
Schelling Games on Graphs∗

Edith Elkind1, Jiarui Gan1, Ayumi Igarashi2,
Warut Suksompong1 and Alexandros A. Voudouris1

1Department of Computer Science, University of Oxford
2Department of Computer Science and Communication Engineering, Kyushu University

Abstract

We consider strategic games that are inspired by Schelling’s model of residential segregation.
In our model, the agents are partitioned into k types and need to select locations on an undirected
graph. Agents can be either stubborn, in which case they will always choose their preferred location,
or strategic, in which case they aim to maximize the fraction of agents of their own type in their
neighborhood. We investigate the existence of equilibria in these games, study the complexity of
finding an equilibrium outcome or an outcome with high social welfare, and also provide upper
and lower bounds on the price of anarchy and stability. Some of our results extend to the setting
where the preferences of the agents over their neighbors are defined by a social network rather than
a partition into types.

1 Introduction

In 2015, African Americans constituted 83% of the population of the City of Detroit. At the same time,
the neighboring Oakland County was 77% white, and in the city of Dearborn in Detroit metropolitan area
about 30% of the residents were Arab Americans. Similar phenomena can be observed in many other
major metropolitan areas around the world. In the developed world, the leading cause of such population
patterns is not direct discrimination, which is typically illegal; rather, it is the residents themselves who
tend to select neighborhoods where their ethnic or social group is well-represented. Schelling [1969,
1971] proposed the following stylized model of this phenomenon: Agents of two different types are
placed on a line or on a grid, and are assumed to be happy if at least a fraction τ of the agents within
distance w from them are of the same type, for some parameters τ and w; unhappy agents can either
jump to empty positions or swap positions with other agents. Using simple experiments, Schelling
showed that, even in cases where the agents are not opposed to integration (τ < 1/2), this behavior
leads to almost complete segregation.

In the 50 years since Schelling’s pioneering paper, this segregation model attracted the attention of
many researchers, mostly in sociology and economics [Alba and Logan, 1993; Benard and Willer, 2007;
Benenson et al., 2009; Clark and Fossett, 2008; Pancs and Vriend, 2007; Young, 2001; Zhang, 2004a,b],
but recently also in computer science [Barmpalias et al., 2014, 2015; Brandt et al., 2012; Immorlica et
al., 2017]. While the early work in this area was mainly empirical, the more recent papers have provided
theoretical analysis. In particular, it was proved that the local behavior of unhappy agents is likely to
create very large regions consisting of agents of the same type, even when τ is small, i.e., even when the
agents themselves are tolerant towards having neighbors of the other type. The vast majority of this work
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was based on Schelling’s original model, where agents’ behavior was explained by a simple stochastic
model rather than strategic considerations.

An alternative approach is to assume that the behavior of each agent is strategic, and exploit tools
and techniques from non-cooperative game theory to analyze the induced games. To the best of our
knowledge, there are only two papers in the literature that pursue this agenda. Specifically, Zhang
[2004b] considered a model with transferable utility where agents prefer to be in a balanced neighbor-
hood. More recently, Chauhan et al. [2018] investigated a setting that is closer to Schelling’s motivating
scenario, and also incorporates the idea that, in addition to preferences over the composition of their
neighborhood, agents may also have preferences over locations. In the model of Chauhan et al. [2018],
there are two types of agents, and an agent i’s happiness ratio is defined as the fraction of agents of i’s
type among i’s neighbors. Each agent has two further parameters: a tolerance threshold τ ∈ (0, 1) and
a preferred location. An agent’s primary goal is to find a location where her happiness ratio exceeds
the tolerance threshold; if no such location is available, she aims to maximize her happiness ratio. An
agent’s secondary goal is to minimize the distance to her preferred location. To achieve these goals,
agents can either swap locations (swap games) or jump to unoccupied locations (jump games). The
main contribution of the paper is to identify conditions under which agents are guaranteed to converge
to an equilibrium; for instance, the authors establish that in jump games, convergence is guaranteed if
agents have no preferred locations and the underlying network is a ring.

1.1 Our contribution

The model of Chauhan et al. [2018] makes an important contribution to the literature by enriching
Schelling’s model with two additional components: agents who are fully strategic, and location prefer-
ences. However, the resulting model of agents’ preferences is quite complex, and, consequently, not easy
to analyze: the positive results in the paper are limited to special cases of the utility function and highly
regular networks. In this paper, we propose a simpler model that aims to capture the same phenomena
and is more amenable to formal analysis.

Specifically, just as in the work of Chauhan et al. [2018], in our basic model the agents are partitioned
into k types and the set of available locations is represented by an undirected graph, which we will refer
to as the topology. We also incorporate location preferences in our model; however, instead of assuming
that optimizing the distance to the preferred location is the secondary goal of every agent, we assume
that agents are either stubborn, in which case they stay at their chosen location irrespective of their
surroundings, or strategic, in which case they aim to maximize their happiness ratio by jumping to
an unoccupied location (we do not consider swaps in this paper). Our model captures the fact that,
in practice, many residents are unwilling to move to another area even if they are no longer satisfied
with the composition of their neighborhood. Importantly, unlike Chauhan et al. [2018] or Schelling in
his original work, we do not assume that agents have tolerance thresholds; rather, a strategic agent is
willing to move as long as there exists another location with a better happiness ratio. Towards the end
of the paper (Section 6), we also discuss several variants of this basic model. In particular, we show
that some of our positive results extend to the setting where there are no types, but rather the agents are
connected by a social network and care about the fraction of their friends (i.e., their neighbors in the
social network) among their neighbors in the topology; we refer to the resulting class of games as social
Schelling games.

The rest of the paper is organized as follows. We define our model in Section 2. Then, in Section 3,
we show that for some classes of topologies, such as stars and graphs of maximum degree two, our
games always admit a pure Nash equilibrium, i.e., the strategic agents can be assigned to the nodes of
the topology so that none of them wants to move to a different location; this result holds even for social
Schelling games. In contrast, an equilibrium may fail to exist even if the topology is acyclic and has
maximum degree four. In Section 4, we complement this result by presenting a dynamic programming
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algorithm that decides whether an equilibrium exists on a tree topology; this algorithm runs in poly-
nomial time if the number of types is bounded by a constant. For more general topologies, we prove
that deciding whether an equilibrium exists is an NP-complete problem. Similar hardness and easiness
results hold for the problem of maximizing the social welfare (the total utility of all strategic agents).
In Section 5, we study the effect of the strategic behavior on the social welfare, by bounding the price
of anarchy [Koutsoupias and Papadimitriou, 1999] and the price of stability [Anshelevich et al., 2008].
In particular, we show that even in the absence of stubborn agents it may be impossible to achieve the
maximum social welfare in equilibrium. In Section 6 we discuss several variants and extensions of our
model and establish some preliminary results for these new models, as well as outline directions for
future work.

1.2 Other related work

For an accessible introduction to the Schelling model and a the survey of the literature on non-strategic
variants, see chapter 4 in the book of Easley and Kleinberg [2010], and the papers by Brandt et al. [2012]
and Immorlica et al. [2017].

Besides the work of Chauhan et al. [2018], which was discussed in detail earlier, our model shares
a number of properties with hedonic games [Drèze and Greenberg, 1980; Bogomolnaia and Jackson,
2002]; these are games where agents split into coalitions, and each agent’s utility is determined by the
composition of her coalition. Specifically, in fractional hedonic games [Aziz et al., 2014] the relation-
ships among the agents are described by a weighted directed graph, where the weight of an edge (i, j)
is the value that agent i assigns to agent j, and an agent’s utility for a coalition is her average value for
the other members in the coalition. If the graph is undirected and all edge weights take values in {0, 1},
it can be interpreted as a friendship relation; then an agent’s utility in a coalition is computed as the
fraction of her friends among the coalition members, which is very similar to how utilities are defined
in social Schelling games. On the other hand, the type-based model is closely related to the Bakers and
Millers game discussed by Aziz et al. [2014]. This connection between Schelling games and hedonic
games motivates much of the discussion in Section 6. Of course, a fundamental difference between
hedonic games and our setting is that in the former agents derive their utilities from pairwise disjoint
coalitions, whereas in our model utilities are derived from (overlapping) neighborhoods.

