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A B ST R A C T

TH EO R Y  A N D  D ESIG N  OF PO RTABLE PARALLEL PR O G R A M S
FO R  H ETER O G EN EO U S C O M PU T IN G  SY STEM S A N D

N ETW O R K S

by
Y ing-C hieh Wu

A recurring problem with high-performance computing is that advanced archi­

tectures generally achieve only a small fraction of their peak performance on many 

portions of real applications sets. The Amdahl’s law corollary of t his is that such 

architectures often spend most of their time on tasks (codes/algorithms and the 

data sets upon which they operate) for which they are unsuited. Heterogeneous 

Computing (HC) is needed in the mid 90’s and beyond due to ever increasing super­

speed requirements and the number of projects with these requirements. HC is 

defined as a special form of parallel and distributed computing that performs compu­

tations using a single autonomous computer operating in both SIMD and MiMD 

modes, or using a number of connected autonomous computers. Physical implemen­

tation of a heterogeneous network or system is currently possible due to the existing 

technological advances in networking and supercomputing. Unfortunately, software 

solutions for heterogeneous computing are still in their infancy. Theoretical models, 

software tools, and intelligent resource-inanagement schemes need to be developed 

to support heterogeneous computing efficiently. In this thesis, we present a hetero­

geneous model of computation which encapsulates all the essential parameters for 

designing efficient software and hardware for HC. We also study a portable parallel 

programming tool, called Cluster-M, which implements this model. Furthermore, 

we study and analyze the hardware and software requirements of HC and show that 

Cluster-M satisfies the requirements of HC environments.
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C H A P T E R  1 

IN T R O D U C T IO N  TO H ETER O G EN EO U S C O M P U T IN G

In this chapter, we introduce heterogeneous computing in Section 1.1 and discuss 

the three layers of heterogeneous computing in Sections 1.2 to 1.4. The organization 

of this thesis is then presented in Section 1.5.

1.1 Introduction

Today’s supercomputing applications are characterized by a high level of diversity 

in terms of the type of embedded parallelism and by an ever-increasing demand for 

computational performance. Conventional parallel supercomputing systems utilize 

a number of homogeneous processors to cooperate on solving parallel tasks. These 

systems are usually classified according to the multiplicity of data and instruction 

streams [31].

Such homogeneous systems provide efficient solutions to tasks with embedded 

parallelism matching that offered by the system (i.e. SIMD, MIMD, vector). If more 

than one type of parallelism is present in a task, the system performance is greatly 

degraded. If greater computational power is needed, the whole system needs to be 

replaced by a more powerful homogeneous system, a costly solution.

Heterogeneous computing is a novel approach that overcomes several short­

comings of conventional homogeneous parallel systems. Heterogeneous computing 

(HC) is defined as a special form of parallel and distributed computing tha t performs 

computations using a single autonomous computer operating in both SIMD and 

MIMD modes, or using a number of connected autonomous computers. This 

approach aims a t providing high performance by executing portions of code on 

machines offering similar types of parallelism.

1
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The HC environment, is comprised of several hardware and software components 

that manage the suite of heterogeneous machines in the system, thus enabling appli­

cations to run efficiently. The hardware and software requirements for HC can be 

classified into three layers: network layer, communication layer, and intelligent layer. 

In this thesis, we concentrate on issues related to the intelligent layer. We next 

describe each of these layers.

1.2 N etw ork Layer

The network layer in HC includes the physical aspects of interconnecting the 

autonomous high performance machines in the system. This includes low level 

network protocols and machine interfaces. Current Local Area Networks (LANs) 

can be used to connect existing machines but this approach is not suitable for IIC. 

In order to realize a HC environment, higher bandwidth and lower latency networks 

are essential. The bandwidth of commercially-available LANs is limited to about 

10 Mbits/sec. However, in HC, assuming machines operating at 25 MHz clock with 

40 MIPS instruction rate and 16 bits word length, a bandwidth in the order of 1 

Gbits/sec is required to match computation and communication.

Recent advances in network technology have made it feasible to build gigabit 

LANs. Links in these networks are capable of operating on the order of 1 Gbits/sec 

or higher rates. Thus having at least 100 more bandwidth than today’s 10 Mbits/sec 

Ethernets. Gigabit LAN standards are emerging. The High Performance Parallel 

Interface (IIIPPI), whose physical layer has been approved as an ANSI standard, will 

likely become the backbone for interconnecting machines in HC. HIPPI-based LANS 

support data rates of 800 Mbits/sec and 1.6 Gbit/sec. Such networks have been used 

to interconnect CRAY-2 and CM-2 at the Minnesota Supercomputer Center [70]. A 

similar project using A CRAY Y-MP and CM-2 was undertaken at the Pittsburgh 

Supercomputing Center [47].
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A llia n l I^X-80
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Image Understanding Architecture

Figure 1.1 A heterogeneous network-based parallel computing system.

Even with high bandwidth networks, there are three main sources of ineffi­

ciency in current network implementations. First, existing application interfaces 

incur excessive overhead due to context switching and data copying between the 

user process and the machine’s operating system. Secondly, each machine must 

incur overhead of executing high-level protocols tha t ensure reliable communication 

between tasks. Also, the network interface burdens the machine with interrupt 

handling and header processing for each packet.

Nectar [5] is an example of a  network backplane for heterogeneous multicom­

puters. It consists of a high-speed fiber-optic network, large crossbar switches and 

powerful network interface processors. Protocol processing is off-loaded to these 

interface processors.

