, the data rate is much higher and the SNR has been reduced

up to 30dB, under the same noise condition. It indicates that the proposed UWB

over PLC technology has high potential in providing fast speed transmission in

the home network. Moreover, such system performance can be further improved

by adaptive modulation schemes or advanced information coding, in which a lot

of active researches are being done [124, 125, 126, 127].
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Figure 6.11: BER vs. Eb/N0 for 5m with electrical appliances connected, (a)

200Mbps and (b) 240Mbps.

6.4.2 Transmit Power Level

The total transmit power from the powerline system can also be estimated to

see how much energy is required. Given the value of Eb/N0 and the PSD of

background noiseN0, the average energy per bit Eb is available. The total received

power Prx is:

Prx = Eb ·R, (6.10)
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Figure 6.12: BER vs. Eb/N0 for path 10m with electrical appliances connected,

(a) 200Mbps and (b) 240Mbps.
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Figure 6.13: BER vs. Eb/N0 for 15m with electrical appliances connected, (a)

200Mbps and (b) 240Mbps.
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where R is the system data rate, which is 200Mbps or 240Mbps in this model.

The total transmitted power Ptx can be estimated using:

Prx =

∫
W

|S21(f)|2Ptx(f)df, (6.11)

where S21(f) is the transfer function of the channel and W is the system band-

width. Assuming the transmit power is the same across different frequencies, Ptx

is:

Ptx =
PrxW∫

W
|S21(f)|2df

. (6.12)

It can be seen that the total transmit power is related to channel loss, system

data rate and noise level. Take for example the 10m channel, the Eb/N0 value is

25.5dB (for 10−4 BER at 200Mbps), the total transmit power is:

Ptx = 25.5dB +N0(dBm) +R(dB)− |S21|2average(dB). (6.13)

Where the measured background noise is -102.34dBm/Hz as given in Table 6.1,

and the average channel attenuation is the measured transfer function as listed

in Table 5.4, at 27.88dB. This gives the total transmit power at 34.04dBm or

-52.96dBm/Hz, as the operating bandwidth is 528MHz.

Table 6.5 lists the simulated energy per bit-to-noise ratio and PSD required to

achieve BER performance better than 10−4 on the powerline transmission system.

The best case occurs when the powerline channel is not subject to interference

from other electrical loads, whilst most of the worst cases happen when both of

the loads are connected to the channel. The transmitted signal PSD varies from

-70dBm/Hz to the worst case scenario of -13dBm/Hz, when 240Mbps data rate

is transmitted over a 15m channel with both of the electrical loads switched on.

If the PSD threshold is set at -40dBm/Hz, we can allow over 80% of the studied

powerline channels to operate under the BER constraint. It can be seen that

longer transmission distance and higher data rates always require more power to

boost up the SNR level and the transmitted PSD.

The BER performance analysis presented above is targeted for very high bit

rate transmission over indoor powerline channels, over 200Mbps. The maximum

data rate available in the market place is only up to 200Mbps, which already

uses advanced coding and modulation schemes, i.e. 1024QAM and bit loading
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Distance Data Rate (Mbps)
Best Case Worst Case

Eb/N0(dB) PSD (dBm/Hz) Eb/N0(dB) PSD (dBm/Hz)

5m
200 13 -72.21 19.5 -65.71
240 15.5 -69.71 33 -52.21

10m
200 25.5 -52.96 28 -50.46
240 28 -48.46 36 -40.46

15m
200 28 -45.89 39 -34.89
240 30 -43.89 60 -13.89

Table 6.5: Transmit power and PSD of powerline system, BER level: 10−4.

are exploited for 200Mbps Homeplug AV [16]. There is very limited space for

existing technology to up grade their system data rates, because the available op-

erating bandwidth sets an upper limit to the channel capacity. In the proposed

PHY model for broadband PLC, QPSK constellation map is used to provide good

BER performance at high data rates that existing techniques struggle to achieve.

Much higher data rates can be obtained if higher constellation maps and adaptive

bit loading algorithms were used, which can also improve the system transmis-

sion performance. Therefore, the potential data rate for UWB over Powerline

Communication is very high and thus the demand for future applications can be

met.

6.5 Summary

Theoretical channel capacity and system level performance of the measured pow-

erline channel in the test bed have been analysed and simulated in this chap-

ter, under background noise disturbance. Link budget analysis reveals that 50

- 550MHz frequency range gives a good SNR for data transmission, because in

this band, channel attenuation is smaller than that in high frequency ranges, and

the background noise is also very low. Thus, very high channel capacity up to

Gigabits per second can be achieved in theory, by optimising the allocation of

transmitted power and the number of bits per carrier.
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However, the theoretical data rate is very difficult to obtain due to the lim-

itations in practice. Therefore, we also conduct system level simulation of data

transmission, to predict the transmission rate and its performance. The PHY

model used for this study is the MB-OFDM UWB proposal submitted to the

IEEE 802.15.3a standard group. By using the modified MB-OFDM simulator in

Matlab Simulink, different transmission paths over the indoor powerline network

have been modeled. The BER performance versus energy per bit-to-noise ratio

shows promising outlook for UWB over PLC to deliver high data rate services in a

home network. Different transmission distances have been analysed at two trans-

mission rates, namely 200Mbps and 240Mbps, both under normal background

noise environment and under the interference from other electrical appliances.

The transmit power and signal PSD are analysed based on the simulated and

measured results. The transmitted PSD is dependent on the system data rate,

noise level and transmission distance. It is shown that BER performance better

than 10−4 can be achieved at power level as low as -40dBm/Hz, for high data rate

transmission up to 240Mbps. Improvements on the PHY model can be done in

the future to increase the data rate and better the BER performance by advanced

data modulation and coding.
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Chapter 7

Conclusions and future work

7.1 Summary

Data transmission over powerline has become increasingly popular recently, be-

cause of its ability to provide in-home networking and internet access to cus-

tomers. By exploiting the ubiquitous mains network, it makes laying expensive

cables a thing of the past. At the same time, UWB communication emerges as

a renewed technology that is capable of providing fast speed wireless transmis-

sion for consumer electronic devices in a short range. Current studies on UWB

are related to wireless communication, wired UWB communication also starts to

attract attention. A few projects have been carried out on transmitting UWB

signal over coaxial cables, UWB over powerline has also been looked into below

100MHz, in order to increase the data rate. However, limited research has been

done to exploit higher frequency band (>100MHz) UWB transmission over the

mains cable. Therefore, a novel study of UWB transmission over powerline to

achieve gigabits per second data rate is carried out in this thesis.