2 The Model

Let N = {1, . . . , n} be a set of n ≥ 2 agents. The agents are partitioned into k ≥ 2 different types
T1, . . . , Tk so that ∪j=1,...,kTj = N ; we write T = (T1, . . . , Tk). We say that two agents i, j ∈ N ,
i 6= j, are friends if i, j ∈ T` for some ` ∈ [k]; otherwise we say that i and j are enemies. For each
i ∈ N , we denote the set of all friends of agent i by F (i).

A topology is an undirected graph G = (V,E) with no self-loops. Each agent in N has to select a
node of this graph so that there are no collisions. The agents are classified as either strategic or stubborn;
letR and S denote these sets of agents so thatR∪S = N . Stubborn agents care about their location only:
each stubborn agent has a preferred node and never moves away from that node. Thus, the preferences
of stubborn agents can be described by an injective mapping λ : S → V ; for each i ∈ S the node λ(i)
is the preferred node of agent i. In contrast, strategic agents do not care about their location, but want to
be in a neighborhood that has a large proportion of their friends, and are willing to move to a currently
unoccupied node in order to increase their utility.

Formally, given a set of agents N = R ∪ S with |N | = n, a topology G = (V,E) with |V | > n
and a mapping λ : S → V , an assignment is a vector v = (v1, . . . , vn) ∈ V n such that (1) vi = λ(i)
for each i ∈ S and (2) vi 6= vj for all i, j ∈ N such that i 6= j; here, vi is the node of the topology
where agent i is positioned. A node v ∈ V is occupied by agent i if v = vi. For a given assignment
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v and an agent i ∈ N , let Ni(v) = {j ∈ N : {vi, vj} ∈ E} be the set of neighbors of agent i.
Let fi(v) = |Ni(v) ∩ F (i)| be the number of neighbors of i in v who are her friends. Similarly, let
ei(v) = |Ni(v)|− fi(v) be the number of neighbors of i in v who are her enemies. Following Chauhan
et al. [2018], we define the utility ui(v) of an agent i ∈ R in v to be 0 if fi(v) = 0; otherwise, her
utility is defined as the fraction of her friends among the agents in the neighborhood:

ui(v) =
fi(v)

fi(v) + ei(v)
.

A tuple I = (R,S, T , G, λ), where R is the set of strategic agents, S is the set of stubborn agents,
T = (T1, . . . , Tk) is a list of types, G = (V,E) is a topology that satisfies |V | > |R|+ |S|, and λ is an
injective mapping from S to V , is called a k-typed Schelling game or k-typed instance; let I be the set
of all possible games. We say that an assignment v is a pure Nash equilibrium (or, simply, equilibrium)
of I if no strategic agent i has an incentive to unilaterally deviate to an empty node z of G in order to
increase her utility, i.e., for every i ∈ R and for every node z ∈ V such that z 6= vj for all j ∈ R ∪ S it
holds that ui(v) ≥ ui(z,v−i), where (z,v−i) is the assignment obtained by changing the i-th entry of
v to z. Let EQ(I) denote the set of all equilibria of game I .

The social welfare of an assignment v is defined as the total utility of all strategic agents:

SW(v) =
∑
i∈R

ui(v).

Let v∗(I) be an assignment that maximizes the social welfare for a given game I; we refer to it as an
optimal assignment.

The price of anarchy (PoA) of game I with at least one equilibrium is the ratio between the optimal
social welfare and the social welfare of the worst equilibrium; its price of stability (PoS) is defined as
the ratio between the optimal social welfare and the social welfare of the best equilibrium:

PoA(I) = sup
v∈EQ(I)

SW(v∗(I))

SW(v)
,

PoS(I) = inf
v∈EQ(I)

SW(v∗(I))

SW(v)
.

The price of anarchy and the price of stability are the suprema of PoA(I) and PoS(I) over all I ∈ I
such that EQ(I) 6= ∅, respectively.

3 Existence of Equilibria

In this section, we focus on the existence of equilibria. We warm up by observing that for highly
structured topologies such as paths, rings, and stars, there is always at least one equilibrium assignment,
and some such assignment can be computed efficiently. This can be shown directly, and also follows
from a more general result established in Section 6 (Theorem 6.1).

Theorem 3.1. Every k-typed Schelling game where the topology is a star or a graph of maximum degree
2 admits at least one equilibrium assignment, which can be computed in polynomial time.

However, in general, an equilibrium may fail to exist; this holds even if the topology is acyclic and
there are no stubborn agents.

Theorem 3.2. For every k ≥ 2 there exists a k-typed instance (R,S, T , G, λ) where S = ∅ and G is a
tree that does not admit an equilibrium.
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Figure 1: Example of the topology used in the proof of Theorem 3.2 for k = 2.

Proof. Given k ≥ 2, we construct an instance with 2k + 1 agents per type; the total number of agents
is n = k(2k + 1). The topology G = (V,E) is a tree that consists of |V | = n + 1 nodes, which are
distributed over four layers. Specifically, the tree has a root α, which has one child β. Node β has 2k−1
children; we denote the set of its children by Γ. Each node in Γ has k children, which are the leaves of
the tree; we denote the set of all leaves by ∆. Figure 1 depicts the topology for k = 2. Now, assume
that there is an equilibrium assignment; note that exactly one node is left empty. We consider four cases
depending on the location of the empty node.

Node α is empty. Assume that the agent occupying node β is of type T . Then, since there are 2k other
agents of type T and there are only 2k − 1 nodes in Γ, there must exist some subtree rooted at a
node in Γ that contains both agents of type T and agents that belong to other types. Then an agent
of type T from this subtree has an incentive to deviate to α.

Node β is empty. Assume that the agent occupying node α is of type T ; note that her utility is 0. If
she does not have an incentive to deviate to β, it follows that no agent of type T occupies a node
in Γ. But then there is an agent of type T who occupies a node in ∆; as her parent is not of type
T , her utility is 0, and she can increase it by moving to β.

Some node γ ∈ Γ is empty. Consider the agents occupying the children of γ; note that their utility
is 0. If at least two of them have the same type, each of them has an incentive to deviate to γ in
order to increase her utility to at least 1

k . If all of them have different types, then there is exactly
one agent of each type in this set. In particular, there is an agent i who has the same type as the
agent occupying β; then i can move to γ to increase her utility.

Some node δ ∈ ∆ is empty. Let γ denote the parent of this node, and suppose that γ is occupied by an
agent i of type T . We say that an agent j of type T is hungry if j 6= i and j is adjacent to at least
one agent of a different type; note that a hungry agent has an incentive to deviate to δ. We claim
that at least one agent is hungry. Indeed, if β is occupied by an agent j of type T , then either j is
hungry or every agent in Γ \ {γ} is hungry. If the agent in β is not of type T and there is an agent
` of type T in Γ \ {γ}, then ` is hungry. Finally, if no agent in Γ \ {γ} is of type T , there exists a
leaf node not in γ’s subtree that is occupied by an agent r of type T ; r is then hungry.

The proof is complete.
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4 Computational Complexity

We now turn our attention to the computational complexity of k-typed Schelling games. The main result
of this section is that finding an equilibrium assignment is computationally intractable.

Theorem 4.1. For every k ≥ 2, given a k-typed Schelling game I , it is NP-complete to decide whether
I admits an equilibrium assignment. The hardness result holds even if all strategic agents belong to the
same type.

Proof. We give a proof for k = 2; it is straightforward to extend it to k ≥ 2. We will use a reduction
from the CLIQUE problem. An instance of this problem is an undirected graph H = (X,Y ) and an
integer s; it is a yes-instance if H has a complete subgraph of size s. Given an instance 〈H, s〉 of
CLIQUE with H = (X,Y ), we assume without loss of generality that s ≥ 5 and construct an instance
of our problem as follows:

• There are two agent types: red and blue.

• There are s strategic red agents; all remaining agents are stubborn. We will describe the stubborn
agents and their locations when defining the topology.

• The topology G = (V,E) consists of three disjoint components G1, G2, and G3 such that

– G1 = (V1, E1), where V1 = X ∪W , |W | = s − 2, E1 = Y ∪ {{v, w} : v ∈ X,w ∈ W}.
There is a stubborn blue agent at each node w ∈W ;

– G2 is a complete bipartite graph with parts L and R, |L| = s− 2, |R| = 4s. Of the 4s nodes
in R, 2s+ 1 nodes are occupied by red agents and 2s−1 nodes are occupied by blue agents;

– G3 has three empty nodes, denoted x, y, and z, and 121 nodes — 41 red and 80 blue —
occupied by stubborn agents. There is an edge between nodes x and y; also, x is connected
to 1 red agent and 2 blue agents; y is connected to 41 red agents and 80 blue agents, and z is
connected to 5 red agents and 7 blue agents.