In IIC, modules from various vendors share physical interconnections. Since 

different manufacturers usually use different communication protocols, the network 

management problem becomes more complex [52]. The following three general 

approaches in dealing with network heterogeneity are given in [72]:
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1. To treat the heterogeneous network as a partitioned network, each partition 

employs a uniform set of protocols,

2. to have only a single “visible” network management console, and

3. to integrate the heterogeneous management, functions at a single management 

console.

1.3 Com m unication Layer

The HC environment achieves efficient execution of parallel tasks by decomposing 

the task into several modules which are assigned to machines in the system with a 

similar mode of embedded parallelism. The task modules run on assigned machines 

as local processes. These processes need to exchange intermediate results and process 

synchronization information, either from processes residing in the same machine or 

from processes residing on other machines using the network. Since each machine 

on the system may utilize different, process communication and synchronization 

primitives, a uniform system-wide communication mechanism operating above native 

operating systems is needed to facilitate this exchange of information. Due to the 

networked nature of HC and the lack of shared memory, such a communication 

mechanism must support message passing.

An example of a communication tool suitable for HC is the parallel virtual 

machine (PVM) [66]. The PVM system emulates a virtual concurrent, computing 

machine on a suite of networked machines by executing system-level processes on each 

machine. A process that runs on a local machine can access the virtual machine via 

library routines embedded in imperative procedural languages, such as C. Commu­

nication support is provided for process management, via stream-oriented message- 

passing, synchronization based on barriers or variants of rendezvous and/or auxiliary 

tasks. These library routines interact with the PVM system process on each machine,
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which then provides the requested actions in cooperation with PVM system processes 

running on other machines in the system. Other examples of networking communi­

cation tools are Portable Programs for Parallel Processors (P4) and Message Passing 

Interface (MPI). MPI includes a number of utilities for supporting message passing 

while P4 can handle both message passing and shared memory. MPI is a message 

passing interface for MIMD distributed memory concurrent computers. MPI includes 

point-to-point and collective communication routines, as well as support for process 

groups, communication contexts, and application topologies.

1.4 Intelligent Layer

The intelligent layer of the HC environment provides system-wide tools and 

techniques necessary to manage the suite of heterogeneous machines and to 

insure proper and efficient execution of tasks. Such tools operate over the native 

operating systems of the individual machines and use the process communication 

primitives provided by the communication layer. The services provided by this 

layer are the most challenging ones in HC and include programming environments, 

language support, application task decomposition, mapping and scheduling, and load 

balancing, as illustrated in Figure 1.4. We next briefly describe two functions which 

are essential for designing and supporting these various services. These functions are 

used in the Heterogeneous Optimal Selection Theory (HOST) presented in Section 

1.4.2.

1.4.1 C ode Profiling and A nalytical Benchm arking

Traditional program profiling involves testing a program assumed to be comprised 

of several modules, by running it on some test data. The profiler monitors the 

execution of the program and gathers statistics including the running time of each 

program module. This information is then utilized to modify different, modules
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Figure 1.2 Intelligent layer services.

improving the overall execution time. In IIC, profiling is not done only to estimate 

the execution time of code, but the type of the code according to the execution mode 

is also considered. This is achieved by code-type profiling. The code-type profiling 

introduced in [35] is a code-specific function to determine the code-type (e.g. SIMD, 

MIMD, vector, scalar, etc.).

Analytical benchmarking provides a mean to measure how well the available 

machines perform on a given code-type [35]. While code-type profiling identifies 

the type of code, analytical benchmarking ranks machines in terms of efficiency in 

executing a given code. Thus, analytical benchmarking techniques determine the 

relative effectiveness of a given parallel machine on various computation types.

1.4.2 H eterogeneous O ptim al Selection Theory

In Freund’s Optimal Selection Theory (OST), it can be assumed th a t the number of 

machines available is unlimited and that an application task is comprised of several 

uniform and non-overlapping code segments. Code segments are considered to be
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executed in a series. Each code segment has homogeneous parallelism embedded 

in its computations. A code segment is decomposed into code blocks. All code 

blocks within a code segment have the same type of parallelism and can be executed 

concurrently. This type is determined by the process of task profiling. The goal 

of OST is to assign the code blocks, within each code segment, to the available 

matching machine types so tha t it may be optimally executed. Information about 

how fast a given machine type can execute a code type is assumed to be known as 

a result of analytical benchmarking. Augmented Optimal Selection Theory (AOST) 

[71] extended OST to incorporate the performance of code segments on non-optimal 

machine choices, assuming that the number of available machines for each type is 

limited. Based on this assumption, a code segment most suitable for one type of 

machine may have to be assigned to another type.

The Heterogeneous Optimal Selection Theory (HOST) [16] is an extension 

of AOST in two ways: it incorporates the effects of various, fine-grain, mapping 

techniques available on individual machines and it assumes heterogeneous embedded 

parallelism. The input format of HOST, as shown in Figure 1.3, allows concurrent 

execution of mutually indejjendent, code segments. An application task is decomposed 

into several subtasks which are then executed in series. Each subtask may contain 

a collection of code segments which can be executed in parallel. A code segment 

consists of a set of code blocks and a code block consists of a number of instructions.
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All the code blocks within a code segment arc of the same type and are to be 

executed concurrently or sequentially on the machines of the same type, depending 

on their interdependencies. A machine type is identified according to the underlying 

architecture, such as SIMD, MIMD, vector or scalar. Each machine type may have 

more than one model, for example, the Ncube and Mesh are two models of an SIMD 

machine type. In HOST, heterogeneous code blocks of different code segments can 

be executed concurrently on different machine types, thus exploiting the hetero­

geneous parallel computations embedded in a given application. Narahari et, al.[51] 

extended HOST to the Generalized Optimal Selection Theory (GOST). GOST allows 

non-optimal selections of machines, as in AOST, and heterogeneous code blocks, as 

in HOST. Tt further incorporates data communication time, system reconfiguration 

time and data conversion time [51].