One of the most important aspects of this research is the characterisation of

powerline channel in the high frequency band, while the majority of existing stud-

ies only try to understand the channel characteristics below 30MHz. Therefore,

in this thesis, signal transmission over indoor mains cables in ultrawide-band has

been studied. Based on the simulation and measurement results, it is noticed

that the indoor powerline cable, namely the 2.5mm flat twin and earth provides
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7.1 Summary

a suitable transmission channel in frequency band below 1GHz, as the signal

degrades at a rate of 0.26dB/(m · 100MHz) in the proposed frequency band.

As a result, a wideband RF coupler working in 50MHz - 1GHz frequency range

is required to couple the transmitted signal to the powerline. The challenges of

coupler design lie in the wide frequency band, bi-directional signal coupling and

minimum insertion loss to the system. Moreover, existing powerline couplers

are only designed for narrowband use, below 30MHz. It is noted that couplers

used in PLC below 30MHz consists of a number of passive components, such

as transformers and filters. Therefore, the newly developed coupler is built on

a coupling circuit, by using a broadband RF transformer and a pair of 100pF

safety capacitors. Eventually, much wider bandwidth has been achieved by the

developed RF coupler, from 50MHz to 1GHz.

With the key components, a measurement campaign on a powerline network

test bed simulating the UK in-home powerline environment has been conducted.

The test bed is thoroughly tested to understand the signal transmission charac-

teristics in both frequency and time domain, as well as under the interference

from household appliances. It is shown that the powerline channel is more robust

to interference generated from electrical appliances in the higher frequency range.

Analysis of background noise also show that frequency range above 100MHz pro-

vides a more benign environment with less narrow band interference to the system.

Such results have been enhanced by the radiated emission measurements. It is

proven that radiation generated by a signal powerline circuit is below the field

strength limits set by standard organisations such as the FCC, meaning that the

electromagnetic disturbance caused by PLC systems will not degrade the perfor-

mance of existing radio systems. On the other side, studies of the impulsive noise

generated by switching events show that impulsive disturbance still presents a

challenge for potential UWB PLC applications, as it may raise the system noise

floor.

Statistical analysis of the channel loss reveals that the frequency band 50 -

550MHz is a better transmission path for UWB PLC. Evaluations of key sys-

tem parameters - SNR under background noise and channel capacity show that

sufficient link budget can be obtained in this band for gigabit per second data
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transmission. Since the proposed frequency band for UWB over PLC technol-

ogy is 500MHz, it satisfies with the bandwidth requirement for MB-OFDM pro-

posal. Therefore, system level data transmission has been analysed in the PHY,

by applying the MB-OFDM UWB standard. Different transmission rates above

200Mbps have been simulated with regards to BER performance verse Eb/N0.

Results showed that higher than existing available bit rates can be achieved by

potential UWB over PLC applications, with the transmitted PSD level as low as

-40dBm/Hz.

7.2 Key Contributions

The main contributions in this thesis are detailed in the four sections below:

• Characterisation of Powerline for UWB Transmission in 0 -

1GHz

– Two types of mains cable: 2.5mm flat twin and earth and three-core

flexible cable have been studied for UWB transmission in 0 - 10 GHz

range. Simulation and measurement results reveal that the proper-

ties of powerline channel are not suitable for data transmission above

1GHz, due to high level of attenuation. Nevertheless, it is noted that

in frequency band below 1GHz, powerline channels show high potential

for in-home applications.

– 2.5mm flat twin and earth cable provides a better path for transmis-

sion in high frequency band, the signal attenuation rate is 0.26dB/(m ·
100MHz) above 100MHz operating frequency band. Moreover, differ-

ential mode signal coupling should be used as it allows more energy to

be transmitted and suppresses radiation.

• Design and Development of A Broadband RF Coupler

– A broadband RF coupler has been designed, it provides insertion loss

less than 3dB/coupler in 50MHz - 1GHz frequency range. It provides

galvanic isolation between AC power and communication signal, which

is transmitted to the powerline system in differential mode.
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7.2 Key Contributions

– The developed coupler is built on a RF4 PCB board, by using pas-

sive components including transformer and capacitors. It has a sim-

ple structure for manufacture. Further, it provides unique broadband

transmission performance for PLC applications above 30MHz.

• Characterisation of Powerline Network Transmission System

– A powerline test bed simulating the UK indoor wiring environment has

been tested in Queen Mary’s Antenna lab. An exhaustive measure-

ment campaign in both frequency and time domain has been carried

out. Analyses on channel loss with regards to distance and frequency

reveal that same circuit ring transmission in 50 - 550MHz is more

suitable for the implementation of UWB over PLC. Further, interfer-

ences from other electrical appliances are also evaluated, it is noted

that powerline channel is more robust to such interferences in the high

frequency range.

– Measurement of the noise signal confirms that the background noise

above 100MHz has less narrow band interference to PLC systems.

Whereas the impulsive noise resulted from the switching events will

increase the noise floor significantly, especially below 200MHz. Thus,

counter measures should be sought to avoid severer transmission er-

rors.

– Standard emission measurements of a powerline circuit ring show that

in very high frequency range of 30MHz - 1GHz, signal radiation caused

by a powerline channel is below the emission limits set by FCC Part

15 regulatory standard. The average electrical field generated by the

powerline system is below 40dBuV/m.

• System Level Simulation of UWB Data Transmission over Pow-

erline Channel

– Link budget and SNR have been analysed under coloured background

noise environment, it is shown that a 500MHz bandwidth from 50 to
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550MHz provides the best link budget for data transmission. Analy-

sis of channel capacity proves that transmission rates up to 1Gbps is

highly feasible in the proposed frequency band.

– Very high data rate transmission over the powerline has been proven

possible, by applying the PHY standard of MB-OFDM proposal sub-

mitted to the IEEE 802.15.3a standard group.

– Transmission rates at 200Mbps and 240Mbps have been simulated over

the measured powerline channels. BER performance shows that up

to 240Mbps data rate can be transmitted over the indoor powerline

channels, even under the interference from other electrical appliances.

The required transmission power is also very small, at BER level of

10−4, a transmit PSD level as low as -40dBm/Hz can support high

data rate transmission over 80% of the analysed channels.

7.3 Recommendations for Future work

Based on conclusions drawn and the limitations of the work presented, further

work can be carried out in the following areas:

• The powerline as a transmission medium has been extensively studied in

high frequency band above 30MHz. A channel model has been used to

model the powerline network with T-network topoplogy, based on the mea-

sured signal attenuation parameters. Development of a complex channel

model which can predict the effects of other system components, i.e. sock-

ets and plugs, will improve our understanding of the channel characteristics

in high frequency range.