Note that a strategic red agent obtains a utility of 2s+1
4s = 1

2 + 1
4s by choosing an available node

in G2 and a utility of 5
12 by choosing z. If she chooses x, her utility is 1

3 if y is unoccupied and 1
2

otherwise. Similarly, if she chooses y, her utility is 41
121 if x is unoccupied and 42

122 otherwise; note that
1
3 <

41
121 <

42
122 <

5
12 .

Now, suppose that G contains a clique of size s. If strategic red agents occupy the nodes of that
clique, the utility of each such agent is s−1

(s−1)+(s−2) = 1
2 + 1

4s−6 . Thus, by our choice of parameters, no
agent has a profitable deviation.

On the other hand, suppose that G does not contain a clique of size s. Assume for the sake of
contradiction that there is an equilibrium assignment v.

Suppose first that in v some strategic agents are located in G1. It cannot be the case that each of
them is adjacent to s− 1 friends, as this would mean that their locations form a clique of size s. Hence,
at least one of these agents is adjacent to at most s− 2 friends. As this agent is also adjacent to the s− 2
stubborn blue agents in W , her utility is at most 1

2 . By our choice of parameters, all unoccupied nodes
of G2 offer a higher utility, namely, 1

2 + 1
4s . Thus, if there are strategic agents in G1, all s − 2 nodes

of G2 that are available to strategic agents must be occupied. But then, there are at most two strategic
agents in G1, which means that their utility is at most 1

s−1 <
1
3 (recall that we assume that s ≥ 5). This

leads to a contradiction, as these strategic agents would be better off moving to G3 where their utility
would be at least 1

3 .
Therefore, in equilibrium no strategic agent can be located at a node of G1. Further, since all unoc-

cupied nodes of G2 always offer more utility than any unoccupied nodes of G3 can offer, in equilibrium
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all nodes of G2 are occupied, and the two remaining strategic agents must be in G3, with one of x, y,
and z left empty.

Suppose that z is empty. Then the agent located at y can increase her utility from 42
122 to 5

12 by
moving to z, a contradiction. If y is empty, the agent located at x can increase her utility from 1

3 to 41
121

by moving to y, a contradiction. Finally, if x is empty, the agent located at z can increase her utility
from 5

12 to 1
2 by moving to x, a contradiction. As we have exhausted all possibilities, it follows that if G

does not have a clique of size s, then there is no equilibrium assignment.

The proof of Theorem 4.1 can be adapted to show that maximizing social welfare in Schelling games
is NP-hard as well.

Theorem 4.2. For every k ≥ 2, given a k-typed Schelling game I and a rational value s, it is NP-
complete to decide whether I admits an assignment with social welfare at least s. The hardness result
holds even if k = 2, all strategic agents belong to one type, and the other type consists of a single
stubborn agent.

Proof. We modify the reduction in the proof of Theorem 4.1 by removing the gadgets G2 and G3 and
replacing the set W with a single node w. That is, given an instance 〈H, s〉 of CLIQUE, we construct an
instance of our social welfare maximization problem as follows:

• There are two agent types: red and blue.

• There are s strategic red agents and one stubborn blue agent.

• The topology G = (V,E) is defined so that V = X ∪ {w} and E = Y ∪ {{v, w} : v ∈ X}.

• The single stubborn blue agent is positioned at node w.

Note that the utility of a red agent p in an assignment v is r
r+1 , where r is the number of red agents that

p is adjacent to in v; the function r
r+1 is increasing in r and we have r ≤ s − 1 for any assignment.

Hence, the social welfare of s − 1 can be achieved if and only if the red agents can be placed in G so
that each agent is adjacent to every other red agent, in which case the utility of each strategic agent is
s−1
s ; this is possible if and only if H contains a clique of size s.

On the positive side, for small k we can efficiently decide whether an equilibrium exists if the
topology G is a tree. Our algorithm is based on dynamic programming: it selects an arbitrary node of
G to be the root, and then for every node v of G, it fills out a multidimensional table whose dimension
is linear in the number of types, proceeding from the leaves to the root. It decides whether the given
instance admits an equilibrium by scanning the table at the root node. The details of the algorithm are
given in the appendix.

Theorem 4.3. Given a k-typed Schelling game I with n agents, where the topology G is a tree, we can
decide whether I admits an equilibrium (and compute one if it exists) in time poly(nk), i.e., this problem
lies in the complexity class XP with respect to the number of types k.

By slightly modifying our algorithm, we can compute an assignment that maximizes the social
welfare, either among all assignments or among equilibria.

Corollary 4.4. Given a k-typed Schelling game, where G is a tree, the problems of computing an equi-
librium with maximum social welfare or a socially optimal assignment are in XP with respect to k.

We have not been able to determine whether the problem of computing an equilibrium assignment
is fixed-parameter tractable with respect to the number of types; we leave this question for future work.
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5 Price of Anarchy and Stability

In this section, we investigate the loss in social welfare caused by strategic behavior, as measured by
the price of anarchy and the price of stability; unless otherwise specified, the topology is assumed to
be a connected graph.1 We start by establishing bounds on the price of anarchy for instances with no
stubborn agents.

Theorem 5.1. For k-typed Schelling games with no stubborn agents and n strategic agents, the PoA

• can be unbounded for each k ≥ 2;

• is Θ(n) when there are at least two agents per type;

• is k + o(1) if each type has the same number of agents.

We prove each statement separately.

Lemma 5.2. For k-typed Schelling games with no stubborn agents and n strategic agents, the price of
anarchy can be unbounded for each k ≥ 2.

Proof. Consider an instance with two agents of type T1 and one agent of every other type Ti, i ≥ 2.
The topology is a star with k + 2 nodes. Then, any assignment where the center node is occupied by
an agent of type Ti with i ≥ 2, is an equilibrium with zero social welfare. In contrast, any assignment
where the center node is occupied by an agent of type T1 is again an equilibrium, but the social welfare
is now strictly positive (since the two agents of type T1 are connected to each other).

Lemma 5.3. For k-typed Schelling games with no stubborn agents and n strategic agents, in which
there are at least two agents per type, the price of anarchy is Θ(n) for every k ≥ 2.

Proof. For the lower bound, consider an instance with |Ti| = 2 for i = 1, . . . , k − 1 and |Tk| =
n − 2(k − 1). The topology is a star with n + 1 nodes. Then any assignment where an agent that
belongs to one of the first k − 1 types is at the center of the star is an equilibrium with social welfare
1 + 1/(n − 1) ≤ 2, while for any assignment where an agent of type Tk is at the center of the star the
social welfare is n−2(k−1)−1 +1/(n−1) ≥ n−2k. Hence, the price of anarchy is at least n/2−k.

For the upper bound, consider a k-typed instance with ni ≥ 2 agents of each type Ti, so that
n =

∑
i∈[k] ni. We will show that the social welfare of any equilibrium assignment is at least 1. This

implies our bound on the price of anarchy, since the optimal social welfare is at most n.
Let v be an arbitrary equilibrium assignment. Recall that we assume that the number of available

nodes exceeds the number of agents and the topology is connected, so there must exist some empty
node v with at least one non-empty neighbor. Suppose that v is connected to xi agents of type Ti, for
i ∈ [k], and let s =

∑
i∈[k] xi. By deviating to v, an agent of type Ti would get utility xi

s if she is not
connected to v, and utility xi−1

s−1 otherwise; again, for readability, we use the convention that 0
0 = 0.

Since at equilibrium no agent has an incentive to deviate, her utility is at least the utility she would get
by deviating to v. Therefore, the social welfare at equilibrium is at least

SW(v) ≥
∑
i∈[k]

(
(ni − xi)

xi
s

+ xi
xi − 1

s− 1

)
≥ 1

s

∑
i∈[k]

(ni − 1)xi ≥ 1,

where the last inequality holds since ni ≥ 2 for every i ∈ [k]. This completes the proof.
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Figure 2: The topology used in the proof of Theorem 5.4 for k = 2.

