87 research outputs found

    Scheduling of routing table calculation schemes in open shortest path first using artificial neural network

    Get PDF
    Internet topology changes due to events such as router or link goes up and down. Topology changes trigger routing protocol to undergo convergence process which eventually prepares new shortest routes needed for packet delivery. Real-time applications (e.g. VoIP) are increasingly being deployed in internet nowadays and require the routing protocols to have quick convergence times in the range of milliseconds. To speed-up its convergence time and better serve real-time applications, a new routing table calculation scheduling schemes for Interior Gateway Routing Protocol called Open Shortest Path First (OSPF) is proposed in this research. The proposed scheme optimizes the scheduling of OSPF routing table calculations using Artificial Neural Network technique called Generalized Regression Neural Network. The scheme determines the suitable hold time based on three parameters: LSA-inter arrival time, the number of important control message in queue, and the computing utilization of the routers. The GRNN scheme is tested using Scalable Simulation Framework (SSFNet version 2.0) network simulator. Two kind of network topology with several link down scenarios used to test GRNN scheme and existing scheme (fixed hold time scheme). Results shows that GRNN provide faster convergence time compared to the existing scheme

    FERN: Leveraging Graph Attention Networks for Failure Evaluation and Robust Network Design

    Full text link
    Robust network design, which aims to guarantee network availability under various failure scenarios while optimizing performance/cost objectives, has received significant attention. Existing approaches often rely on model-based mixed-integer optimization that is hard to scale or employ deep learning to solve specific engineering problems yet with limited generalizability. In this paper, we show that failure evaluation provides a common kernel to improve the tractability and scalability of existing solutions. By providing a neural network function approximation of this common kernel using graph attention networks, we develop a unified learning-based framework, FERN, for scalable Failure Evaluation and Robust Network design. FERN represents rich problem inputs as a graph and captures both local and global views by attentively performing feature extraction from the graph. It enables a broad range of robust network design problems, including robust network validation, network upgrade optimization, and fault-tolerant traffic engineering that are discussed in this paper, to be recasted with respect to the common kernel and thus computed efficiently using neural networks and over a small set of critical failure scenarios. Extensive experiments on real-world network topologies show that FERN can efficiently and accurately identify key failure scenarios for both OSPF and optimal routing scheme, and generalizes well to different topologies and input traffic patterns. It can speed up multiple robust network design problems by more than 80x, 200x, 10x, respectively with negligible performance gap

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Intelligent multimedia flow transmission through heterogeneous networks using cognitive software defined networks