To express the formulation of HOST, some parameters must be defined. 

Table 1.1 contains a complete listing of this notation. For a more detailed description 

of these terms, see [16]. HOST is formulated as follows:

s
For any subtask , there exists a t  with min y[r] subject to 5Z(7[T[j], j] x c[lr[?']]) < C

.7 =  1

Based on HOST, an optimal machine selection leading to a minimum execution time 

exists. To find such an optimal solution, however, is not computationally feasible. 

Therefore, we present an overview of a set of sub-optimal solutions in the next section.

1.5 O rganization o f the D issertation

This thesis focuses on the design issues of the intelligent layer in IIC. In this section, 

we briefly present an overview of these issues. They are presented in detail later in 

this thesis.
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s the number of code segments of the given task
M the number of different, machine types to be considered
v[y] the number of machine models of type y
a[y] the number of mappings available on machine type y
P[y,  !■] the number of available machines of model I of type y
v[ y , j ] the maximum number of code blocks code segment j  can be 

decomposed
i [ y ,  j \ the number of machines of type y actually used to execute code 

segment j
m[y, k\ mapping technique used for a code block k on machine type y
6[y, m] the optimal speedup for a particular mapping m  on machine type y
n[y , j ] how well a code segment j  can be matched with machine type y
A [y, k] utilization factor when running code block k on a machine of type y
P[j\ the percentage of execution time of code segment j  within a given 

subtask
p[j ,  k] the percentage of execution time of block k within code segment j

p[v, j] mapping vector for code segment j  on machine type y
% , / ,  p] execution time of segment j  with mapping /i on machine type y
A[y, j] minimum execution time of segment j  among all possible mappings 

on type y
T machine type selection vector
X[r] execution time of the given subtask with machine type selection r
Y[j] the type of machine selected to execute code segment j

the cost of machine selected to execute code segment j
c the total cost constraint

Table 1.1 Notations used in HOST formulation

1.5.1 Portab le Program m ing M odel

A programming paradigm suitable for the intelligent layer must allow portable 

software to be shared and/or distributed among various computers in the hetero­

geneous suite. Furthermore, it must support architecturally independent programming 

which does not include any architecturally specific details. Since homogeneous 

programming tools are not suitable to heterogeneous computing, we need to develop 

a new tool based on a heterogeneous programming model. We present a hetero­

geneous parallel programming model, called Cluster-M, in Chapter 2. This model 

is proposed to bridge between software and hardware for heterogeneous computing.
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It acts as an intermediate medium based on which portable parallel programs are 

specified and can be mapped onto dynamically reconfigured heterogeneous organi­

zations. The implementation of this model as a portable programming tool is 

also presented. Using Cluster-M, a single program can be ported among various 

heterogeneous architectures or suite of computers.

1.5.2 Partitioning, M apping and Scheduling

In HC, similar to homogeneous systems, the problems of partitioning a parallel 

task into several modules, mapping resulting modules into various machines and 

scheduling the execution of each module are pertinent. In the past, the partitioning 

and mapping problems for homogeneous parallel environments have been investigated 

extensively [9, 10, 18, 30, 43, 44, 61, 63, 64]. However, HC poses new constraints. In 

the following, we define partitioning and mapping as two different, problems and also 

differentiate between the contexts of these terms in homogeneous and heterogeneous 

environments.

In a homogeneous environment, the partitioning problem addressed in [12, 36, 

39] can be divided into two sub-problems. Parallelism detection determines the 

parallelism in a program. Clustering combines several operations into tasks and 

thus partitions the application into several tasks. Each cluster is then assigned to a 

processor. Both of these sub-problems can be performed by the user, the compiler 

or by the machine at run time.

The mapping/allocation of program modules to processors has been addressed 

by many researchers in the past [9, 18, 30, 43, 44, 61]. Informally, in homogeneous 

environments the mapping problem can be defined by assigning program modules 

to processors. Thus, the number of pairs of communicating modules that fall on 

pairs of directly connected processors is maximized [9]. In HC, machines are globally 

connected through a high-bandwidth network, and therefore the assignment of
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communicating modules to directly-connected machines is not an issue. However, 

other objective functions for mapping, such as matching the code-type to the 

machine-type, add additional constraints. If such mapping has to be performed at 

run time, for load balancing purposes or due to failure of a machine, the mapping 

becomes more complicated.

In homogeneous environments, the scheduling process assigns each task to 

a  processor in order to achieve better processor utilization and high throughput. 

Three levels of scheduling are generally employed. High-level scheduling selects a 

subset of all submitted jobs competing for the available resources. Intermediate-level 

scheduling responds to short-term fluctuations in the system load by temporarily 

suspending and activating processes to achieve smooth system operation. Low-level 

scheduling determines the next ready process to be assigned to a processor for a 

certain duration.

In IIC, while all of the above three levels of scheduling may reside in each 

machine, a fourth level of scheduling is needed. This level deals with scheduling 

at the system level. The scheduler maintains a balanced system-wide workload by 

monitoring the progress of all the tasks in the system. The scheduler needs to know 

the different task-types and available machine-types (i.e., SIMD, MIMD, Mixed- 

mode, etc.) in the system, since tasks may be reassigned due to changes in the system 

configuration or due to overload problems. Communication bottlenecks and queueing 

delays incurred due to the heterogeneity of hardware add additional constraints on 

the scheduler. The scheduler also needs to use information from code-type profiling 

and analytical benchmarking.