Lemma 5.4. For k-typed Schelling games with no stubborn agents and n strategic agents, the PoA is
k + o(1) if each type has the same number of agents.

Proof. For the lower bound, fix k ≥ 2, let ` ≥ 2 be a parameter and consider an instance with k(`+ 1)
agents per type; altogether there are n = k2(` + 1) agents. The topology consists of n + 1 nodes and
is defined as follows. There are k cliques V1, . . . , Vk of size k` each, and a node y. In each clique Vi
there is a special node wi that is connected to y. Also, for each i ∈ [k] there are k auxiliary nodes
zi,1, . . . , zi,k; each of these nodes is connected to a distinct set of ` nodes in Vi. Let zi,i be the auxiliary
node that is connected to wi. Figure 2 illustrates this topology for k = 2.

There is an optimal assignment where all k(`+ 1) agents of type Ti are placed at the nodes of clique
Vi and the corresponding auxiliary nodes, so that all agents are connected only to agents of the same
type and have maximum utility 1. Therefore, the optimal social welfare is k2(`+ 1).

In contrast, consider the following equilibrium assignment: node y is empty, and for each i, j ∈ [k]
all ` nodes in Vi that are connected to the auxiliary node zi,j as well as zi,j itself are occupied by agents
of type Tj . Since node y is connected to k nodes that are occupied by agents of different types, any
agent would get utility 1/k by deviating there. No agent occupying an auxiliary node has an incentive
to deviate since she is connected only to agents of her type. For every clique, each agent is connected to
exactly ` agents of the same type (` − 1 of whom occupy nodes of the clique and one that occupies the
corresponding auxiliary node) and (k−1)` agents of different type; thus, her utility is 1/k. Consequently,
no agent has an incentive to deviate, and the social welfare is k ·k` · 1k +k2 = k(`+k). Hence, the PoA
is at least k`+k

`+k ; this expression becomes arbitrarily close to k as ` grows.
For the upper bound, consider an arbitrary instance with n agents and k ≥ 2 types so that there

are n/k agents per type. We will show that the social welfare of any equilibrium assignment is at least
n/k − 1. The bound on the PoA then follows, since the optimal social welfare is at most n.

Recall that we assume that the number of available nodes exceeds the number of agents and the
topology is connected, so there must exist some empty node v with at least one non-empty neighbor.
Suppose that v is connected to xi agents of type Ti, for i ∈ [k], and let s =

∑
i∈[k] xi. Consider an

agent of type Ti. A deviation to v would give her utility xi
s if she is not connected to v, and utility xi−1

s−1
otherwise (for readability we use the convention that 0

0 = 0). Since at equilibrium no agent has any
incentive to deviate, her utility is at least the utility she would get by deviating to v. Therefore, the social
welfare at equilibrium is at least

SW(v) ≥
∑
i∈[k]

((n
k
− xi

) xi
s

+ xi
xi − 1

s− 1

)
1We can easily observe that the price of anarchy can be unbounded for not connected topologies. For instance, consider a

topology with one isolated node and a connected subgraph W ⊂ V such that |W | = n. Then, any assignment of the n agents
at the nodes of W is an equilibrium. Hence, there might exist equilibria with zero social welfare.
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Figure 3: The topology used in the proof of Lemma 5.7.

≥ 1

s

∑
i∈[k]

((n
k
− xi

)
xi + xi(xi − 1)

)
=
n

k
− 1.

The proof is complete.

In the setting considered in Theorem 5.1 the PoA improves significantly if we require each type to
have the same number of agents. In the presence of stubborn agents, to ensure that the price of anarchy
does not depend on the number of agents n, we additionally require that this constraint holds both for
strategic and for stubborn agents.

Theorem 5.5. For k-typed Schelling games with n agents the PoA

• is Ω(n) for each k ≥ 2 even if there is an equal number of agents per type;

• is k+ o(1) if each type has the same number of strategic agents and the same number of stubborn
agents.

Again, we prove each statement separately.

Lemma 5.6. For k-typed Schelling games with no stubborn agents and n strategic agents, the price of
anarchy is Ω(n) for each k ≥ 2, even if there is an equal number of agents per type.

Proof. Pick a positive integer ` and consider an instance with n = k` agents such that there are `
strategic agents of type T1, one strategic agent and ` − 1 stubborn agents of type T2, and ` stubborn
agents of type Ti for each i = 3, . . . , k. The topology is a star with n+ 1 nodes, and all stubborn agents
occupy leaf nodes. Then, any assignment where the strategic agent of type T2 occupies the center node
is an equilibrium with social welfare `−1

k`−1 <
1
k , while the social welfare of any assignment where the

center node is occupied by an agent of type T1 is `− 1 + `−1
k`−1 > `− 1. Hence, the price of anarchy is

at least k(`− 1) = n− k.

Lemma 5.7. For k-typed instances, where all types have the same number of strategic agents and the
same number of stubborn agents, the price of anarchy is k + o(1).

Proof. We first establish the lower bound. Suppose that k is odd, and consider an instance with k types
of agents such that there are k strategic agents and one stubborn agent si per type Ti. The number of
strategic agents is s = k2. The topology is depicted in Figure 3 and consists of k cliques of size k + 1,
which are connected to each other via an auxiliary node z. The stubborn agent si of type Ti occupies
the node of the i-th clique that is adjacent to z.

In an optimal assignment all strategic agents of type Ti occupy the nodes of the i-th clique: this
ensures that the utility of each strategic agent is 1 and the social welfare is equal to s. In contrast,

10



consider an assignment where the auxiliary node z is left empty, and the i-th clique includes one agent
of type Ti and k−1

2 pairs of agents of different types.2 This is an equilibrium since all strategic agents
have utility 1/k, which is exactly the utility they would get by deviating to z. Therefore, the social
welfare achieved by this equilibrium assignment is s

k , and the price of anarchy is at least k.
When k is even, we can modify the instance as follows. For each i ∈ [k], there are k − 1 strategic

agents and one stubborn agent per type Ti. The topology consists of k − 1 cliques of size k, which
are connected to each other via an auxiliary node z, together with k dummy nodes each connected to
a single node occupied by a stubborn player. For i ∈ [k − 1], the stubborn agent of type Ti occupies
the node of the i-th clique that is adjacent to z, and the stubborn agent of type Tk occupies one of the
dummy nodes.

If all strategic agents of type Ti, for i ∈ [k−1], occupy the nodes of the i-th clique, and the agents of
type Tk occupy the dummy nodes, then the social welfare is equal to (k − 1)2. On the other hand, there
is an equilibrium where agents of type Tk occupy dummy nodes and agents of other types are distributed
over the cliques as in the equilibrium for odd k. Then, for i ∈ [k − 1], the utility of each strategic agent
of type Ti is 1

k−1 . The social welfare in this case is k − 1, and so the price of anarchy is at least k − 1.
For the upper bound, consider an arbitrary k-typed instance with t strategic and ` stubborn agents

per type, for some integers t > 0 and ` ≥ 0. We will show that the social welfare of any equilibrium
assignment is at least t − 1. The bound then follows since the utility of every strategic agent is at most
1, meaning that the optimal social welfare is at most kt.

Let v be an arbitrary equilibrium assignment. Since the number of available nodes exceeds the
number of agents and the topology is connected, there must exist some empty node v with at least one
non-empty neighbor. Suppose that v is connected to xi agents of type Ti, for i ∈ [k], and xRi of them
are strategic. Also, let s =

∑
i∈[k] xi. Now, consider a strategic agent of type Ti. A deviation to v would

give her utility xi
s if she is not connected to v, and utility xi−1

s−1 otherwise; again, for readability, we use
the convention 0

0 = 0. Since at equilibrium no strategic agent has any incentive to deviate, her utility is
at least the utility she would get by deviating to v. Therefore, the social welfare at equilibrium is at least

SW(v) ≥
∑
i∈[k]

((
t− xRi

) xi
s

+ xRi
xi − 1

s− 1

)

≥ 1

s

∑
i∈[k]

(
txi − xRi

)
≥ t− 1,

where the last inequality follows since xRi ≤ xi. The proof is complete.

Finally, we show that in Schelling games even the best equilibrium need not be socially optimal,
even if all agents are strategic.3

Theorem 5.8. For k-typed Schelling games the PoS

• can be unbounded for each k ≥ 2;

• is at least 3 for each even k ≥ 2, if there is the same number of stubborn agents per type;

• is at least 34/33 for each k ≥ 2, even in the absence of stubborn agents.

