644 research outputs found

    Spatial Frequency Scheduling for Uplink SC-FDMA based Linearly Precoded LTE Multiuser MIMO Systems

    Get PDF
    This paper investigates the performance of the uplink single carrier (SC) frequency division multiple access (FDMA) based linearly precoded multiuser multiple input multiple output (MIMO) systems with frequency domain packet scheduling. A mathematical expression of the received signal to interference plus noise ratio (SINR) for the studied systems is derived and a utility function based spatial frequency packet scheduling algorithms is investigated. The schedulers are shown to be able to exploit the available multiuser diversity in time, frequency and spatial domains

    Multiuser Scheduler and FDE Design for SC-FDMA MIMO Systems

    Get PDF
    This paper presents a novel spatial frequency domain packet scheduling and frequency domain equalization (FDE) algorithm for uplink Single Carrier (SC) Frequency Division Multiple Access (FDMA) multiuser MIMO systems. Our analysis model is confined to 3GPP uplink SC-FDMA transmission with Multi-user (MU) Spatial Division Multiplexing (SDM). The results show that the proposed MU-MIMO scheduler in conjunction with the new FDE singificantly increases the maximum achievable rate and improves the bit error rate (BER) performance for the system under consideration

    Dynamic User Grouping and Joint Resource Allocation with Multi-Cell Cooperation for Uplink Virtual MIMO Systems

    Get PDF
    This paper proposes a novel joint resource allocation algorithm combining dynamic user grouping, multi-cell cooperation and resource block (RB) allocation for single carrier-frequency division multiple access (SC-FDMA) uplink in multicell virtual MIMO systems. We first develop the dynamic multicell user grouping criteria using minimum mean square error (MMSE) equalization and adaptive modulation (AM) with bit error rate (BER) constraint. Then, we formulate and solve a new throughput maximization problem whose resource allocation includes cell selection, dynamic user grouping and RB pattern assignment. Furthermore, to reduce the computational complexity significantly, especially in the case of large numbers of users and RBs, we present an efficient iterative Hungarian algorithm based on user and resource partitions (IHA_URP) to solve the problem by decomposing the large scale problem into a series of small scale sub-problems, which can obtain close-to-optimal solution with much lower complexity. The simulation results show that our proposed joint resource allocation algorithm with dynamic multicell user grouping scheme achieves better system throughput with BER guarantee than fixed user grouping algorithm and other proposed schemes in the literature

    Joint Multi-Cell Resource Allocation Using Pure Binary-Integer Programming for LTE Uplink

    Full text link
    Due to high system capacity requirement, 3GPP Long Term Evolution (LTE) is likely to adopt frequency reuse factor 1 at the cost of suffering severe inter-cell interference (ICI). One of combating ICI strategies is network cooperation of resource allocation (RA). For LTE uplink RA, requiring all the subcarriers to be allocated adjacently complicates the RA problem greatly. This paper investigates the joint multi-cell RA problem for LTE uplink. We model the uplink RA and ICI mitigation problem using pure binary-integer programming (BIP), with integrative consideration of all users' channel state information (CSI). The advantage of the pure BIP model is that it can be solved by branch-and-bound search (BBS) algorithm or other BIP solving algorithms, rather than resorting to exhaustive search. The system-level simulation results show that it yields 14.83% and 22.13% gains over single-cell optimal RA in average spectrum efficiency and 5th percentile of user throughput, respectively.Comment: Accepted to IEEE Vehicular Technology Conference (VTC Spring), Seoul, Korea, May, 201

