223 research outputs found

    Scope-Bounded Reachability in Valence Systems

    Get PDF
    Multi-pushdown systems are a standard model for concurrent recursive programs, but they have an undecidable reachability problem. Therefore, there have been several proposals to underapproximate their sets of runs so that reachability in this underapproximation becomes decidable. One such underapproximation that covers a relatively high portion of runs is scope boundedness. In such a run, after each push to stack i, the corresponding pop operation must come within a bounded number of visits to stack i. In this work, we generalize this approach to a large class of infinite-state systems. For this, we consider the model of valence systems, which consist of a finite-state control and an infinite-state storage mechanism that is specified by a finite undirected graph. This framework captures pushdowns, vector addition systems, integer vector addition systems, and combinations thereof. For this framework, we propose a notion of scope boundedness that coincides with the classical notion when the storage mechanism happens to be a multi-pushdown. We show that with this notion, reachability can be decided in PSPACE for every storage mechanism in the framework. Moreover, we describe the full complexity landscape of this problem across all storage mechanisms, both in the case of (i) the scope bound being given as input and (ii) for fixed scope bounds. Finally, we provide an almost complete description of the complexity landscape if even a description of the storage mechanism is part of the input

    Recent Advances on Reachability Problems for Valence Systems (Invited Talk)

    Get PDF

    Bounded Context Switching for Valence Systems

    Get PDF
    We study valence systems, finite-control programs over infinite-state memories modeled in terms of graph monoids. Our contribution is a notion of bounded context switching (BCS). Valence systems generalize pushdowns, concurrent pushdowns, and Petri nets. In these settings, our definition conservatively generalizes existing notions. The main finding is that reachability within a bounded number of context switches is in NPTIME, independent of the memory (the graph monoid). Our proof is genuinely algebraic, and therefore contributes a new way to think about BCS. In addition, we exhibit a class of storage mechanisms for which BCS reachability belongs to PTIME

    The Complexity of Bidirected Reachability in Valence Systems

    Get PDF

    Context-Bounded Verification of Context-Free Specifications

    Get PDF

    Partial Order Reduction for Security Protocols

    Get PDF
    Security protocols are concurrent processes that communicate using cryptography with the aim of achieving various security properties. Recent work on their formal verification has brought procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability, vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits the scalability and practical impact of the verification tools. In this paper, we overcome this difficulty by developing partial order reduction techniques for the verification of security protocols. We provide reduced transition systems that optimally eliminate redundant traces, and which are adequate for model-checking trace equivalence properties of protocols by means of symbolic execution. We have implemented our reductions in the tool Apte, and demonstrated that it achieves the expected speedup on various protocols

    Petri Nets.

    Get PDF

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators
    • …
    corecore