The proof of the above theorem follows by the next three lemmas.
2To see how such an assignment can be computed, split k − 1 agents of type Ti into pairs and think of each pair as one

ball of color Ti and each clique as a bin. Then, there are k−1
2

balls of each color, which must be placed in k bins so that each
bin contains k−1

2
balls of different color. To accomplish this, we can order the balls so that balls of type Ti appear in positions

i, k + i, 2k + i, . . . ; hence, we can simply put the first k−1
2

balls in the first bin, the next k−1
2

balls in the second bin, etc.
3Note that the assumption of a connected topology is no longer necessary for meaningful bounds on the price of stability,

since the PoS deals with the best-case equilibrium assignment rather than the worst-case one.
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Figure 4: The topology used in the proof of Lemma 5.9 for k = 2.

Lemma 5.9. For k-typed Schelling games, the price of stability can be unbounded for each k ≥ 2.

Proof. We prove this lemma only for k = 2; our instance can then be generalized to any number of types
by adding isolated nodes in the topology which are occupied by stubborn players of different types.

Let ε > 0 be a parameter such that x = 2
ε − 2 and y = 1

ε − 1 are integer numbers. Consider an
instance with x+y+ 1 stubborn red agents, one stubborn blue agent, and two strategic blue agents. The
topology and the placement of the stubborn agents is depicted in Figure 4. There are only three possible
assignments depending on which pair of nodes (out of the three available) the two strategic blue agents
occupy.

We claim that the only equilibrium assignment is the one where node z1 is left empty with social
welfare 1

y+1 = ε. First, observe that this assignment is indeed an equilibrium since no strategic agent
has any incentive to deviate: node z1 can give utility 1

x+2 = ε
2 to the agent occupying node z3 and utility

0 to the agent occupying node z2. Since the two agents get utility 1
y+1 = ε and 0, respectively, none

of them has any incentive to deviate. To verify the uniqueness of the equilibrium, observe that in the
other two possible assignments there exists a strategic agent that can deviate to the empty node in order
to increase her utility from ε

2 to ε in case the strategic blue agents are connected, or from ε to 1 in case
the strategic blue agents are not connected.

In contrast, the assignment according to which the strategic blue agents are connected to each other
(by occupying nodes z1 and z2) is the optimal one with social welfare 1 + ε

2 . Therefore, the price of
stability is at least 1

ε + 1
2 , which tends to infinity as ε tends to zero.

Lemma 5.10. For k-typed Schelling games, the price of stability is at least 3, for each even k ≥ 2, if
there is the same number of stubborn agents per type.

Proof. For simplicity, we will prove the lemma for k = 2. Let x ≥ 1 be a parameter and consider an
instance with two types of agents (red and blue) such that there are x + 1 stubborn red agents, x + 1
stubborn blue agents, and two strategic blue agents. The topology and the placement of the stubborn
agents are depicted in Figure 5. There are only three possible assignments depending on which pair of
nodes (out of the three available) the two strategic blue agents occupy.

We claim that the only equilibrium assignment is the one where node y is left empty with social
welfare x+1

2x+1 . First, observe that this assignment is indeed an equilibrium since no strategic agent has
any incentive to deviate: node y can give utility 1/2 to the agent occupying node z and utility 0 to the
agent occupying node w. Since the two agents get utility x+1

2x+1 > 1/2 and 0, respectively, none of them
has any incentive to deviate. To verify the uniqueness of the equilibrium, observe that in the other two
possible assignments there exists a strategic agent that can deviate to the empty node in order to increase
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Figure 5: The topology used in the proof of Lemma 5.10 for k = 2.
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Figure 6: The topology used in the proof of Lemma 5.11 for k = 2.

her utility from 1/2 to x+1
2x+1 > 1/2 in case the strategic blue agents are connected, or from x+1

2x+1 to 1 in
case the strategic blue agents are not connected.

In contrast, the assignment according to which the strategic blue agents are connected to each other
(by occupying nodes y andw) is the optimal one with social welfare 3/2. Therefore, the price of stability
is at least 3(2x+1)

2(x+1) , which tends to 3 as x becomes arbitrarily large.
The bound can easily be extended to the case of k types (for even k ≥ 2) by replicating k/2 times

the whole instance and connecting the topologies via an empty node.

Lemma 5.11. For k-typed Schelling games, the price of stability is at least 34/33, for each k ≥ 2, even
in the absence of stubborn agents.

Proof. For the sake of simplicity, we prove the lemma for k = 2, for which the desired lower bound is
34/33; we will discuss how to generalize our construction to k > 2 at the end of the proof.

Consider an instance with two types of agents (red and blue) such that there are five red and five blue
agents; the topology is depicted in Figure 6.

Let v be the following assignment: node x, node y1 and all three w-type nodes are occupied by red
agents, while node y2, all z-type nodes and node β are occupied by blue agents. One can easily verify
that v is an equilibrium since no agent has any incentive to deviate to the empty node α; the social
welfare is SW(v) = 33/4.

Let v′ be the following assignment: node x, node y1 and all three w-type nodes are occupied by
red agents, while node y2, two of the z-type nodes, node α and node β are occupied by blue agents.
This is not an equilibrium assignment since the blue agent occupying α has utility 1/2 and hence has an
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incentive to deviate to the empty z-type node in order to increase her utility to 1. However, it achieves
an improved social welfare of SW(v′) = 34/4.

In order to complete the proof, we need to argue that v is an equilibrium with the maximum social
welfare. To this end, we establish some properties of equilibrium assignments.

• Node x must be occupied. Assume otherwise that x is left empty. If nodes y1, α and y2 are
occupied by agents of the same type, then at least one of them will be connected to some agent
of the other type, and therefore will have an incentive to deviate to x in order to connect only to
agents of the same type. Hence, without loss of generality (due to symmetry), at y1, α and y2 there
are two red agents and one blue agent. Trivially, the blue agent cannot be connected to any red
agents, since otherwise any such red agent would get zero utility and have an incentive to deviate
to x in order to increase her utility to 2/3. Since there are four remaining blue agents, at least
one of them must be connected to one of the two red agents occupying nodes at the second layer.
Hence, this blue agent gets zero utility and has an incentive to deviate to x in order to increase her
utility to 1/3.

• Nodes y1 and y2 must be occupied. Assume otherwise that one of these nodes, say y1, is left
empty, while node x is occupied by a red agent (without loss of generality). If all w-type nodes
are occupied by agents of the same type, then all these agents get zero utility and have an incentive
to deviate to y1 in order to increase their utility to at least 2/3. So, agents of both types must
appear at the w-type nodes. But then, the red such agent has an incentive to deviate to y1 in order
to increase her utility from zero to at least 1/3.

• Agents of both types must appear at the nodes of the second layer. Assume otherwise that only
agents of the same type appear at these nodes, while node x is occupied by a red agent (without
loss of generality). Let us further assume that y1, α and y2 are all occupied by blue agents. Then,
since the empty node is one of those at the third layer, two of the blue agents occupying nodes
y1, α and y2 have an incentive to deviate in order to increase their utility from strictly less than
1 (since they are connected to the red agent occupying node x) to 1. In case y1, α and y2 are all
occupied by red agents, then all blue agents occupy nodes at the third layer, meaning that at least
two of the red agents occupying y1, α and y2 get utility strictly less than 1, and only one of them
can be connected to the empty node. Hence, the other such red agent has an incentive to deviate
to the empty node and increase her utility to 1. Therefore, the empty node must be one of those at
the second layer.

Since y1 and y2 are occupied, α has to be the empty node. If β is occupied by a red agent, then
this agent gets zero utility and has an incentive to deviate to α in order to connect to the red agent
occupying x. Hence, β must be occupied by a blue agent. If y1 and y2 are occupied by blue agents,
then either one of them is connected only to red agents or both are connected to three red agents
(including the one at x) and one blue agent. In any case, at least one of them has an incentive to
deviate to α and increase her utility from 0 or 1/4 to 1/2. So, nodes y1 and y2 must be occupied
by red agents. But then, all blue agents occupy nodes at the third layer, get zero utility, and the
four of them that are connected to the red agents occupying y1 and y2 have an incentive to deviate
to α in order to increase their utility to 1/2.