In Chapter 3, we extend the algorithms of Chapter 2 to incorporate the “type 

heterogeneity” (i.e. SIMD and MIMD) of tasks and systems in IIC. The augmented 

mapping algorithm presented maps tasks to processors of similar computation type 

and proceeds with an enhanced fine-grain mapping technique. Since the expected
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number of clusters at every level of the firie-grain mapping is constant, we propose to 

use an optimal matching strategy to enhance the algorithm. Therefore, we formulate 

and solve each step of the fine-grain cluster mapping by using an Integer Linear 

Programming (ILP) model.

1.5.3 Hardware E stim ation

Once the information provided by code-type profiling is available, it is desirable to 

know how many processors are needed for each of the code types. In Chapter 4, 

we propose two methods for estimating the minimum number of processors required 

for each of these code types in HC. The first method involves making use of task 

compatibility graphs. We show that a task compatibility graph can be generated 

by analyzing certain compatible relations between task module pairs of a given task 

flow graph. We define the resource (processor) minimization problem therefore to be 

equivalent to finding the minimal number of cliques that cover the task compatibility 

graph, or to finding the minimal number of colors tha t color the vertices of its 

complement graph, called task conflict graph. We solve this problem using a greedy 

approach in 0{\V \ log|V| -I- \E \) time, where |F | and I#! are the number of vertices 

and edges of the task compatibility graph. We further show that for special types 

of task compatibility graphs, the optimal solution can be obtained in polynomial 

time. The second method studied in Chapter 4 uses the Cluster-M methodology for 

estimating the minimum number of processors. Examples are shown to compare the 

estimated results obtained using different, techniques.

1.5.4 Software Environm ents

In HC, machine-independent and portable parallel programming languages arid tools 

arc required. Also, a IIC software package should be portable among and executable 

on various architectures. Certain tools are needed to act as intermediate media 

based on which machine-independent, algorithms can be designed using a single
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programming language. These are then mapped onto the desired architecture. One 

such programming model, Linda [13, 11] defines a logically shared data structuring 

memory mechanism called tuple space. However, Linda is difficult to implement 

on architectures not supporting a shared memory structure. In contrast to Linda, 

the programming tool Express supports a distributed-memory system organization. 

However, algorithms coded using Express are machine dependent, and therefore are 

not fully portable. Other candidate parallel programming environments for IIC are: 

the Actors Programming model [1, 2, 3] and Tool for Large-Grained Concurrency 

(TLC). TLC, developed by BBN, employs implicitly parallel constructs to specify 

the dependencies among a set of coarse-grained remote computations. The Actors 

model, on the other hand, allows massively parallel execution of algorithms. At 

extra cost of implementing such a system, Actors is machine independent: it can be 

executed on shared memory computers and over distributed networks.

Cluster-M, presented in Chapter 2, is a model which provides an environment 

for porting various tasks onto the machines in a heterogeneous suifci, so tha t resource 

utilization is maximized and the overall execution time is minimized. In Chapter 5, 

we formally define the scalability of heterogeneous programming paradigms. Also, we 

present another portable and scalable programming paradigm, called Heterogeneous 

Associative Computing (HAsC)[54]. HAsC models a heterogeneous network as a 

coarse-grained associative computer and is designed to optimize the execution of 

problems where the size of the program is small compared to the amount of data 

processed. It uses broadcasting to avoid the mapping problem. Ease of programming 

and execution speed, not the utilization of idle resources are the primary goals of 

HAsC. We show that both Cluster-M and HAsC are scalable. We then illustrate 

how these two paradigms can be used together to provide an efficient medium for 

heterogeneous programming.



C H A PT E R  2

A  PO RTABLE PARALLEL PR O G R A M M IN G  M ODEL FO R  
H ETER O G EN EO U S C O M PU T IN G

We present a heterogeneous parallel programming model called Cluster-M. This 

model is proposed to bridge between software and hardware for heterogeneous 

computing. It acts as an intermediate medium based on which portable parallel 

programs are specified and then can be mapped onto dynamically reconfigured 

heterogeneous organizations. The implementation of this model as a portable 

programming tool is presented in this chapter. Using Cluster-M, a single software 

can be ported among various heterogeneous architectures or suite of computers.

2.1 Introduction

A programming paradigm suitable for the intelligent layer should allow portable 

software to be shared and/or distributed among various computers in the hetero­

geneous suite. Furthermore, it should support architecturally independent programming 

that does not include any architecturally specific details. A number of homogeneous 

programming tools have been developed that take a high-level program as the input 

and map it onto the underlying systems. The question is whether or not these 

homogeneous programming tools can be directly used for heterogeneous computing. 

Examples of these tools include Linda, Prep-P, Oregami, Hypertool, PARSA, and 

PYRR.OS [13, 8, 45, 74, 75]. Linda [13] defines a logically shared memory mechanism 

called tuple space. Tuple space holds two kinds of tuples: process tuples, which are 

under active evaluation, and data  tuples, which are passive. Ordinarily, building a 

Linda program involves dropping a  process tuple into tuple space and then spawning 

other process tuples. This pool of process tuples, all executing simultaneously, 

exchange data by generating, reading, and consuming data tuples. Once a process 

tuple has finished executing, it turns into a data tuple that is indistinguishable from

14
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other data tuples. Linda requires large volumes of data to be exchanged to and from 

the shared memory. For this reason, Linda has been mostly used for coarse-grain 

computations.