• The impulsive noise will cause more deteriorating effects to the PLC system

than background noise. It has time variant properties that its amplitude,

duration will change in each switching events. A thorough understanding

and modelling of this type of noise will assist system designers to develop

suitable DSP techniques for error correction.
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7.3 Recommendations for Future work

• More transmission environments can be tested (i.e. flats, houses, offices and

trains) to see signal transmission variations to network topology, appliances

connected and different times during the day. This could pave the way for

the widespread use of UWB over powerline technology.

• The EMC measurement in this study is the beginning of UWB PLC emis-

sion analyses. Radiated emission from PLC systems can be very compli-

cated, which is dependent on many factors including network topology,

transmit power, measurement locations, etc. Further investigation on this

topic can provide a guideline for future system deployment and regulation

establishment.

• In the PHY data transmission model, uniformed modulation scheme is used

for each OFDM sub-carrier. Higher data rate can be obtained if more

advanced signal processing technique is used. Adaptive modulation and

coding such as FEC will also improve the transmission efficiency and system

performance.
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Appendix A

Scattering Parameters

The scattering matrix, or S-parameters, provide a complete description of the

network as seen at its N ports. While the impedance and admittance matrices

relate the total voltages and currents at the ports, the scattering matrix relates

the voltage waves incident on the ports to those reflected from the ports. The

S-parameters can be measured directly with a network analyser [9].

Consider a N -port network as shown in Figure A.1, where V +
n is the amplitude

of the voltage wave incident on port n, and V −n is the amplitude of the voltage

wave reflected from port n. The scattering matrix, is defined in relation to these

incident and reflected voltage waves as:
V −1
V −2

...
V −N

 =


S11 S12 · · · S1N

S21
...

...
...

SN1 · · · · · · SNN




V +
1

V +
2
...
V +
N

 (A.1)

or

[V −] = [S][V +]. (A.2)

A specific element of the [S] matrix can be determined as:

Sij =
V −i
V +
i

|
V +

k =0 for k 6=j. (A.3)

Sij is found by driving port j with an incident wave of voltage V +
j , and mea-

suring the reflected wave amplitude, V −i , coming out of port i. The incident
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V1+

V1-

V2+
V2-

VN+ VN-

V3+

V4+

V3-

V4-

Figure A.1: An arbitrary N-port network (Reproduced from [9]).

waves on all other ports are set to zero, which means that all ports should be

terminated in matched loads to avoid reflections. Thus, Sii is the reflection co-

efficient seen looking into port i when all other ports are terminated in matched

loads, and Sij is the transmission coefficient from port j to i when all other ports

are terminated with matched loads.

The powerline channel can be regarded as a two port network whose S-

parameters can be measured using a network analyser.

Figure A.2: Illustration of a two port network S-parameters.

From Figure A.2, S11 can be found as the reflection coefficient seen at port 1

when no signal is transmitted from port 2:

S11 =
V −1
V +

1

∣∣∣
V +

2 =0
. (A.4)

While S21 can be found by applying an incident wave at port 1, V +
1 and measur-

ing the out-coming wave at port 2, V −2 . This is equivalent to the transmission
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coefficient from port 1 to port 2.

S21 =
V −2
V +

1

∣∣∣
V +

2 =0
. (A.5)

S parameters magnitudes are presented in one of two ways, linear magnitude or

decibels (dB). Because S-parameters are a voltage ratio, the formula for decibels

in this case is:

Sij(dB) = 20× log[Sij(magnitude)]. (A.6)
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Appendix B

Powerline Test Bed Attenuation

B.1 Mathematical Background for Statistical Anal-

ysis of Powerline Characteristics

• Average Attenuation

Assume the attenuation between two outlet pairs is a vector data, i.e.

A1, A2, · · · , AN , where Ai = |H(ω)|2 at frequencies f1, f2, · · · , fN , the av-

erage attenuation is defined as [95, 128]:

Aave =
1

N

N∑
i=1

Ai. (B.1)

Where Aave and Ai are real value data. The average attenuation in dB is:

Aave(dB) = 20 ∗ log10(Aave). (B.2)

• The standard deviation is defined as:

σ =

√√√√ 1

N − 1

N∑
i=1

[Ai(dB)− Aave(dB)]2 (B.3)
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B.2 Measured Attenuation Between Outlet Pairs in Ring 1 - Same
Ring Transmission (50MHz - 1GHz)

B.2 Measured Attenuation Between Outlet Pairs

in Ring 1 - Same Ring Transmission (50MHz

- 1GHz)
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B.2 Measured Attenuation Between Outlet Pairs in Ring 1 - Same
Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

1A-1B 0 30.63 6.46 12.64 6.16
1A-2A 5 56.81 12.26 26.85 10.90
1A-2B 5 72.17 12.30 26.91 11.42
1A-3A 10 92.32 13.43 32.86 13.32
1A-3B 10 72.70 13.39 32.65 12.27
1A-4A 15 82.77 15.95 37.19 12.97
1A-4B 15 96.70 15.90 36.80 12.46
1A-5A 15 83.53 15.81 38.70 12.60
1A-5B 15 87.32 15.53 38.65 13.66
1A-6A 10 80.02 15.83 35.45 12.76
1A-6B 10 93.61 15.75 35.44 14.45

1B-1A 0 28.93 6.60 12.88 6.26
1B-2A 5 61.77 12.39 26.95 10.77
1B-2B 5 53.22 12.34 26.54 9.05
1B-3A 10 80.87 13.83 32.69 12.28
1B-3B 10 74.53 13.38 32.62 12.07
1B-4A 15 82.30 16.50 37.14 12.47
1B-4B 15 86.23 16.29 37.04 13.46
1B-5A 15 79.63 15.99 38.54 12.34
1B-5B 15 80.23 15.72 38.13 11.96
1B-6A 10 82.74 16.03 35.39 13.49
1B-6B 10 79.90 15.83 35.20 13.79

2A-1A 5 60.72 12.01 26.72 11.10
2A-1B 5 63.15 11.81 26.51 9.95
2A-2B 0 26.40 6.65 12.45 4.98
2A-3A 5 72.25 11.12 24.55 9.69
2A-3B 5 54.18 11.55 24.97 9.60
2A-4A 10 72.02 13.81 31.62 12.57
2A-4B 10 86.06 13.55 31.56 13.11
2A-5A 15 75.79 14.85 37.02 12.16
2A-5B 15 72.18 14.70 36.59 12.09
2A-6A 15 84.12 17.18 38.32 12.37
2A-6B 15 86.63 16.95 38.22 12.39