• The type of agents that appears at node x can appear only once more at nodes y1, α or y2. Assume
otherwise that x is occupied by a red agent (without loss of generality) and two nodes at the second
layer, say y1 and α, are occupied by red agents as well; the case where y1 and y2 are occupied by
red players is similar. By the discussion above, y2 must then be occupied by a blue agent. Observe
that since there are four remaining blue agents, one of them (agent p) has to be connected to one
of the red agents occupying y1 and α. Trivially, none of the z-type nodes can be empty, since this
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would give an incentive to p to deviate there in order to increase her utility from zero to 1. But
then, this means that one of the w-type nodes or node β is empty, thus giving an incentive to the
red agent occupying x to deviate in order to increase her utility from 2/3 to 1.

Given the above structural properties, there can only be two equilibria (and two more symmetric
ones, produced by exchanging agents of different types):

• Nodes x and y1 are occupied by red agents, while nodes α and y2 are occupied by blue agents;
the assignment for the nodes of the third layer is then trivially defined. Such an equilibrium has
social welfare 97/12.

• Nodes x and y1 are occupied by red agents, node y2 is occupied a blue agent, and node α is empty;
the assignment for the nodes of the third layer is trivially defined so that node β is occupied by
the last blue agent that gets zero utility. Such an equilibrium has social welfare 33/4.

Hence, the second type of equilibrium assignment is the one with maximum social welfare, and the
lower bound on the price of stability follows.

We can generalize the above instance to k > 2 agent types as follows. Let G0 be the topology used
in the above instance for two agent types. Now, consider an instance where the topology consists of G0

and k− 2 isolated nodes. There are five agents of type T1, five agents of type T2, and one agent per type
Ti for i ∈ {3, . . . , k}; the agents of type T1 and T2 correspond to the red and blue agents in the instance
for k = 2.

Observe that the agents of type Ti for i ∈ {3, . . . , k} get zero utility in any possible assignment,
since they are unique of their type. Consequently, even though there are many equilibrium assignments
where these agents occupy nodes of G0, none of these equilibria achieve higher utility than the ones
where these agents occupy isolated nodes, and agents of types T1 and T2 occupy the nodes of G0.
Consequently, following the same reasoning as in the above instance for k = 2, we can conclude that
the price of stability is at least 34/33.

6 Variants and Extensions

Throughout this paper, we focused on a setting where agents are classified into k types and their utilities
are defined by the proportion of their friends among their neighbors. In this section, we introduce three
variants of this model and briefly discuss some preliminary results; a more thorough investigation of
these alternative models is left for future work.

6.1 Schelling games with social networks

In k-typed Schelling games, the friendship relation is defined by types: an agent’s set of friends consists
of all agents of the same type. One can also consider a more general friendship relation, defined by an
arbitrary undirected graph G with vertex set N , which we will refer to as the social network: the set of
friends of agent i consists of all neighbors of i in G. We refer to the resulting class of games as social
Schelling games.

By definition, k-typed Schelling games form a subclass of social Schelling games: a k-typed game
corresponds to a social network consisting of k cliques. Hence, our next theorem implies Theorem 3.1
in Section 3.

Theorem 6.1. Every social Schelling game where the topology is a star or a graph of maximum degree
2 admits at least one equilibrium assignment, which can be computed in polynomial time.
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Proof. Consider a social Schelling game with a set of agents N = R∪S, where R is the set of strategic
agents and S is the set of stubborn agents, a topology G = (V,E), a social network G, and a function
λ : S → V that describes the locations of the stubborn agents; for each i ∈ R, let F (i) denote the set of
nodes of G that are adjacent to i.

Suppose thatG is a star with center v. Consider an assignment v such that v = vi for some i ∈ R∪S.
All strategic agents are indifferent among the leaves, so no agent in R \ {i} has a beneficial deviation.
Now, consider agent i. If i is stubborn, she cannot deviate; if i is strategic, she does not want to deviate,
as any leaf node would give her zero utility. Hence, v is an equilibrium.

Now, suppose thatG = (V,E) is a graph of maximum degree 2. Our analysis for this case is inspired
by Theorem 6 in the work of Chauhan et al. [2018]. For each v ∈ V , let deg(v) denote the degree of a
vertex v in G. Given an assignment v, for each edge e = {v, w}, we define

φ(v, e) =


1 if w = vi, v = vj and i ∈ F (j)

0 if w = vi, v = vj and i 6∈ F (j)
1
3 if v or w is unoccupied in v.

Let Φ(v) =
∑

e∈E φ(v, e). We claim that Φ(v) is an ordinal potential function for our setting, i.e., if
an agent deviates to increase her utility, the potential function increases.

To see this, consider an assignment v and an agent i with vi = v that deviates to an empty node w;
denote the resulting assignment by v′. Given an edge e ∈ E, let

∆(e) = φ(v′, e)− φ(v, e).

Also, for z ∈ {v, w}, let ∆(z) =
∑

e:z∈e ∆(e). Note that i’s move only changes the potential of edges
incident to v andw. Hence, if v andw are not adjacent, we have Φ(v′)−Φ(v) = ∆(v)+∆(w). We will
now prove that ∆(v)+∆(w) > 0; if v andw are not adjacent, this establishes our claim; towards the end
of the proof we will explain how to handle the case {v, w} ∈ E. We make the following observations.

• As no agent benefits from moving to an isolated node, it must be deg(w) > 0.

• If deg(w) = 1, let ew ∈ E be the edge that is adjacent to w. Since w is empty in v, we have
that φ(v, ew) = 1

3 . Since agent i benefits from moving to w, we have that φ(v′, ew) = 1. Hence,
∆(ew) = 2

3 and, consequently, ∆(w) = 2
3 .

• If deg(w) = 2, let ew,1 and ew,2 be the two edges incident to w. Since w is empty in v, we
have that φ(v, ew,1) = φ(v, ew,2) = 1

3 . Since agent i benefits from moving to w, we have that
φ(v′, ew,1) + φ(v′, ew,2) ≥ 1. Hence, ∆(w) ≥ 1

3 .

• If deg(v) = 0 then by definition ∆(v) = 0.

• If deg(v) = 1, let ev ∈ E be the edge that is incident to v. Since i benefits from moving away
from v, we have that φ(v, ev) ≤ 1

3 . Since v is left empty in v′, we have that φ(v′, ev) = 1
3 and,

consequently, ∆(v) ≥ 0.

• If deg(v) = 2, let ev,1 and ev,2 be the two edges incident to v. Since v is left empty in v′, we have
that φ(v′, ev,1) = φ(v′, ev,2) = 1

3 . Since agent i benefits from moving away from v, we have that
φ(v, ev,1) + φ(v, ev,2) ≤ 1. Thus, ∆(v) ≥ −1

3 .

By the above observations, it follows that ∆(v) + ∆(w) > 0 unless ∆(v) = −1
3 and ∆(w) = 1

3 .
However, this is impossible: ∆(v) = −1

3 only if in v agent i is adjacent to one friend and one enemy,
and ∆(w) = 1

3 only if in v′ agent i is adjacent to one friend and one enemy; but in such a case, agent i
would have no incentive to move, a contradiction. This completes the analysis for when {v, w} /∈ E.
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Now, suppose that v and w are adjacent. In this case we have that Φ(v′)−Φ(v) = ∆(v) + ∆(w)−
∆({v, w}). However, since w is empty in v and v is empty in v′, it must be ∆({v, w}) = 1

3 −
1
3 = 0,

and hence ∆(v) + ∆(w) > 0 implies Φ(v′)− Φ(v) > 0 in this case as well.
Finally, note that the potential function takes values in the set { `3 | ` = 0, . . . , 3|V |}, where |V |

is the number of nodes of the topology graph. Therefore, any best response dynamics starting from an
arbitrary initial configuration converges to an equilibrium in O(|V |) steps.

Conversely, all our non-existence results (Theorem 3.2), hardness results (Theorems 4.1 and 4.2)
and lower bounds on the PoA and PoS (Section 5) apply to social Schelling games as well. In fact,
maximizing the social welfare in social Schelling games is NP-hard even if all agents are strategic
(whereas our hardness reduction for k-typed games uses stubborn agents). Moreover, this hardness
result holds even if G is a graph of maximum degree 2, i.e., social welfare maximization may be hard
even when finding equilibria is easy.