Prep-P, Oregami, Hypertool, and PYRROS, however, all include an architec­

turally independent mapping component that can map a fine-grain given parallel 

program onto either a special or an arbitrary system. However, the mapping 

components of Prep-P [8] and Oregami [45] are basically libraries of specialized 

mapping algorithms th a t only map regularly structured programs onto regularly 

structured systems. Their mappings for irregularly structured programs or systems 

tha t are not found in the libraries may be slow and ineffective. Hypertool [74] and 

PYRROS [75] generate fast and near-optimal mappings for arbitrary programs by 

using a  clustering method. However, they can only be mapped onto fully connected 

systems. Therefore, they are not suitable for a heterogeneous network that may 

have arbitrary interconnections. This chapter will only focus on the tools th a t can 

efficiently map arbitrary program tasks onto arbitrary computer systems. Since 

homogeneous programming tools are not suitable to heterogeneous computing, we 

need to develop a new tool based on a heterogeneous programming model. An 

essential component of such a tool will be an efficient mapping algorithm, which 

maps an arbitrary task onto an arbitrary system.

A program task can be represented by a task graph, with each node representing 

a task module and each edge representing data communication between two modules. 

Each node is associated with a weight representing the time needed to execute the 

instructions contained in the node on a baseline computer, while the weight of an 

edge represents the communication amount. Similarly, a parallel computer system 

can be modeled as a weighted undirected system graph, whose weights represent 

processor speeds and transmission rates of communication links. If the task graphs 

and the system graphs are known before program execution, then mapping of the task
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graphs onto the system graphs is called static mapping. Here, we consider only static 

mapping. In static mapping, the assignments of the nodes of the task graphs onto the 

system graphs are determined prior to the execution and are not changed until the 

end of the execution. Static mapping can be classified in two general ways. The first 

classification is based on the topology of task and/or system graphs [15]. Based on 

this, the mappings can be classified into four groups: (1) mapping specialized tasks 

onto specialized systems, (2) mapping specialized tasks onto arbitrary systems, (3) 

mapping arbitrary tasks onto specialized systems and (4) mapping arbitrary tasks 

onto arbitrary systems. The second classification can be based on the uniformity 

of the weights of the nodes and the edges of the task and/or the system graphs. 

Based on this, the mappings can be categorized into the following four groups: (1) 

mapping uniform tasks onto uniform systems [7, 9, 15, 24, 43], (2) mapping uniform 

tasks onto nonuniform systems, (3) mapping nonuniform tasks onto uniform systems 

[22, 48, 59, 74, 76] and (4) mapping nonuniform tasks onto nonuniform systems 

[44, 60],

Two of the earlier static mapping algorithms that can map arbitrary nonuniform 

task graphs onto arbitrary nonuniform system graphs are Lo’s Max Flow/Min Cut 

algorithm [44], and El-Rewini and Lewis’ mapping heuristic (MH) algorithm [22]. 

The time complexity of these two algorithms are 0 ( M * N  log M)  and 0 ( M 2N 3) 

respectively, where M  is the number of task modules and N  is the number of 

processors. In this chapter we present a mapping technique that is used in the 

mapping module of an implemented tool, which is based on a portable programming 

model for heterogeneous computing called Cluster-M. Using this paradigm, we can 

produce near-optimal mapping of arbitrary nonuniform architecture-independent, 

task graphs onto arbitrary nonuniform system graphs in O(MP)  time, where 

P = ma x (M, N) .  Similar to BSP and LogP, the Cluster-M model serves as an 

intermediate layer between software and hardware. Therefore, it supports portable
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machine-independent programming. BSP and LogP support portable programming 

for a set of uniform (homogeneous) processing units, while the Cluster-M model 

allows the processing units to be nonuniform (heterogeneous).

The rest of this chapter is organized as follows. In Section 2 we present the 

Cluster-M heterogeneous model of computation. In Section 3, the components of the 

Cluster-M tool are presented. The efficiency of the Cluster-M mapping module is 

discussed in Section 4. Concluding remarks are in Section 5.

2.2 Cluster-M  Portable Parallel Program m ing Tool

A tool implementing the Cluster-M model, presented in the last section, must support 

portable parallel algorithm design and programming. It must provide a mechanism 

so that both set of parameters can be extracted from any given problem and any 

underlying heterogeneous organization. Furthermore, this tool must provide an 

efficient mechanism for mapping these portable programs onto heterogeneous systems 

using these two sets of parameters. The Cluster-M tool, presented below, is an imple­

mentation of the model satisfying these conditions.

2.2.1 C luster-M

Cluster-M is a programming tool that facilitates the design and mapping of portable 

parallel programs [15]. Cluster-M has three main components: the specification 

module, the representation module and the mapping module. In the specification 

module, machine-independent algorithms are specified and coded using the program 

composition notation (PCN) [34] programming language [25]. Cluster-M specifi­

cations are represented in the form of a multilayer clustered task graph called a Spec 

graph. Each clustering layer in the Spec graph represents a set of concurrent compu­

tations, called Spec clusters. A Cluster-M representation represents a multilayer 

partitioning of a system graph called a Rep graph. At every partitioning layer
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of the Rep graph, there are a number of clusters called Rep clusters. Each Rep 

cluster represents a set of processors with a certain degree of connectivity. Given 

a task (system) graph, a Spec (Rep) graph can be generated using one of the 

Cluster-M clustering algorithms. The clustering is done only once for a given 

task (system) graph, independent of any system (task) graphs. It is a machine- 

independent (application-independent) clustering, therefore it is not necessary to 

repeat it for different mappings. For this reason, the time complexities of the 

clustering algorithms are not included in the time complexity of the Cluster-M 

mapping algorithm. In the mapping module, a given Spec graph is mapped onto a 

given Rep graph. This process is shown in Figure 2.1. In an earlier publication [15], 

two Cluster-M clustering algorithms and a mapping algorithm were presented for 

uniform graphs. Next, the basic concepts used in Cluster-M clustering and mapping 

will be explained. In Section 3, we will show how uniform Cluster-M algorithms can 

be extended and applied to nonuniform task and system graphs.