    Full text link
    [ES] La presente tesis aborda el problema del encaminamiento en las redes definidas por software (SDN). Específicamente, aborda el problema del diseño de un protocolo de encaminamiento basado en inteligencia artificial (AI) para garantizar la calidad de servicio (QoS) en transmisiones multimedia. En la primera parte del trabajo, el concepto de SDN es introducido. Su arquitectura, protocolos y ventajas son comentados. A continuación, el estado del arte es presentado, donde diversos trabajos acerca de QoS, encaminamiento, SDN y AI son detallados. En el siguiente capítulo, el controlador SDN, el cual juega un papel central en la arquitectura propuesta, es presentado. Se detalla el diseño del controlador y se compara su rendimiento con otro controlador comúnmente utilizado. Más tarde, se describe las propuestas de encaminamiento. Primero, se aborda la modificación de un protocolo de encaminamiento tradicional. Esta modificación tiene como objetivo adaptar el protocolo de encaminamiento tradicional a las redes SDN, centrado en las transmisiones multimedia. A continuación, la propuesta final es descrita. Sus mensajes, arquitectura y algoritmos son mostrados. Referente a la AI, el capítulo 5 detalla el módulo de la arquitectura que la implementa, junto con los métodos inteligentes usados en la propuesta de encaminamiento. Además, el algoritmo inteligente de decisión de rutas es descrito y la propuesta es comparada con el protocolo de encaminamiento tradicional y con su adaptación a las redes SDN, mostrando un incremento de la calidad final de la transmisión. Finalmente, se muestra y se describe algunas aplicaciones basadas en la propuesta. Las aplicaciones son presentadas para demostrar que la solución presentada en la tesis está diseñada para trabajar en redes heterogéneas.[CA] La present tesi tracta el problema de l'encaminament en les xarxes definides per programari (SDN). Específicament, tracta el problema del disseny d'un protocol d'encaminament basat en intel·ligència artificial (AI) per a garantir la qualitat de servici (QoS) en les transmissions multimèdia. En la primera part del treball, s'introdueix les xarxes SDN. Es comenten la seva arquitectura, els protocols i els avantatges. A continuació, l'estat de l'art és presentat, on es detellen els diversos treballs al voltant de QoS, encaminament, SDN i AI. Al següent capítol, el controlador SDN, el qual juga un paper central a l'arquitectura proposta, és presentat. Es detalla el disseny del controlador i es compara el seu rendiment amb altre controlador utilitzat comunament. Més endavant, es descriuen les propostes d'encaminament. Primer, s'aborda la modificació d'un protocol d'encaminament tradicional. Aquesta modificació té com a objectiu adaptar el protocol d'encaminament tradicional a les xarxes SDN, centrat a les transmissions multimèdia. A continuació, la proposta final és descrita. Els seus missatges, arquitectura i algoritmes són mostrats. Pel que fa a l'AI, el capítol 5 detalla el mòdul de l'arquitectura que la implementa, junt amb els mètodes intel·ligents usats en la proposta d'encaminament. A més a més, l'algoritme intel·ligent de decisió de rutes és descrit i la proposta és comparada amb el protocol d'encaminament tradicional i amb la seva adaptació a les xarxes SDN, mostrant un increment de la qualitat final de la transmissió. Finalment, es mostra i es descriuen algunes aplicacions basades en la proposta. Les aplicacions són presentades per a demostrar que la solució presentada en la tesi és dissenyada per a treballar en xarxes heterogènies.[EN] This thesis addresses the problem of routing in Software Defined Networks (SDN). Specifically, the problem of designing a routing protocol based on Artificial Intelligence (AI) for ensuring Quality of Service (QoS) in multimedia transmissions. In the first part of the work, SDN is introduced. Its architecture, protocols and advantages are discussed. Then, the state of the art is presented, where several works regarding QoS, routing, SDN and AI are detailed. In the next chapter, the SDN controller, which plays the central role in the proposed architecture, is presented. The design of the controller is detailed and its performance compared to another common controller. Later, the routing proposals are described. First, a modification of a traditional routing protocol is discussed. This modification intends to adapt a traditional routing protocol to SDN, focused on multimedia transmissions. Then, the final proposal is described. Its messages, architecture and algorithms are depicted. As regards AI, chapter 5 details the module of the architecture that implements it, along with all the intelligent methods used in the routing proposal. Furthermore, the intelligent route decision algorithm is described and the final proposal is compared to the traditional routing protocol and its adaptation to SDN, showing an increment of the end quality of the transmission. Finally, some applications based on the routing proposal are described. The applications are presented to demonstrate that the proposed solution can work with heterogeneous networks.Rego Máñez, A. (2020). Intelligent multimedia flow transmission through heterogeneous networks using cognitive software defined networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160483TESI

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Green Resource Management in Distributed Cloud Infrastructures