    LTE Advanced: Technology and Performance Analysis

    Get PDF
    Wireless data usage is increasing at a phenomenal rate and driving the need for continued innovations in wireless data technologies to provide more capacity and higher quality of service. In October 2009, 3rd Generation Partnership Project (3GPP) submitted LTE-Advanced to the ITU as a proposed candidate IMT-Advanced technology for which specifications could become available in 2011 through Release-10 . The aim of “LTE-Advanced” is to further enhance LTE radio access in terms of system performance and capabilities compared to current cellular systems, including the first release of LTE, with a specific goal to ensure that LTE fulfills and even surpass the requirements of “IMT-Advanced” as defined by the International Telecommunication Union (ITU-R) . This thesis offers an introduction to the mobile communication standard known as LTE Advanced, depicting the evolution of the standard from its roots and discussing several important technologies that help it evolve to accomplishing the IMT-Advanced requirements. A short history of the LTE standard is offered, along with a discussion of its standards and performance. LTE-Advanced details include analysis on the physical layer by investigating the performance of SC-FDMA and OFDMA of LTE physical layer. The investigation is done by considering different modulation schemes (QPSK, 16QAM and 64QAM) on the basis of PAPR, BER, power spectral density (PSD) and error probability by simulating the model of SC-FDMA & OFDMA. To evaluate the performance in presence of noise, an Additive White Gaussian Noise (AWGN) channel was introduced. A set of conclusions is derived from our results describing the effect of higher order modulation schemes on BER and error probability for both OFDMA and SC-FDMA. The power spectral densities of both the multiple access techniques (OFDMA and SC-FDMA) are calculated and result shows that the OFDMA has higher power spectral density.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Channel Estimation And Correction Methods For Ofdma Based Lte Downlink System

    Get PDF
    In present era, cellular communication plays a vital role for communicating over long distance. The number of mobile subscribers is increasing tremendously day by day. 3GPP LTE is the evolution of the UMTS in response to ever-increasing demands for high quality multimedia services according to users\u27 expectations. The average data consumption exceeds hundreds of Megabytes per subscriber per month. To introduce, summarize and get acquainted with this new technology LTE is one of the main objectives of my thesis. The Downlink is always considered an important factor in terms of coverage and capacity aspects in between Downlink and Uplink factors for cellular communication. Orthogonal Frequency Division Multiple Access (OFDMA) and Multiple Input Multiple Output (MIMO) are the new technologies which enhance the performance of the traditional wireless communication experience for downlink. In this thesis, we considered the downlink system for channel estimation by using different algorithms and interpolation methods. Channel Estimation algorithms such as Least Squares Estimation (LSE) and Minimum Mean Square Error (MMSE) have been evaluated for different channel models. The interpolation method used in algorithms is Linear, Piecewise constant, Averaged and Pilot averaged. I measured the performance of these algorithms in terms of Bit Error Rate (BER) and Symbol Error Rate (SER). The results are presented to illustrate the salient concept of the LTE communication system

    Lo standard LTE

    Get PDF
    Per il sempre crescente traffico dati la rete mobile, attualmente basata sul sistema UMTS, sta cominciando a dimostrare i suoi limiti. Per questo il 3GPP (third Generation Partnership Project) ha avviato la standardizzazione di un nuovo sistema di telecomunicazioni mobile, chiamato LTE (Long Term Evolution), che migliora il precedente ponendo ambiziosi traguardi in quanto a prestazioni. Attualmente il sistema è ancora in fase sperimentale e le prime applicazioni commerciali si avranno solo tra il 2010-2011. Questa tesi ha lo scopo di studiare le principali caratteristiche del livello fisico dell'LTE e valutarne le prestazioni offert

    Channel Estimation in Uplink of Long Term Evolution

    Get PDF
    Long Term Evolution is considered to be the fastest spreading communication standard in the world.To live up to the increasing demands of higher data rates day by day and higher multimedia services,the existing UMTS system was further upgraded to LTE.To meet their requirements novel technologies are employed in the downlink as well as uplink like Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier- Frequency Division Multiple Access (SC-FDMA).For the receiver to perform properly it should be able to recover athe transmittedadata accurately and this is done through channel estimation.Channel Estimation in LTE engages Coherent Detection where a prior knowledge of the channel is required,often known as Channel State Information (CSI).This thesis aims at studying the channel estimation methods used in LTE and evaluate their performance in various multipath models specified by ITU like Pedestrian and Vehicular.The most commonly used channel estimation algorithms are Least Squarea(LS) and Minimum MeanaSquare error (MMSE) algorithms.The performance of these estimators are evaluated in both uplink as well as Downlink in terms of the Bit Error Rate (BER).It was evaluated for OFDMA and then for SC-FDMA,further the performance was assessed in SC-FDMA at first without subcarrier Mapping and after that with subcarrier mapping schemes like Interleaved SC-FDMA (IFDMA) and Localized SC-FDMA (lFDMA).It was found from the results that the MMSE estimator performs better than the LS estimator in both the environments.And the IFDMA has a lower PAPR than LFDMA but LFDMA has a better BER performance
    corecore