Task Graph System Graph

Specification
Module

Representation
Module

Spec Graph Rep Graph

Mapping Module

Mapping o f a Spec graph onto a Rep graph

Clustering

Mapping

Clustering

F ig u re  2.1 Cluster-M mapping process.

2.2.2 Basic C oncepts

There are a number of reasons and benefits in clustering task and system graphs in 

the Cluster-M fashion. Basically, Cluster-M clustering causes both task and system 

graphs be partitioned so that the complexity of the mapping problem is simplified
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and good mapping results can be obtained. In clustering an undirected graph, 

completely connected nodes are grouped together forming a set of clusters [15, 25]. 

Clusters are then grouped together again if they are completely connected. This is 

continued until no more clustering is possible. When an undirected graph is a task 

graph, then doing this clustering essentially identifies and groups communication­

intensive sets of task nodes into a number of clusters called Spec clusters. Similarly 

for a system graph, doing the clustering identifies well-connected sets of processors 

into a number of clusters called Rep clusters. In the mapping process, each of the 

communication intensive sets of task nodes (Spec clusters) is to be mapped onto 

a communication-efficient subsystem (Rep cluster) of suitable size. Note that the 

mapping of undirected task graphs onto undirected system graphs is referred to as 

the allocation problem. An earlier publication [15] showed that Cluster-M clustering 

and mapping algorithms can lead to good allocation results. It compared its results 

with Bokhari’s 0 ( N 3) algorithm and showed that its algorithm has a lower time 

complexity of O( MN) ,  where M  and N  are the number of nodes in the task and 

system graphs, respectively.

Clustering directed graphs (i.e., directed task graphs) produces two types of 

graph partitioning: horizontal and vertical. Horizontal partitioning is obtained 

because, as part of clustering, we divide a directed graph into a layered graph such 

that each layer consists of a number of computation nodes that can be executed in 

parallel and a number of communication edges incoming to these nodes. This is 

shown in Figure 2.2(a). The layers are to be executed one at a time. Therefore, the 

mapping is done one layer at a time. This significantly reduces the complexity of 

the mapping problem since the entire task graph need not be matched against the 

entire system graph.

Vertical graph partitioning is obtained because, as part of the clustering, the 

nodes from consecutive layers are merged or embedded. All the nodes in a layer are
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layer 1
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layer 4

layer 5

(a) Horizontal (b) Vertical

Figure 2.2 Horizontal and vertical partitioning of a task graph.

merged to form a cluster if they have a common parent node in the layer above or 

a common child node in the layer below. Doing this traces the flow of data. This 

information will be used later as part of the mapping so that the tasks are placed 

onto the processors in a way that total communication overhead is minimized. For 

example, to avoid unnecessary communication overhead, the task nodes along a path 

may be embedded into one another so that they are assigned to the same processor. 

The effect, of this type of partitioning is shown in Figure 2.2(b).

Both horizontal and vertical graph partitionings are accomplished by performing 

the clustering in a bottom-up fashion. The Clustcr-M mapping will then be 

performed in a top-down fashion by mapping the Spec clusters one layer at a 

time onto the Rep clusters. The next two sections show how these clustering and 

mapping ideas work for nonuniformly weighted graphs. The nonuniform algorithms 

shown in this chapter are nontrivial extensions of the Cluster-M uniform algorithms 

presented in an earlier publication [15].

2.3 A  Portable Parallel Program m ing M odel

A computational model is designed such that it can be an efficient bridge between 

software and hardware; high-level languages can be compiled efficiently on to the
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model; yet it, can be efficiently implemented in hardware [69]. The von Neumann 

model is a computational model that successfully bridges the gap for sequential 

computations. For parallel computing, a number of models have been introduced. 

One of the earliest and most widely used parallel models is the parallel random access 

machine (PRAM) model [32]. This model is unrealistic because it assumes that all 

processors work synchronously and that interprocessor communication is free [19]. 

Several variations of the PRAM model have been proposed to identify restrictions 

that would make it more practical while preserving the unrealistic assumption that 

communication is free. Algorithms tha t are designed based on PRAM and its 

variations perform very poorly once mapped onto parallel machines with electrical 

interconnects. If the electrical interconnects are to be replaced with optical ones, 

however, the PRAM algorithms can be implemented efficiently [29, 26]. The optical 

model of computation (OMC) is a computational model for parallel architectures 

with unit-delay optical interconnects.

The bulk-synchronous parallel model (BSP) developed by Valiant [69] attem pts 

to bridge theory and practice for all types of parallel computations. It assumes 

processors work synchronously, and it models latency and limited bandwidth. It 

requires few machine parameters as long as a certain programming methodology 

is followed. An improvement over the BSP model is the LogP model proposed 

by Culler et al. [19]. LogP allows algorithm designers to address key performance 

issues without specifying unnecessary details. It allows machine designers to give a 

concise performance summary of their machines, against which algorithms can be 

evaluated. Using LogP, portable parallel algorithms can be designed, if processors 

are all assumed to be identical (homogeneous).

Heterogeneous computing is defined as a special form of parallel and distributed 

computing that performs computations using a single autonomous computer 

operating in both SIMD and MIMD modes, or using a number of connected
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autonomous computers. Furthermore, the heterogeneous architectures may be 

changed at every step of computation as new resources become available or occupied. 