Theorem 6.2. Given a social Schelling game I and a rational value s, it is NP-complete to decide
whether I admits an assignment with social welfare at least s. The hardness result holds even if all
agents are strategic and even if G is a graph of maximum degree 2.

Proof. It is immediate that our problem is in NP. To show NP-hardness, we will use a reduction from the
HAMILTONIAN CYCLE (HC) problem. An instance of HC is an undirected graph H = (X,Y ); it is a
yes-instance if and only if the vertices of this graph can be ordered as x1, . . . , x|X| so that {x|X|, x1} ∈ E
and for each i ∈ [|X| − 1] it holds that {xi, xi+1} ∈ E.

Given an instance H = (X,Y ) of HC, where X is the set of nodes and Y is the set of edges, we
construct an instance of our social welfare maximization problem as follows:

• For every node v ∈ X , we have a strategic agent pv with set of friends F (pv) = {pz : {z, v} ∈
Y }.

• The topology G = (V,E) is a cycle consisting of |X| nodes together with an isolated node w.

By construction, a social welfare of |X| can be achieved if and only if the agents can be assigned to the
nodes of the cycle so that each of them is adjacent to two friends; this is possible if and only if H admits
a Hamiltonian cycle.

Identifying special classes of social Schelling games that allow for good upper bounds on the price
of anarchy and the price of stability is an interesting research direction. We note that the upper bounds
in Section 5 only apply to k-typed instances with further restrictions on the structure of each type, so
they cannot be extended to the social setting.

6.2 Schelling games with enemy aversion

In our model, if an agent is not adjacent to any friends, it does not matter how many enemies she is
adjacent to. This is also the case in fractional hedonic games: agents are indifferent between being alone
and being in coalitions consisting of their enemies. This assumption makes sense when the “enemies”
of an agent are simply agents that do not contribute to her welfare. However, an agent may prefer being
alone to being in a group full of enemies. In the context of hedonic games, such preferences are modeled
by modified fractional hedonic games [Olsen, 2012; Elkind et al., 2016; Bredereck et al., 2019], where
the utility of an agent in a coalition with f friends and e enemies is f+1

f+e+1 , i.e., the agent herself is
included in the set of her friends.

Many of our results extend to this definition of utility. For example, we can construct instances
without equilibria even for 2-typed games, using ideas similar to those in the reduction of Theorem 4.1.
Further, for k-typed games with a tree topology and a constant number of types, equilibrium existence
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can be decided in polynomial time, by adapting the proof of Theorem 4.3. However, it remains an open
question if instances with no stubborn agents always admit an equilibrium in this model.

6.3 Schelling games with linear utilities

Throughout the paper we assume that an agent’s utility is determined by the fraction of her friends among
her neighbors. Alternatively, an agent may simply care about the number of friends in her neighborhood
or the difference between the number of friends fi and the number of enemies ei; more broadly, her
utility may be an arbitrary linear function of fi and ei (in the context of hedonic games, this model
corresponds to a subclass of additively separable hedonic games; e.g., see [Aziz and Savani, 2016]).
It turns out that games of this form are potential games and therefore have at least one equilibrium;
furthermore, in the absence of stubborn agents there is always an equilibrium that is socially optimal.

Theorem 6.3. Consider a variant of the (social) Schelling model where the utility of each agent i, who
is adjacent to fi friends and ei enemies, is αfi − βei for some α, β ≥ 0. Then, every instance has an
equilibrium assignment which can be computed in polynomial time. Moreover, if no agent is stubborn,
the price of stability is 1.

Proof. Consider a game with a set of strategic agents R, a set of stubborn agents S, a topology G =
(V,E) and a friendship relation that is defined by a social network G. Fix non-negative constants α and
β such that the utility of an agent who is adjacent to f friends and e enemies in the topology is given
by αf − βe. Our analysis is inspired by Proposition 2 in the work of Bogomolnaia and Jackson [2002],
showing that a Nash stable partition always exists in symmetric additively separable hedonic games.

Let N = R ∪ S and v be an assignment. For each i ∈ N let φi(v) = αfi(v) − βei(v), and
Φ(v) =

∑
i∈N φi(v). We will argue that Φ is an ordinal potential function for our game. Note that if

all agents are strategic, Φ(v) is equal to the social welfare of v. However, in general this is not the case:
intuitively, Φ ascribes “strategic” utilities to the stubborn agents.

Consider an assignment v and an agent i with vi = v. Suppose that i has a beneficial deviation from
v to another node w ∈ V , which is empty in v; denote the resulting assignment by v′. Suppose that
agent i has f friends and e enemies at v, and f ′ friends and e′ enemies at v′. Then, since the deviation
is profitable, it holds that φi(v′)− φi(v) = α(f ′ − f)− β(e′ − e) > 0. We claim that Φ(v′) > Φ(v).

Indeed, consider an agent j ∈ N \ {i}. If j is a neighbor of i in both v and v′, or if j is not a
neighbor of i in both v and v′, then φj(v) = φj(v

′).
Now, suppose that j is adjacent to i in v, but not in v′. If j is a friend of i, then φj(v′) = φj(v)−α,

and if j is an enemy of i, then φj(v′) = φj(v) + β. Similarly, if j is adjacent to i in v′, but not in v,
then if j is a friend of i, then φj(v′) = φj(v) + α, and if j is an enemy of i, then φj(v′) = φj(v)− β.
Thus, the overall change in potential can be computed as

Φ(v′)− Φ(v) = φi(v
′)− φi(v)− αf + βe+ αf ′ − βe′

= 2

(
α(f ′ − f)− β(e′ − e)

)
> 0.

It follows that, if the strategic agents follow the best response dynamics starting from any initial
configuration, they will converge to an equilibrium. Moreover, the assignment that maximizes Φ is an
equilibrium, so if all agents are strategic, this equilibrium maximizes the social welfare. Note also that
the function Φ takes values in the set {αi−βj | 0 ≤ i, j ≤ n2}, where n is the number of agents. Thus,
any best response dynamics converges in O(n4) iterations.
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7 Conclusions

In this paper, we investigated Schelling games on graphs, both from the perspective of equilibrium
analysis and from the perspective of social welfare. Concerning equilibrium existence, our positive
results are rather limited in scope: while an equilibrium always exists for very simple topologies, such
as stars and paths, it may fail to exist even if the topology does not contain cycles. It would be interesting
to obtain a complete characterization of topologies that guarantee existence of equilibria.

For welfare maximization, a natural question is whether one can efficiently compute assignments
with nearly optimal social welfare. We note that our NP-hardness reductions are not approximation
preserving, so they do not rule out this possibility. Another interesting algorithmic question is whether
the problem of computing equilibria in k-typed games remains hard in the absence of stubborn agents;
we conjecture that this is indeed the case, but were unable to prove it.
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A Proof of Theorem 4.3

For readability, we will present a polynomial-time algorithm that can decide whether an equilibrium
exists for instances with two agent types (red and blue) and no stubborn agents; towards the end of
the proof, we will explain how to extend it to instances with a constant number of agent types that
may contain stubborn agents. Let TR denote the set of all red agents and let TB denote the set of all
blue agents. Throughout the proof, we use the convention that a fraction of the form a

b evaluates to 0
whenever a = 0.

Consider an instance I with n agents and tree topology G = (V,E). Pick an arbitrary node r to be
the root of G. Let tree(v) denote the set of descendants of v (including v), and let child(v) be the set of
children of v. Observe that the utility of a strategic agent takes values in the set U = {i/j : i ∈ [n], j ∈
[n], i ≤ j} ∪ {0}; note that |U| ≤ n2.

We use the following dynamic programming approach. For each node v ∈ V , we fill out a table τv,
which contains an entry τv(C,n,k, ǔ, û) for each tuple (C,n,k, ǔ, û), where

• C ∈ {blue, red, empty},

• n = (nB, nR) ∈ [n]2,

• k = (kB, kR) ∈ [n]2,

• ǔ = (ǔB, ǔR, ǔB† , ǔR†) ∈ U4, and

• û = (ûB, ûR, ûtop) ∈ U3.

