370 research outputs found

    A Survey of Pipelined Workflow Scheduling: Models and Algorithms

    Get PDF
    International audienceA large class of applications need to execute the same workflow on different data sets of identical size. Efficient execution of such applications necessitates intelligent distribution of the application components and tasks on a parallel machine, and the execution can be orchestrated by utilizing task-, data-, pipelined-, and/or replicated-parallelism. The scheduling problem that encompasses all of these techniques is called pipelined workflow scheduling, and it has been widely studied in the last decade. Multiple models and algorithms have flourished to tackle various programming paradigms, constraints, machine behaviors or optimization goals. This paper surveys the field by summing up and structuring known results and approaches

    Doctor of Philosophy

    Get PDF
    dissertationSolutions to Partial Di erential Equations (PDEs) are often computed by discretizing the domain into a collection of computational elements referred to as a mesh. This solution is an approximation with an error that decreases as the mesh spacing decreases. However, decreasing the mesh spacing also increases the computational requirements. Adaptive mesh re nement (AMR) attempts to reduce the error while limiting the increase in computational requirements by re ning the mesh locally in regions of the domain that have large error while maintaining a coarse mesh in other portions of the domain. This approach often provides a solution that is as accurate as that obtained from a much larger xed mesh simulation, thus saving on both computational time and memory. However, historically, these AMR operations often limit the overall scalability of the application. Adapting the mesh at runtime necessitates scalable regridding and load balancing algorithms. This dissertation analyzes the performance bottlenecks for a widely used regridding algorithm and presents two new algorithms which exhibit ideal scalability. In addition, a scalable space- lling curve generation algorithm for dynamic load balancing is also presented. The performance of these algorithms is analyzed by determining their theoretical complexity, deriving performance models, and comparing the observed performance to those performance models. The models are then used to predict performance on larger numbers of processors. This analysis demonstrates the necessity of these algorithms at larger numbers of processors. This dissertation also investigates methods to more accurately predict workloads based on measurements taken at runtime. While the methods used are not new, the application of these methods to the load balancing process is. These methods are shown to be highly accurate and able to predict the workload within 3% error. By improving the accuracy of these estimations, the load imbalance of the simulation can be reduced, thereby increasing the overall performance

    Scheduling with processing set restrictions : a survey

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Theory and design of portable parallel programs for heterogeneous computing systems and networks

    Get PDF
    A recurring problem with high-performance computing is that advanced architectures generally achieve only a small fraction of their peak performance on many portions of real applications sets. The Amdahl\u27s law corollary of this is that such architectures often spend most of their time on tasks (codes/algorithms and the data sets upon which they operate) for which they are unsuited. Heterogeneous Computing (HC) is needed in the mid 90\u27s and beyond due to ever increasing super-speed requirements and the number of projects with these requirements. HC is defined as a special form of parallel and distributed computing that performs computations using a single autonomous computer operating in both SIMD and MIMD modes, or using a number of connected autonomous computers. Physical implementation of a heterogeneous network or system is currently possible due to the existing technological advances in networking and supercomputing. Unfortunately, software solutions for heterogeneous computing are still in their infancy. Theoretical models, software tools, and intelligent resource-management schemes need to be developed to support heterogeneous computing efficiently. In this thesis, we present a heterogeneous model of computation which encapsulates all the essential parameters for designing efficient software and hardware for HC. We also study a portable parallel programming tool, called Cluster-M, which implements this model. Furthermore, we study and analyze the hardware and software requirements of HC and show that, Cluster-M satisfies the requirements of HC environments

    Algorithm Libraries for Multi-Core Processors

    Get PDF
    By providing parallelized versions of established algorithm libraries, we ease the exploitation of the multiple cores on modern processors for the programmer. The Multi-Core STL provides basic algorithms for internal memory, while the parallelized STXXL enables multi-core acceleration for algorithms on large data sets stored on disk. Some parallelized geometric algorithms are introduced into CGAL. Further, we design and implement sorting algorithms for huge data in distributed external memory
    corecore