Because of the nonuniformity and the unpredictability in the availability of the 

processing units, the LogP model will not be suitable as a model for heterogeneous 

computing [58]. The following presents the portable programming model called 

Cluster-M, which can efficiently bridge the software and hardware in a hetero­

geneous environment. This model allows software portability without imposing 

any restrictions on the hardware. The Cluster-M model consists of two sets of 

parameters, one for representing a portable parallel program and the other for 

specifying the organization of the underlying heterogeneous architecture or suite. In 

addition, the Cluster-M model consists of an evaluation function for predicting the 

time performance of any two sets of parameters being considered.

2.3.1 M achine-Independent Program  Param eters

A given parallel program consists of a sequence of steps such that in each step 

a number of computations can be done concurrently. Each step is called a layer. 

These concurrent computations for a given step (layer) can each be presented by a 

cluster called a Spec cluster. The rath Spec cluster at layer u is denoted by 5 ^  and 

associated with the following parameters.

a S The size of S,“ , which is the maximum number of nodes in this cluster tha t can 

be computed in parallel.

S S The maximum sequential computation amounts (i.e., the maximum number of 

clock cycles required to execute all the instructions sequentially using a baseline 

computer) in S,“ .

I1S“ The total amount of communication from layer 1 to layer u of 5^.

7rS," The average communication amount at the layer u in S
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pS'ln The computational type of Sf" . Its value is set to 0 for a single instruction, 

multiple data (SIMD) type and 1 for a multiple instruction, multiple data 

(MIMD) type.

2.3.2 Program -Independent M achine Param eters

Any heterogeneous architecture can be similarly represented in a multilayered format 

such that each layer presents a set of processing units tha t are completely connected. 

Each processing unit is represented by a cluster called a Rep cluster. The nth Rep 

cluster a t layer v is denoted by 72" and associated with the following parameters.

er72” The number of processors contained in R ".

J/2" The average computation speed of the processors in 72".

U Rvn The total data transmission rate including the transmission rate over the links 

(communication bandwidth) and over the nodes (switching latency) from layer 

1 to layer v in 72".

7rT2" The average data transmission rate at layer v of 72".

p72" The computational type of the Rep cluster. Its value is set to 0 for a SIMD 

type and 1 for an MIMD type.

2.3.3 Evaluation Function

In heterogeneous computing, the structure of the underlying heterogeneous organi­

zation may be changed dynamically. Therefore, it is desirable to be able to compute 

an estimated total execution time for mapping a program onto the heterogeneous 

architecture at every step of the computation. We denote the estimated total 

execution time of mapping the Spec cluster 5 “ onto the Rep cluster 72" by r ( 5 “, 72"), 

which includes computation time and communication time. The total computation 

amount of 5 “ is estimated to be a S f  x $£“, and the total computation power of 72"
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can be calculated as aRj  x 8RV-. Therefore, the computation time for executing 5 “ on 

RVj is estimated to be (aSf  x S S f ) / ( a R ” x SR”). Similarly, the total communication 

requirement of 5 “ is IlS f and the total communication capacity of 7?" is TIT?”, hence 

the estimated communication time for mapping 5 ” on R v- will be U Sf /X\RV-. A slow­

down factor, d, is defined that indicates the factor of slow down due to mismatch of 

the computation type between 5" and /?”. This leads to an estimated execution time 

in (2.1). Note that the estimated execution time does not take into consideration 

the memory requirements of a given problem and the memory space available in the 

underlying organization. This is mainly due to the fact th a t the model does not 

contain any parameters for memory size requirements and availabilities.

/ o n  r>v\ . c t S "  x  S S f  I T S "r(S l‘, F % ) = d x
aS f  if pSf  =  1 and pRv, = 0

1 ( 2 .1 )
1 otherwise

The Cluster-M tool presented in the previous section is an implementation of this 

model. We will show that using the clustering algorithms presented in Section 2.4 

as part of the tool, the above two set of parameters can be extracted from any given 

task or system graph.

2.4 N on-U niform  Clustering

In this section we first present a clustering algorithm to be used for directed task 

graphs independent of any system graphs and then present another one for undirected 

system graphs independent of any task graphs. Both algorithms are done only once 

for any given task or system graph and are not repeated as part of the mapping 

process.

2.4.1 C lustering D irected Task Graphs

A task can be represented by a directed graph Gi(Vt, Et), where V) - {/.j , ..., t.M) is 

a set of task modules to be executed and E t is a set of edges representing the partial
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orders and communication directions between task modules. A directed edge (/.,;,/ 7) 

represents th a t a data communication exists from module U to tj and that /., must be 

completed before tj can begin, where 1 < i , j  < M. Each edge (ii,lj) is associated 

with Dij, the amount of data required to be transmitted from module to module 

t j , where D ,7 >  1. Each task module U is associated with its amount of computation 

A,, that is, the number of clock cycles required to execute all the instructions of 

on a baseline machine. Note that > 1 and D{j > 1 if there exits an edge 

for 1 <  i , j  < M.  If a directed edge (£;, tj) exists, /., is called a parent node (module) 

of tj and tj a child node (module) of U. If a node has more than one child, it is called 

a fork-node. If a node has more than one parent, it is called a join-node. A task 

graph is divided into a number of layers, so that all nodes in a layer can be executed 

concurrently.

A clustering algorithm called Clustering Nonuniform Directed Graphs (CNDG) 

is shown in detail in Figure 2.3. This nonuniform algorithm is designed as an 

extension to the uniform clustering algorithm presented in an earlier publication [15]. 