Thus, the number of entries in each table is 3 · n4 · |U|7, which is polynomial in the input size.
The value of each entry is either true of false. Specifically, τv(C,n,k, ǔ, û) = true if and only

if there exists an assignment of a subset of agents to the nodes in tree(v) that satisfies the following
conditions:

1. If C = empty, then node v is empty and otherwise it is assigned to an agent of color C.

2. Exactly nB nodes of tree(v) are assigned to blue agents, and exactly nR nodes of tree(v) are
assigned to red agents.

3. Exactly kB nodes of child(v) are assigned to blue agents, and exactly kR nodes of child(v) are
assigned to red agents.

4. Every blue agent in a node of child(v) gets utility at least ǔB† and every red agent in a node of
child(v) gets utility at least ǔR† .

5. Every blue agent in a node of tree(v)\ (child(v)∪{v}) gets utility at least ǔB and every red agent
in a node of tree(v) \ (child(v) ∪ {v}) gets utility at least ǔR.

6. If a blue agent that is not already in tree(v) moves to an empty node of tree(v) \ {v}, her utility
would be at most ûB , and if a red agent that is not already in tree(v) moves to an empty node of
tree(v) \ {v}, her utility would be at most ûR.

7. If node v is not empty, then the agent occupying v can get utility at most ûtop by moving to an
empty node of tree(v) \ {v}.

8. All agents in nodes of tree(v)\{v} do not have an incentive to deviate to empty nodes of tree(v)\
{v}.
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Condition 8 directly relates to stability of tree(v) \ {v}, whereas conditions 1–7 are auxiliary, providing
the necessary information that we need in order to determine the stability of node v, and fill out the
dynamic programming table for the parent of v.

Consider the table τr at the root node r. The game admits an equilibrium if and only if there exists
(C,n,k, ǔ, û) such that nB = |TB|, nR = |TR|, τr(C,n,k, ǔ, û) = true for the root node r of G, and,
moreover,

• if C = blue, then
kB

kB + kR
≥ ûtop;

• if C = red, then
kR

kB + kR
≥ ûtop;

• if C = empty, then for each X ∈ {R,B} with kX > 0 it holds that

kX
kB + kR

≤ ǔX ,
kX − 1

kB + kR − 1
≤ ǔX† .

The first two conditions ensure that if the root node is not empty, the agent in that node does not have
an incentive to move to another node of the tree, and the last condition ensures that if the root node is
empty, no agent has an incentive to deviate there (the exact form of this condition depends on whether
the potential deviator is located in a child of r). Together with condition 8, these conditions ensure that
no agent wants to deviate.

The existence of a tuple (C,n,k, ǔ, û) with these properties can be decided in polynomial time by
going through all entries of τr. It remains to show that τr can be filled in in polynomial time.

Given C ∈ {red, blue, empty}, we write 1B(C) = 1 if C = blue and 0 otherwise; similarly,
1R(C) = 1 if C = red and 0 otherwise, and 1E(E) = 1 if C = empty and 0 otherwise.

We fill the tables in all nodes starting from the leaf nodes of G. For every leaf node v, we have

Tv(C,n,k, ǔ, û) =

{
true, if n = (1B(C),1R(C)) ,k = (0, 0) and û = (0, 0, 0)

false, otherwise.
(1)

Suppose now that for a node w we have constructed the table τv for each v ∈ child(w). We will
construct τw using these tables as follows. Let child(w) = {v1, . . . , vL}. We create an intermediate table
θ`w for each ` ∈ {0, 1, . . . , L}. This table has an entry θ`w(C,n,k, ǔ, û) for every tuple (C,n,k, ǔ, û).
The entry θ`w(C,n,k, ǔ, û) is set to true if and only if conditions 1–8 hold for the subtree tree`(w)
obtained from tree(w) by deleting the subtrees rooted at v`+1, . . . , vL. Note that, by construction, we
have τw(C,n,k, ǔ, û) = θLw(C,n,k, ǔ, û).

We construct θ`w sequentially for ` = 0, . . . , L. We can fill out θ0w using Equation (1). Next, suppose
that we have filled out the first ` tables, i.e., θ0w, . . . , θ

`−1
w . We combine θ`−1w and τv` in order to build

θ`w as follows: θ`w(C,n,k, ǔ, û) = true if and only if there exist a pair of tuples (C ′,n′,k′, ǔ′, û′)
and (C ′′,n′′,k′′, ǔ′′, û′′) such that θ`−1w (C ′,n′,k′, ǔ′, û′) = τv`(C

′′,n′′,k′′, ǔ′′, û′′) = true and the
following conditions hold:

1. C ′ = C.

2. n′′ + n′ = n.

3. 1B(C ′′) + k′B = kB and 1R(C ′′) + k′R = kR.
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4. For each X ∈ {B,R},
ǔ′X† ≥ ǔX†

so that the agents occupying nodes v1, . . . , v`−1 have utility at least ǔX† . Additionally, if C ′′ =
blue, then

k′′B + 1B(C ′)

k′′B + k′′R + (1− 1E(C ′))
≥ ǔB†

and, if C ′′ = red, then
k′′R + 1R(C ′)

k′′B + k′′R + (1− 1E(C ′))
≥ ǔR†

so that the agent occupying node v` has utility at least ǔB† if she is blue or at least ǔR† if she is
red. Therefore, if these conditions hold, all agents occupying the first ` children of w have utility
at least ǔB† or ǔR† , according to their type.

5. For each X ∈ {B,R},
ǔ′X , ǔ

′′
X , ǔ

′′
X† ≥ ǔX ,

so that all agents of type X occupying the nodes of tree`(w) \ (child(w) ∪ {w}) have utility at
least ǔX .

6. For each X ∈ {B,R},
û′X ≤ ûX , û′′X ≤ ûX

and, if C ′′ = empty, then
k′′X + 1X(C ′)

k′′B + k′′R + (1− 1E(C ′))
≤ ûX ,

so that the agents that do not occupy nodes of tree`(w) have no incentive to deviate to any node in
the first `− 1 branches, any node other than v` in the `-th branch, or node v`.

7. If C ′ = blue, then
û′top ≤ ûtop, û′′B ≤ ûtop,

and, if C ′′ = empty, then
k′′B

k′′B + k′′R
≤ ûtop,

so that the blue agent i∗ occupying node w has utility at most ûtop if she deviates to a node in
the first ` − 1 branches, a node in the `-th branch (excluding node v`), or node v`. Similarly, if
C ′ = red, then

û′top ≤ ûtop, û′′R ≤ ûtop

and, if C ′′ = empty,
k′′R

k′′B + k′′R
≤ ûtop.

8. ǔ′′B, ǔ
′′
B†
≥ û′B so that blue agents occupying nodes in the `-th branch (excluding v`) have no

incentive to deviate to any node in the first `− 1 branches. Also, if C ′′ = empty, then

ǔ′′B ≥
k′′B + 1B(C ′)

k′′B + k′′R + 1B(C ′)
,

and if k′′B > 0 then

ǔ′′B† ≥
k′′B + 1B(C ′)− 1

k′′B + k′′R + 1B(C ′)− 1
,

23



so that blue agents occupying nodes other than v` in the `-th branch have no incentive to deviate
to v`. Since τv`(C

′′,n′′,k′′, ǔ′′, û′′) = true means that these agents already have no incentive to
deviate to other empty nodes in the `-th branch, now these agents have no incentive to deviate to
any empty node in tree`(w) \ {w}. Further, if C ′′ = blue, then

k′′B + 1B(C ′)

k′′B + k′′R + 1B(C ′)
≥ û′B, û′′top,

so that if there is a blue agent at node v`, she has no incentive to deviate as well. Similar constraints
must hold for red agents.

9. ǔ′B, ǔ
′
B†
≥ û′′B so that blue agents occupying nodes in the first ` − 1 branches have no incentive

to deviate to nodes in the `-th branch (excluding node v`). Additionally, if C ′′ = empty, then

ǔ′B, ǔ
′
B† ≥

k′′B + 1B(C ′)

k′′B + k′′R
,

so that blue agents in the first ` − 1 branches have no incentive to deviate to v` if it is empty.
Similar constraints must hold for red agents as well.

These constraints can be verified in polynomial time by checking each pair of entries of the tables θ`−1w

and τv` . This completes the proof for instances with two agent types and no stubborn agents.
To extend the algorithm to instances with stubborn agents, we can set the entry values of the table

τv to false if v is occupied by a stubborn agent of a type other than C, and only consider possible
deviations by strategic agents. The algorithm can trivially be extended to instances with constant number
of different agent types; the size of the tables would scale exponentially with the number of types.
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