    Get PDF
    Computing has evolved over time according to different paradigms, along with an increasing need for computational power. Modern computing paradigms basically share the same underlying concept of Utility Computing, that is a service provisioning model through which a shared pool of computing resources is used by a customer when needed. The objective of Utility Computing is to maximize the resource utilization and bring down the relative costs. Nearly a decade ago, the concept of Cloud Computing emerged as a virtualization technique where services were executed remotely in a ubiquitous way, providing scalable and virtualized resources. The spread of Cloud Computing has been also encouraged by the success of the virtualization, which is one of the most promising and efficient techniques to consolidate system's utilization on one side, and to lower power, electricity charges and space costs in data centers on the other. In the last few years, there has been a remarkable growth in the number of data centers, which represent one of the leading sources of increased business data traffic on the Internet. An effect of the growing scale and the wide use of data centers is the dramatic increase of power consumption, with significant consequences both in terms of environmental and operational costs. In addition to power consumption, also carbon footprint of the Cloud infrastructures is becoming a serious concern, since a lot of power is generated from non-renewable sources. Hence, energy awareness has become one of the major design constraints for Cloud infrastructures. In order to face these challenges, a new generation of energy-efficient and eco-sustainable network infrastructures is needed. In this thesis, a novel energy-aware resource orchestration framework for distributed Cloud infrastructures is discussed. The aim is to explain how both network and IT resources can be managed while, at the same time, the overall power consumption and carbon footprint are being minimized. To this end, an energy-aware routing algorithm and an extension of the OSPF-TE protocol to distribute energy-related information have been implemented

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    Enabling knowledge-defined networks : deep reinforcement learning, graph neural networks and network analytics