Table B.1: Attenuation of outlet pairs in the same circuit ring: Ring 1(1A-1B

represents the location of Tx/Rx in a circuit ring in Figure 5.1).
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B.2 Measured Attenuation Between Outlet Pairs in Ring 1 - Same
Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

2B-1A 5 73.79 11.90 26.79 11.61
2B-1B 5 62.10 11.67 26.29 9.69
2B-2A 0 29.23 7.10 12.77 5.80
2B-3A 5 69.65 11.86 24.70 9.81
2B-3B 5 74.67 11.63 25.60 10.55
2B-4A 10 81.36 14.36 31.80 13.29
2B-4B 10 77.89 14.11 31.67 13.19
2B-5A 15 82.90 14.94 36.96 12.30
2B-5B 15 78.07 14.75 36.02 11.18
2B-6A 15 75.26 17.29 38.10 12.29
2B-6B 15 89.36 17.16 37.97 11.97

3A-1A 10 76.43 14.02 32.55 11.58
3A-1B 10 72.91 13.75 32.44 13.15
3A-2A 5 53.52 10.94 24.32 9.67
3A-2B 5 45.70 11.06 24.21 8.13
3A-3B 0 26.36 6.67 12.76 5.64
3A-4A 5 88.78 10.89 25.52 12.91
3A-4B 5 55.13 10.93 25.42 10.55
3A-5A 10 84.86 13.47 32.46 12.33
3A-5B 10 74.33 12.90 32.36 12.73
3A-6A 15 85.52 15.16 36.23 13.86
3A-6B 15 83.05 15.01 36.21 13.42

3B-1A 10 82.93 13.96 32.75 12.27
3B-1B 10 71.68 13.66 32.26 12.04
3B-2A 5 59.08 11.17 24.96 10.90
3B-2B 5 61.80 11.28 25.03 9.65
3B-3A 0 28.73 7.07 12.99 6.14
3B-4A 5 54.00 11.16 25.47 11.07
3B-4B 5 65.11 11.16 25.14 10.84
3B-5A 10 85.32 13.34 32.54 12.66
3B-5B 10 79.82 12.80 32.27 12.64
3B-6A 15 80.78 15.24 36.39 13.86
3B-6B 15 78.15 15.02 36.04 13.15

Table B.2: Attenuation of outlet pairs in the same circuit ring: Ring 1 (continue).
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B.2 Measured Attenuation Between Outlet Pairs in Ring 1 - Same
Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

4A-1A 15 84.09 15.07 36.71 11.51
4A-1B 15 78.28 14.74 36.13 11.62
4A-2A 10 83.22 13.29 31.19 12.57
4A-2B 10 72.13 13.26 31.31 11.81
4A-3A 5 74.88 10.77 25.54 13.32
4A-3B 5 63.95 11.17 25.07 10.48
4A-4B 0 23.35 6.20 12.08 4.70
4A-5A 5 67.09 11.49 25.70 9.66
4A-5B 5 53.58 11.17 25.67 9.05
4A-6A 10 68.17 12.69 32.25 11.77
4A-6B 10 78.25 12.44 32.29 12.30

4B-1A 15 91.46 15.27 37.21 13.58
4B-1B 15 93.60 15.06 36.63 13.14
4B-2A 10 76.16 13.42 31.40 12.97
4B-2B 10 90.40 13.40 31.36 12.53
4B-3A 5 53.12 10.90 25.57 11.05
4B-3B 5 58.48 11.31 24.95 9.51
4B-4A 0 29.97 6.83 12.39 5.01
4B-5A 5 78.51 11.53 25.67 9.50
4B-5B 5 89.08 11.16 26.10 10.33
4B-6A 10 75.55 12.79 32.03 12.08
4B-6B 10 78.03 12.40 31.88 12.04

5A-1A 15 82.13 14.94 38.17 12.81
5A-1B 15 81.98 15.00 38.00 12.62
5A-2A 15 82.42 14.84 36.79 12.98
5A-2B 15 89.77 14.85 36.64 12.78
5A-3A 10 74.26 13.88 32.37 12.26
5A-3B 10 78.21 13.52 32.16 12.45
5A-4A 5 74.66 11.68 25.50 9.78
5A-4B 5 67.67 11.78 25.33 9.59
5A-5B 0 29.03 6.14 11.91 5.76
5A-6A 5 70.31 11.38 24.82 10.02
5A-6B 5 72.28 11.59 25.06 9.69

Table B.3: Attenuation of outlet pairs in the same circuit ring: Ring 1 (continue).
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B.2 Measured Attenuation Between Outlet Pairs in Ring 1 - Same
Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

5B-1A 15 90.76 15.07 38.43 13.81
5B-1B 15 96.93 14.96 37.94 12.86
5B-2A 15 101.41 14.76 36.76 13.96
5B-2B 15 91.11 14.64 36.64 13.83
5B-3A 10 82.57 13.72 32.80 13.75
5B-3B 10 90.21 13.53 32.13 13.59
5B-4A 5 56.39 12.32 25.47 9.10
5B-4B 5 59.82 12.39 25.89 10.29
5B-5A 0 33.97 6.39 12.14 6.35
5B-6A 5 65.24 11.51 24.59 8.59
5B-6B 5 75.29 11.62 24.89 9.01

6A-1A 10 113.79 14.90 35.19 14.34
6A-1B 10 85.54 14.84 35.00 13.94
6A-2A 15 86.76 16.55 38.48 12.41
6A-2B 15 80.39 16.33 38.39 12.60
6A-3A 15 87.67 15.00 36.64 13.26
6A-3B 15 79.88 14.72 36.20 12.34
6A-4A 10 72.27 13.79 32.46 12.56
6A-4B 10 77.71 13.62 32.02 12.17
6A-5A 5 79.20 12.21 25.10 10.60
6A-5B 5 52.76 12.18 24.84 8.88
6A-6B 0 25.83 5.83 11.90 5.25

6B-1A 10 92.46 15.05 35.27 14.97
6B-1B 10 89.90 14.89 34.96 14.89
6B-2A 15 79.00 16.58 38.61 12.25
6B-2B 15 88.16 16.31 38.00 11.38
6B-3A 15 85.61 14.71 36.52 13.61
6B-3B 15 90.99 14.45 36.13 13.58
6B-4A 10 72.45 13.82 32.43 11.98
6B-4B 10 74.53 13.55 31.99 12.15
6B-5A 5 57.66 12.39 24.99 9.30
6B-5B 5 65.94 12.39 25.08 9.41
6B-6A 0 23.47 6.27 12.28 4.69

