1,887 research outputs found

    Schelling games on graphs

    Get PDF
    We consider strategic games that are inspired by Schelling's model of residential segregation. In our model, the agents are partitioned into k types and need to select locations on an undirected graph. Agents can be either stubborn, in which case they will always choose their preferred location, or strategic, in which case they aim to maximize the fraction of agents of their own type in their neighborhood. We investigate the existence of equilibria in these games, study the complexity of finding an equilibrium outcome or an outcome with high social welfare, and also provide upper and lower bounds on the price of anarchy and stability. Some of our results extend to the setting where the preferences of the agents over their neighbors are defined by a social network rather than a partition into types

    Swap Stability in Schelling Games on Graphs

    Get PDF
    We study a recently introduced class of strategic games thatis motivated by and generalizes Schelling’s well-known resi-dential segregation model. These games are played on undi-rected graphs, with the set of agents partitioned into multi-ple types; each agent either occupies a node of the graph andnever moves away or aims to maximize the fraction of herneighbors who are of her own type. We consider a variant ofthis model that we call swap Schelling games, where the num-ber of agents is equal to the number of nodes of the graph, andagents mayswappositions with other agents to increase theirutility. We study the existence, computational complexity andquality of equilibrium assignments in these games, both froma social welfare perspective and from a diversity perspective

    Segregation in Networks.

    Get PDF
    Schelling (1969, 1971a,b, 1978) considered a simple model with individual agents who only care about the types of people living in their own local neighborhood. The spatial structure was represented by a one- or two-dimensional lattice. Schelling showed that an integrated society will generally unravel into a rather segregated one even though no individual agent strictly prefers this. We make a first step to generalize the spatial proximity model to a proximity model of segregation. That is, we examine models with individual agents who interact ’locally’ in a range of network structures with topological properties that are different from those of regular lattices. Assuming mild preferences about with whom they interact, we study best-response dynamics in random and regular non-directed graphs as well as in small-world and scale-free networks. Our main result is that the system attains levels of segregation that are in line with those reached in the lattice-based spatial proximity model. In other words, mild proximity preferences can explain segregation not just in regular spatial networks but also in more general social networks. Furthermore, segregation levels do not dramatically vary across different network structures. That is, Schelling’s original results seem to be robust also to the structural properties of the network.Spatial proximity model, Social segregation, Schelling, Proximity preferences, Social networks, Undirected graphs, Best-response dynamics.

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3
    • …
    corecore