    Get PDF
    Significant breakthroughs in the last decade in the Machine Learning (ML) field have ushered in a new era of Artificial Intelligence (AI). Particularly, recent advances in Deep Learning (DL) have enabled to develop a new breed of modeling and optimization tools with a plethora of applications in different fields like natural language processing, or computer vision. In this context, the Knowledge-Defined Networking (KDN) paradigm highlights the lack of adoption of AI techniques in computer networks and – as a result – proposes a novel architecture that relies on Software-Defined Networking (SDN) and modern network analytics techniques to facilitate the deployment of ML-based solutions for efficient network operation. This dissertation aims to be a step forward in the realization of Knowledge-Defined Networks. In particular, we focus on the application of AI techniques to control and optimize networks more efficiently and automatically. To this end, we identify two components within the KDN context whose development may be crucial to achieve self-operating networks in the future: (i) the automatic control module, and (ii) the network analytics platform. The first part of this thesis is devoted to the construction of efficient automatic control modules. First, we explore the application of Deep Reinforcement Learning (DRL) algorithms to optimize the routing configuration in networks. DRL has recently demonstrated an outstanding capability to solve efficiently decision-making problems in other fields. However, first DRL-based attempts to optimize routing in networks have failed to achieve good results, often under-performing traditional heuristics. In contrast to previous DRL-based solutions, we propose a more elaborate network representation that facilitates DRL agents to learn efficient routing strategies. Our evaluation results show that DRL agents using the proposed representation achieve better performance and learn faster how to route traffic in an Optical Transport Network (OTN) use case. Second, we lay the foundations on the use of Graph Neural Networks (GNN) to build ML-based network optimization tools. GNNs are a newly proposed family of DL models specifically tailored to operate and generalize over graphs of variable size and structure. In this thesis, we posit that GNNs are well suited to model the relationships between different network elements inherently represented as graphs (e.g., topology, routing). Particularly, we use a custom GNN architecture to build a routing optimization solution that – unlike previous ML-based proposals – is able to generalize well to topologies, routing configurations, and traffic never seen during the training phase. The second part of this thesis investigates the design of practical and efficient network analytics solutions in the KDN context. Network analytics tools are crucial to provide the control plane with a rich and timely view of the network state. However this is not a trivial task considering that all this information turns typically into big data in real-world networks. In this context, we analyze the main aspects that should be considered when measuring and classifying traffic in SDN (e.g., scalability, accuracy, cost). As a result, we propose a practical solution that produces flow-level measurement reports similar to those of NetFlow/IPFIX in traditional networks. The proposed system relies only on native features of OpenFlow – currently among the most established standards in SDN – and incorporates mechanisms to maintain efficiently flow-level statistics in commodity switches and report them asynchronously to the control plane. Additionally, a system that combines ML and Deep Packet Inspection (DPI) identifies the applications that generate each traffic flow.La evolución del campo del Aprendizaje Maquina (ML) en la última década ha dado lugar a una nueva era de la Inteligencia Artificial (AI). En concreto, algunos avances en el campo del Aprendizaje Profundo (DL) han permitido desarrollar nuevas herramientas de modelado y optimización con múltiples aplicaciones en campos como el procesado de lenguaje natural, o la visión artificial. En este contexto, el paradigma de Redes Definidas por Conocimiento (KDN) destaca la falta de adopción de técnicas de AI en redes y, como resultado, propone una nueva arquitectura basada en Redes Definidas por Software (SDN) y en técnicas modernas de análisis de red para facilitar el despliegue de soluciones basadas en ML. Esta tesis pretende representar un avance en la realización de redes basadas en KDN. En particular, investiga la aplicación de técnicas de AI para operar las redes de forma más eficiente y automática. Para ello, identificamos dos componentes en el contexto de KDN cuyo desarrollo puede resultar esencial para conseguir redes operadas autónomamente en el futuro: (i) el módulo de control automático y (ii) la plataforma de análisis de red. La primera parte de esta tesis aborda la construcción del módulo de control automático. En primer lugar, se explora el uso de algoritmos de Aprendizaje Profundo por Refuerzo (DRL) para optimizar el encaminamiento de tráfico en redes. DRL ha demostrado una capacidad sobresaliente para resolver problemas de toma de decisiones en otros campos. Sin embargo, los primeros trabajos que han aplicado DRL a la optimización del encaminamiento en redes no han conseguido rendimientos satisfactorios. Frente a dichas soluciones previas, proponemos una representación más elaborada de la red que facilita a los agentes DRL aprender estrategias de encaminamiento eficientes. Nuestra evaluación muestra que cuando los agentes DRL utilizan la representación propuesta logran mayor rendimiento y aprenden más rápido cómo encaminar el tráfico en un caso práctico en Redes de Transporte Ópticas (OTN). En segundo lugar, se presentan las bases sobre la utilización de Redes Neuronales de Grafos (GNN) para construir herramientas de optimización de red. Las GNN constituyen una nueva familia de modelos de DL específicamente diseñados para operar y generalizar sobre grafos de tamaño y estructura variables. Esta tesis destaca la idoneidad de las GNN para modelar las relaciones entre diferentes elementos de red que se representan intrínsecamente como grafos (p. ej., topología, encaminamiento). En particular, utilizamos una arquitectura GNN específicamente diseñada para optimizar el encaminamiento de tráfico que, a diferencia de las propuestas anteriores basadas en ML, es capaz de generalizar correctamente sobre topologías, configuraciones de encaminamiento y tráfico nunca vistos durante el entrenamiento La segunda parte de esta tesis investiga el diseño de herramientas de análisis de red eficientes en el contexto de KDN. El análisis de red resulta esencial para proporcionar al plano de control una visión completa y actualizada del estado de la red. No obstante, esto no es una tarea trivial considerando que esta información representa una cantidad masiva de datos en despliegues de red reales. Esta parte de la tesis analiza los principales aspectos a considerar a la hora de medir y clasificar el tráfico en SDN (p. ej., escalabilidad, exactitud, coste). Como resultado, se propone una solución práctica que genera informes de medidas de tráfico a nivel de flujo similares a los de NetFlow/IPFIX en redes tradicionales. El sistema propuesto utiliza sólo funciones soportadas por OpenFlow, actualmente uno de los estándares más consolidados en SDN, y permite mantener de forma eficiente estadísticas de tráfico en conmutadores con características básicas y enviarlas de forma asíncrona hacia el plano de control. Asimismo, un sistema que combina ML e Inspección Profunda de Paquetes (DPI) identifica las aplicaciones que generan cada flujo de tráfico.Postprint (published version

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT
    corecore