Table B.4: Attenuation of outlet pairs in the same circuit ring: Ring 1 (continue).
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B.3 Measured Attenuation Between Outlet Pairs in Ring 1 and 2 -
Cross Ring Transmission (50MHz - 1GHz)

B.3 Measured Attenuation Between Outlet Pairs

in Ring 1 and 2 - Cross Ring Transmission

(50MHz - 1GHz)
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B.3 Measured Attenuation Between Outlet Pairs in Ring 1 and 2 -
Cross Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

R1.1A - R2. 1A 10.00 84.61 25.75 45.80 9.28
R1.1A - R2. 1B 10.00 87.89 26.25 46.28 8.85
R1.1A - R2. 2A 15.00 90.95 30.73 51.08 9.18
R1.1A - R2. 2B 15.00 89.98 29.91 51.13 9.51
R1.1A - R2. 3A 20.00 95.17 29.31 52.89 9.25
R1.1A - R2. 3B 20.00 84.89 28.69 53.36 8.24
R1.1A - R2. 4A 20.00 92.73 28.36 54.49 9.63
R1.1A - R2. 4B 20.00 99.96 27.77 53.93 9.39
R1.1A - R2. 5A 15.00 97.22 28.80 52.28 11.31
R1.1A - R2. 5B 15.00 94.68 28.46 51.70 9.41
R1.1A - R2. 6A 10.00 85.68 25.95 47.18 11.51
R1.1A - R2. 6B 10.00 91.29 25.29 47.32 12.11

R1.1B - R2. 1A 10.00 85.62 25.66 46.98 10.65
R1.1B - R2. 1B 10.00 82.81 25.41 46.96 9.84
R1.1B - R2. 2A 15.00 94.91 29.47 51.33 8.99
R1.1B - R2. 2B 15.00 92.17 29.11 52.06 9.88
R1.1B - R2. 3A 20.00 91.97 29.75 53.94 9.29
R1.1B - R2. 3B 20.00 84.24 28.40 53.93 8.70
R1.1B - R2. 4A 20.00 91.60 28.19 54.32 10.17
R1.1B - R2. 4B 20.00 91.28 28.15 54.24 10.01
R1.1B - R2. 5A 15.00 98.66 29.00 52.57 10.47
R1.1B - R2. 5B 15.00 98.14 28.89 51.75 10.10
R1.1B - R2. 6A 10.00 84.91 25.62 47.27 11.21
R1.1B - R2. 6B 10.00 90.58 24.94 47.52 11.95

R1.2A - R2. 1A 15.00 84.79 29.49 50.76 8.55
R1.2A - R2. 1B 15.00 91.71 29.09 50.48 9.22
R1.2A - R2. 2A 20.00 95.90 30.38 54.16 9.35
R1.2A - R2. 2B 20.00 91.49 30.31 54.82 9.05
R1.2A - R2. 3A 25.00 92.30 29.91 56.57 9.58
R1.2A - R2. 3B 25.00 100.39 28.82 56.48 9.21
R1.2A - R2. 4A 25.00 97.20 29.32 55.43 10.24
R1.2A - R2. 4B 25.00 96.88 28.46 55.94 9.24
R1.2A - R2. 5A 20.00 92.08 29.39 55.96 9.62
R1.2A - R2. 5B 20.00 95.03 28.71 54.61 9.04
R1.2A - R2. 6A 15.00 99.29 28.59 52.31 10.78
R1.2A - R2. 6B 15.00 94.96 28.08 52.11 10.95

Table B.5: Attenuation of outlet pairs in the same circuit ring: Cross Ring

(R1.1A-R2.1B represents the location of Tx/Rx in circuit ring 1 and 2 in Figure

5.1).
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B.3 Measured Attenuation Between Outlet Pairs in Ring 1 and 2 -
Cross Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

R1.2B - R2. 1A 15.00 95.01 29.49 51.02 8.90
R1.2B - R2. 1B 15.00 86.77 29.10 50.67 8.63
R1.2B - R2. 2A 20.00 91.43 30.09 54.29 8.76
R1.2B - R2. 2B 20.00 90.59 29.84 54.14 8.08
R1.2B - R2. 3A 25.00 103.36 30.29 55.74 8.95
R1.2B - R2. 3B 25.00 101.74 28.94 55.83 9.07
R1.2B - R2. 4A 25.00 100.35 29.21 55.19 9.02
R1.2B - R2. 4B 25.00 98.96 28.70 55.27 8.87
R1.2B - R2. 5A 20.00 96.37 30.00 55.38 8.99
R1.2B - R2. 5B 20.00 101.65 29.21 55.16 9.62
R1.2B - R2. 6A 15.00 88.41 29.26 52.59 9.92
R1.2B - R2. 6B 15.00 97.05 28.62 52.60 11.02

R1.3A - R2. 1A 20.00 91.56 30.97 52.11 8.83
R1.3A - R2. 1B 20.00 88.98 29.90 51.89 8.02
R1.3A - R2. 2A 25.00 99.82 31.78 54.05 9.48
R1.3A - R2. 2B 25.00 98.59 31.00 54.50 8.04
R1.3A - R2. 3A 30.00 89.06 31.51 55.58 8.40
R1.3A - R2. 3B 30.00 90.22 30.63 56.52 8.61
R1.3A - R2. 4A 30.00 101.02 31.54 56.20 9.19
R1.3A - R2. 4B 30.00 93.27 30.98 56.13 8.72
R1.3A - R2. 5A 25.00 113.15 31.58 55.97 10.24
R1.3A - R2. 5B 25.00 98.32 30.69 55.72 9.58
R1.3A - R2. 6A 20.00 94.24 30.56 54.75 9.79
R1.3A - R2. 6B 20.00 97.53 30.02 54.16 9.86

R1.3B - R2. 1A 20.00 84.73 30.42 51.95 8.01
R1.3B - R2. 1B 20.00 83.12 29.80 50.71 8.50
R1.3B - R2. 2A 25.00 85.97 31.97 53.28 8.14
R1.3B - R2. 2B 25.00 102.85 31.32 55.06 9.39
R1.3B - R2. 3A 30.00 96.12 31.53 55.25 9.16
R1.3B - R2. 3B 30.00 90.84 30.51 55.57 8.11
R1.3B - R2. 4A 30.00 94.96 30.86 55.80 9.36
R1.3B - R2. 4B 30.00 102.42 30.72 56.46 8.80
R1.3B - R2. 5A 25.00 104.58 31.18 55.44 9.09
R1.3B - R2. 5B 25.00 98.01 30.81 55.42 9.01
R1.3B - R2. 6A 20.00 103.38 30.38 54.73 9.91
R1.3B - R2. 6B 20.00 93.91 30.24 54.70 9.60

Table B.6: Attenuation of outlet pairs in the same circuit ring: Cross Ring

(continue).
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B.3 Measured Attenuation Between Outlet Pairs in Ring 1 and 2 -
Cross Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

R1.4A - R2. 1A 20.00 78.18 31.83 51.35 7.34
R1.4A - R2. 1B 20.00 98.54 31.01 50.88 7.88
R1.4A - R2. 2A 25.00 89.92 33.99 52.82 8.40
R1.4A - R2. 2B 25.00 86.64 32.73 52.97 7.37
R1.4A - R2. 3A 30.00 106.33 31.27 52.34 8.48
R1.4A - R2. 3B 30.00 90.55 30.13 53.34 7.13
R1.4A - R2. 4A 30.00 91.97 32.06 55.54 8.39
R1.4A - R2. 4B 30.00 92.90 31.85 55.39 7.76
R1.4A - R2. 5A 25.00 93.16 32.12 55.53 8.85
R1.4A - R2. 5B 25.00 108.48 31.34 55.67 8.57
R1.4A - R2. 6A 20.00 97.66 32.02 54.38 9.00
R1.4A - R2. 6B 20.00 86.57 30.99 54.14 8.31

R1.4B - R2. 1A 20.00 83.52 31.13 50.91 7.61
R1.4B - R2. 1B 20.00 92.89 31.12 50.96 7.98
R1.4B - R2. 2A 25.00 85.97 33.03 52.42 7.68
R1.4B - R2. 2B 25.00 90.07 32.01 52.45 7.58
R1.4B - R2. 3A 30.00 90.31 31.11 54.29 8.59
R1.4B - R2. 3B 30.00 87.62 30.49 54.08 7.54
R1.4B - R2. 4A 30.00 98.42 31.72 55.28 8.02
R1.4B - R2. 4B 30.00 88.08 31.19 54.98 7.44
R1.4B - R2. 5A 25.00 97.09 31.84 55.10 8.33
R1.4B - R2. 5B 25.00 94.19 31.17 55.37 8.87
R1.4B - R2. 6A 20.00 93.03 31.16 54.74 8.44
R1.4B - R2. 6B 20.00 98.50 30.06 54.18 8.43

R1.5A - R2. 1A 15.00 83.45 29.10 45.95 6.92
R1.5A - R2. 1B 15.00 74.65 28.19 45.85 6.46
R1.5A - R2. 2A 20.00 86.98 28.58 49.93 8.18
R1.5A - R2. 2B 20.00 82.60 27.62 49.80 7.20
R1.5A - R2. 3A 25.00 101.98 30.07 49.38 7.32
R1.5A - R2. 3B 25.00 88.72 29.36 50.56 6.68
R1.5A - R2. 4A 25.00 89.78 27.35 52.48 8.77
R1.5A - R2. 4B 25.00 85.57 27.05 52.77 7.86
R1.5A - R2. 5A 20.00 85.65 29.80 53.53 8.46
R1.5A - R2. 5B 20.00 91.28 28.42 53.13 8.00
R1.5A - R2. 6A 15.00 91.10 28.38 51.84 9.34
R1.5A - R2. 6B 15.00 97.16 28.33 51.76 9.59

Table B.7: Attenuation of outlet pairs in the same circuit ring: Cross Ring

(continue).
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B.3 Measured Attenuation Between Outlet Pairs in Ring 1 and 2 -
Cross Ring Transmission (50MHz - 1GHz)

Outlet Pairs Attenuation in dB
Name Length (m) Max Min Average Std Dev

R1.5B - R2. 1A 15.00 76.29 29.26 45.99 6.07
R1.5B - R2. 1B 15.00 85.04 28.34 46.86 8.50
R1.5B - R2. 2A 20.00 88.68 28.46 49.59 8.22
R1.5B - R2. 2B 20.00 90.81 27.75 48.84 7.33
R1.5B - R2. 3A 25.00 93.96 30.36 50.02 6.97
R1.5B - R2. 3B 25.00 94.70 29.72 51.31 7.45
R1.5B - R2. 4A 25.00 90.43 28.76 53.23 7.97
R1.5B - R2. 4B 25.00 83.43 28.39 51.15 7.44
R1.5B - R2. 5A 20.00 97.51 29.64 52.29 8.89
R1.5B - R2. 5B 20.00 84.65 28.76 52.53 8.86
R1.5B - R2. 6A 15.00 87.77 28.65 51.39 8.17
R1.5B - R2. 6B 15.00 93.20 28.60 50.92 9.01

R1.6A - R2. 1A 10.00 84.09 24.82 40.23 7.00
R1.6A - R2. 1B 10.00 66.20 23.89 40.27 5.63
R1.6A - R2. 2A 15.00 76.80 24.31 43.86 7.08
R1.6A - R2. 2B 15.00 69.52 23.79 44.08 6.03
R1.6A - R2. 3A 20.00 73.08 26.41 44.96 6.16
R1.6A - R2. 3B 20.00 83.71 25.48 46.78 7.60
R1.6A - R2. 4A 20.00 96.33 24.72 46.68 9.03
R1.6A - R2. 4B 20.00 87.35 24.72 47.08 7.54
R1.6A - R2. 5A 15.00 78.19 25.03 47.61 7.94
R1.6A - R2. 5B 15.00 86.46 24.92 48.28 7.79
R1.6A - R2. 6A 10.00 85.92 23.69 47.28 9.05
R1.6A - R2. 6B 10.00 88.51 23.31 47.23 10.06

R1.6B - R2. 1A 10.00 74.12 24.17 39.86 6.86
R1.6B - R2. 1B 10.00 73.01 23.63 41.10 6.14
R1.6B - R2. 2A 15.00 87.63 24.71 45.18 8.04
R1.6B - R2. 2B 15.00 78.86 24.16 44.81 6.09
R1.6B - R2. 3A 20.00 78.74 26.00 47.13 7.16
R1.6B - R2. 3B 20.00 98.81 25.07 46.54 7.20
R1.6B - R2. 4A 20.00 78.33 24.85 48.49 7.64
R1.6B - R2. 4B 20.00 83.02 24.54 48.36 8.24
R1.6B - R2. 5A 15.00 77.78 25.24 48.16 7.01
R1.6B - R2. 5B 15.00 80.80 24.76 48.24 7.51
R1.6B - R2. 6A 10.00 90.74 23.98 46.55 8.62
R1.6B - R2. 6B 10.00 82.91 23.50 45.77 9.05

Table B.8: Attenuation of outlet pairs in the same circuit ring: Cross Ring

(continue).
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Appendix C

Multiband - OFDM UWB

Physical Layer

The PHY specification of MB-OFDM UWB model proposed for IEEE 802.15.3a

standard group is described as below. The proposed system supports mandatory

data rates of 55, 110 and 200Mbps for WPAN. The transmission front end of the

PHY model consists of a number of steps including channel coding, bit interleav-

ing, constellation mapping, OFDM symbol formation and frequency hopping.

C.1 Channel Coding and Bit Interleaving

As shown in Figure 6.7, the source data is firstly encoded using convolutional

encoder, the encoder rate R is selected corresponding to the desired data rate.

The convolutional encoder uses 1/3 code rate with the constrain length of 7,

the generator polynomials are g0 = 1338, g1 = 1458, g2 = 1758, as illustrated

in Figure C.1. The bit denoted as “A” shall be the first bit generated by the

encoder, followed by bits denoted as “B” and finally “C”. The various coding

rates are derived from the rate R = 1/3 convolutional code by “puncturing” - a

procedure for omitting some of the encoded bits in the Tx and adding zeros at

the Rx in place of the omitted bits. The puncturing patterns for 5/8 and 3/4

code rate are illustrated in Figure C.2 and C.3, in which the puncture vectors are

[1 0 1 0 0 1 1 0 1 1 0 0 1 0 1] and [1 0 0 1 0 1 0 0 1] respectively [119].
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C.1 Channel Coding and Bit Interleaving
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Table 12 – Scrambler seed selection 

Seed identifier (b1, b0) Seed value (x14 … x0) 
0,0 0011 1111 1111 111 
0,1 0111 1111 1111 111 
1,0 1011 1111 1111 111 
1,1 1111 1111 1111 111 

 

1.3.8 

1.3.9 

Tail bits 
 
The tail bit field shall be six bits of “0”, which are required to return the convolutional encoder to the 
“zero state”. This procedure improves the error probability of the convolutional decoder, which relies on 
the future bits when decoding the message stream. All tail bit fields (after the PHY header, after the HCS, 
and after the MAC frame payload) shall be produced by replacing the six scrambled bits with six “zero” 
bits. 
 
 

Convolutional Encoder 
 
The PLCP header, MAC header, and HCS shall be coded with a convolutional encoder of rate R = 11/32. 
The MAC frame body and tail bits shall be coded with a convolutional encoder of rate R = 11/32, 1/2, 
5/8, or 3/4, corresponding to the desired data rate. The convolutional encoder shall use the rate R = 1/3 
industry-standard generator polynomials, g0 = 1338, g1 = 1458, and g2 = 1758, as shown in . The 
bit denoted as “A” shall be the first bit generated by the encoder, followed by the bit denoted as “B”, and 
finally, by the bit denoted as “C”. The various coding rates are derived from the rate R = 1/3 
convolutional code by employing “puncturing”. Puncturing is a procedure for omitting some of the 
encoded bits in the transmitter (thus reducing the number of transmitted bits and increasing the coding 
rate) and inserting a dummy “zero” metric into the convolutional decoder on the receive side in place of 
the omitted bits. The puncturing patterns are illustrated in  through . 

Figure 7

Figure 7 – Convolutional encoder: rate R = 1/3, constraint length K = 7 

Figure 8 Figure 11
 
Decoding by the Viterbi algorithm is recommended. 
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Figure C.1: Convolutional encoder: code rate 1/3, constraint length 7.
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Figure 10 – An example of the bit-stealing and bit-insertion procedure (R = 5/8) 
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Figure C.2: Bit-stealing and bit-insertion procedure (R=5/8).
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C.2 Sub-carrier Constellation Mapping
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Figure 11– An example of the bit-stealing and bit-insertion procedure (R = 3/4) 

1.3.10 

1.3.11 

Pad bits 
 
The number of pad bits that are inserted is a function of the code rate R and the number of bits in the 
frame payload (LENGTH), FCS, and tail bits. Pad bits shall be inserted in order to ensure that there is 
alignment on the OFDM symbol boundaries. The number of OFDM symbols, NSYM, is computed as 
follows: 
 
NSYM = Ceiling [Ceiling [1/R × (8 × (LENGTH + FCS) + 6)] / NCBPS] 
 
The function Ceiling (⋅) is a function that returns the smallest integer value greater than or equal to its 
argument value. The appended bits (“pad bits”) are set to “zeros” and are subsequently scrambled with 
the rest of the bits. 

Bit interleaving 
 
The coded bit stream is interleaved prior to modulation. Bit interleaving provides robustness against burst 
errors. The bit interleaving operation is performed in two stages: symbol interleaving followed by tone 
interleaving. The symbol interleaver permutes the bits across OFDM symbols to exploit frequency 
diversity across the sub-bands, while the tone interleaver permutes the bits across the data tones within an 
OFDM symbol to exploit frequency diversity across tones and provide robustness against narrow-band 
interferers. We constrain our symbol interleaver to interleave among 3NCBPS coded bits for Mode 1 
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Figure C.3: Bit-stealing and bit-insertion procedure (R=3/4).

The coded bit stream is interleaved prior to modulation. Bit interleaving

provides robustness against burst errors by writing data bits into a matrix row-

by-row and reading them out column-by-column. In this model it is performed

at two distinct stages: interleaving across OFDM frames and interleaving within

OFDM frames. The former stage interleaves the bits over the 3 sub-bands within

Band Group 1, thus exploits frequency diversity across different sub-bands; the

latter stage permutes the bits across the 100 data sub-carriers within an OFDM

symbol and exploits frequency diversity across sub-carriers to provide immunity

to narrow-band interferences.

C.2 Sub-carrier Constellation Mapping

The OFDM sub-carriers are modulated using QPSK modulation. The coded

and interleaved binary serial input data are divided into groups of 2 bits and
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C.3 OFDM Modulation

converted into complex numbers representing QPSK constellation points. The

conversion shall be performed according to the Gray-coded constellation mapping,

illustrated in Figure C.4, where b0 determines the I value and b1 determines the Q

value (Table C.1). The output values, d, are formed by multiplying the resulting

(I + jQ) value by a normalisation factor kmode:

d = (I + jQ)× kmod. (C.1)

For QPSK modulation, kmod equals to 1/
√

2.

November, 2003  IEEE P802.15-03/268r2 

For QPSK, b0 determines the I value and b1 determines the Q value, as illustrated in Table 14. 
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Figure 12 – QPSK constellation bit encoding 
 

Table 13 – Modulation-dependent normalization factor KMOD 

Modulation KMOD 
QPSK 1/√2 

 

Table 14 – QPSK encoding table 

Input bit (b0 b1) I-out Q-out 
00 -1 -1 
01 -1 1 
10 1 -1 
 11 1 1 

 

1.3.13 OFDM modulation 
 
For information data rates of 50, and 80 Mb/s, the stream of complex numbers is divided into groups of 
50 complex numbers. We shall denote these complex numbers cn,k, which corresponds to subcarrier n of 
OFDM symbol k, as follows:  
 

*
50)49(),50(

SYM50, 1N, 1, 0,49, ,1, 0,

knkn
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dc
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×+

=

−=== KK
 

 
where NSYM denotes the number of OFDM symbols in the MAC frame body, tail bits, and pad bits. 
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Figure C.4: QPSK constellation bit mapping.

Input bit (b0b1) I-out Q-out
00 -1 -1
01 -1 1
10 1 -1
11 1 1

Table C.1: QPSK encoding table.

C.3 OFDM Modulation

For data rates of 200Mbit/s, the stream of complex numbers is divided into

groups of 100 complex numbers, corresponding to the 100 data sub-carriers of
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C.3 OFDM Modulation

OFDM symbol. Each complex data is transmitted over the sub-carrier, which is

orthogonal to each other in the frequency domain. The sub-carriers are in the

form:

φk(t) = ej2πfkt, 0 ≤ k ≤ N − 1, (C.2)

where fk is the frequency of the kth sub-carrier. Assuming the complex input

data is Xk = ak + jbk, it multiplexes the N sub-carriers as:

s(t) =
1

N

N−1∑
k=0

Xkφk(t), 0 < t < Tsym, (C.3)

where Tsym is the length of the OFDM symbol and the subcarrier frequencies are

equally spaced at:

fk = k∆f =
k

Tsym
. (C.4)

Where ∆f is the bandwidth of sub-carriers, ∆f = 1/Tsym. Figure C.5 illus-

trates the modulated OFDM symbol in frequency domain, each complex data are

separated by overlapping sub-carriers, thus increasing the spectral efficiency.

 
     X1      X6 

Figure C.5: Frequency overlapping of OFDM orthogonal sub-carriers.

C.3.1 The Use of Fourier Transform in OFDM

The wide use of OFDM technique is because of its simple implementation. IFFT

and its counter part, FFT are used to convert the frequency domain signal to

time domain signal, and vice versa. This is equivalent to mapping the input data
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C.3 OFDM Modulation

onto the sinusoidal sub-carriers [52]. If we apply IFFT to the complex input data

Xk = ak + jbk, the transformed signal x[n] will be:

x[n] =
1

N

N−1∑
k=0

X[k]ej(2π/N)kn. (C.5)

Equation (C.5) can be written as:

x[n] =
1

N

N−1∑
k=0

X[k]ej2π
k

N∆t
n∆t, (C.6)

where ∆t is the system sampling time, N∆t = Tsym. Substitute (C.4) into (C.6)

yields:

x[n] =
1

N

N−1∑
k=0

X[k]ej2πfktn , (C.7)

where tn equals to the time samples, tn = n∆t. Substitute the complex value of

Xk to (C.7) and take the real part of the data as the signal, we will get:

s[n] = Re(x[n]) =
1

N

N−1∑
k=0

{akcos(2πfktn)− bksin(2πfktn)} (C.8)

If these components are applied to a low-pass filter at time intervals of ∆t, a

signal is obtained that closely approximates the frequency division multiplexed

signal:

s(t) =
1

N

N−1∑
k=0

{akcos(2πfkt)− bksin(2πfkt)}, 0 ≤ t ≤ N∆t. (C.9)

s(t) contains a bank of modulated sub-carriers, which are mutually orthogonal. If

we compare (C.9) to the modulated QPSK signals in (C.3), it can be seen that the

IFFT transform actually modulates the QPSK signal onto different sub-carriers

[129].

C.3.2 Forming OFDM Signals in MB-OFDM

In the MB-OFDM model, OFDM signals are formed using 128 IFFT, among

which only 100 sub-carriers are used for information data, 12 pilots and 10 guard

sub-carriers, numbered [-61, ..., -1, 1, ..., 61], as illustrated in C.6. The 10 guard
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C.3 OFDM Modulation

sub-carriers are located on the edges of the OFDM symbol, at logical sub-carriers

±61,±60, ...,±57. The pilots are located at sub-carriers ±55,±45,±35,±25,±15

and ±5, they are used for coherent signal detection and to provide robustness

against frequency offset and phase noise. The information data are transmitted

on the 100 remaining sub-carriers. The DC band (numbered 0) and the 5 unused

bands are set to zero [119].

After IFFT, the coefficients 1 to 61 are mapped to the same numbered IFFT

inputs, while the coefficients -61 to -1 are copied into IFFT inputs 67 to 127, the

rest of the inputs are set to zero. After IFFT operation, a zero-padded prefix of

length 32 is pre-appended to the IFFT output and a guard interval is added at

the end of the IFFT to generate an output with 165 samples.
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Figure C.6: Input and outputs of IFFT Transform.

C.3.3 Frequency Hopping and Spreading

For data rates below 200Mbps, a time-domain spreading operation is performed

with a spreading factor of 2. That is, the same information is transmitted over

two OFDM symbols, and these two OFDM symbols are transmitted over different
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C.3 OFDM Modulation

sub-bands to obtain frequency diversity. Figure C.7 illustrates the structure of an

OFDM symbol and how it is hopping in Band Group 1 (3168MHz - 4752MHz).

Time

Frequency, 
MHz

3168

3696

4224

4752

OFDM Symbol
312.5ns

Guard Interval
9.5ns Prefix

60.6ns

Figure C.7: Example of frequency hopping of MB-OFDM Symbol (Reproduced

from [10]).
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Appendix D

Radiated Emission Measurement

The layout of the EMC test site in Open University, Milton Keynes is shown in

Figure D.1.

Figure D.1: Illustration of the EMC radiated emission test site in Open Univer-

sity.
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Illustration of the single powerline ring circuit for radiated emission testing

and the receiving antennas.

Figure D.2: Photograph of the single powerline ring circuit under test and the

pulse generator.
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Figure D.3: Photograph of the receiving antennas: Bi-Conical (left) and Log-

Perodic (right).
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