The nonuniform algorithm has been designed in such a way that it is a generalization 

of the uniform algorithm. For clustering nonuniform directed graphs, a quintuple of 

parameters (<r5,“ , £5,“ , 115,“ , 7r5,“ , pS’ln) from the Cluster-M model described in 

Section 2.3 is associated with the m-th Spec cluster at layer u denoted by 5,“ . The 

clustering is done layer by layer. At layer 1, a node with computation amount A, 

is a cluster by itself with parameters (1, A*, 0,0,0) for SIMD type or (1, A,-, 0,0,1) 

for MIMD type. Then for other layers, the nodes are clustered as follows. If a node 

is a join-node, we first embed it onto one of its parent nodes tha t has the largest 

weighted edge connecting to this join-node. If multiple parent nodes have edges 

with the same largest weight, we randomly select one of them. When a node with a 

computation amount A is to be embedded to 5 then these parameters are updated 

to crSf‘n, tf5,“ -I- A*, 115)),, ir5“,, and p5,“ . We then merge all its parent nodes into a
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Clustering Nonuniform Directed Graphs (CNDG) Algorithm
Divide the directed graph into a number of layers 
for each node at layer 1 do

Make it into a cluster and calculate its parameters 
For each of the other layers do 
begin

for all edges (t{,tj) do 
begin if tj is a fork-node then

begin Embed the child node with the largest edge weight to tj 
if the child nodes of tj are not in a cluster then 
begin Merge them with tj into a cluster

Calculate the parameters of the new cluster
end

end
if tj is a join-node then
begin Embed the child node with the largest edge weight to tj 

if the parent nodes of tj are not in a cluster then 
begin Merge them with tj into a cluster

Calculate the parameters of the new cluster
end

end
end

end

Figure 2.3 Clustering Nonuniform Directed Graphs (CNDG) algorithm.

new cluster denoted by S“+1. This is shown in Figure 2.4, where a join-node at layer

(u +  1) with computation amount A has n  parent nodes S]‘, , "  ‘ > S'n a* Jayer u -

The communication amount between the join-node and one of its parent nodes S-‘ is 

denoted by A ,  where 1 < i < n. Also, D\ =  maxi<j<„ A - The new cluster 5}1+1 is 

generated by embedding the join-node to 5 “ and merging it with all the other parent 

nodes. The first four parameters of £ “+1 can be computed as follows.

<7S“+I =  Y ,a S l l (2.2)
i— 1

£S“+1 =  max(5S^ + A , 6S$ , -■ ■ t 6S%) (2.3)

T7S“+1 =  +  A )  -  D, (2.4)
i— 1



If a node is a fork-node, we will embed one of its child nodes to this fork-node. The 

child node is selected so that it has the largest weighted edge connecting to the fork- 

node. If multiple child nodes have edges with the same largest weight, we randomly 

select one of them. We then merge the rest of the child nodes with the fork-node into 

a new cluster. As shown in Figure 2.5, a fork-node S f  at layer u has n child nodes at 

layer (u +  1). These child nodes have computation amounts A\, A2, • • •, A n, and the 

communication amounts between the fork-node and each of them are D i, D2, • • •, £>„, 

respectively. Similar to the case of join-node, D\ =  maxi<j<„Dj. Then the node 

with the computation amount A\ is embedded to the fork-node before we merge the 

fork-node with all the other child nodes to generate the new cluster 5 "+1. The first, 

four parameters of 5 “+1 is then computed as follows.

For both fork and join nodes, the fifth parameter, p S is determined as follows. 

As an MIMD cluster is merged with an SIMD or MIMD cluster, the computation 

type of the new generated cluster is MIMD. When two SIMD clusters are merged 

then the computation type of the new cluster is decided by their computational form 

(addition, subtraction, multiplication, etc.). If the two SIMD clusters have exactly 

the same computation form, then the computational type of the new cluster is SIMD; 

otherwise, it is MIMD. We denote the computation form of S^  by C F (5 ^ ). Then 

the computational type of a new cluster S£  generated from embedding or merging

e r 5 j ‘+ 1  =  m a x ( c r 5 “ , n ) (2 .6 )

5S]l+] = max(6S? + A,, A 2, ■ ■ ■, An) (2.7)
n

n s ; i+1 =  n s j ' +  ^ D j ( 2 .8 )

(2.9)
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n clusters, 5 “, 5", • • •, S“, can be formulated as follows.

0 if (pSf = 0, for all i) and [C F(S“) =  CF(S%) =  • • • =  C F (S “)]
( 2 .1 0 )

1 otherwise

Note that since our task graphs are independent of any system graphs (unlike 

[74, 59, 76]), they do not contain the information about computation time and 

communication delay. Therefore, we can only embed one node into another as part of 

clustering for reducing communication overhead. The embedding of multiple nodes 

onto one node is done as part of the mapping, as explained in the next section.

The time complexity of the CNDG algorithm is bounded by the number of 

edges in the task graph, which is 0 ( \ E t\). For the worst case, we have an upper 

bound for this algorithm, that is 0 ( M 2), where M  is the number of nodes. However, 

note tha t most graphs are not completely connected, therefore, in practice, the time 

complexity of this algorithm will be O(M)  if the number of edges is proportional 

to the number of nodes. To illustrate this algorithm, consider the task graph of 

seven modules and its Spec graph, as shown in Figure 2.6. Each module is labeled 

with its computation amount and each edge is labeled with the amount of data

S u, laS 'l.bSinSU SrP S'j) S“ ( a S ^ n S S .n ^ .P ^ )  (aS“,6S“n S “"S “,P5“) 
( j  ( )  • o • ( )  la'

S 7 '( ip S ,u,max(6S;+/1.6S5 5S“), ftflS l+ D J-D  . t P ‘
i=l i=i n - I

layer (u+I)

layeru

Figure 2.4 Clustering on a join-node: a general case.
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s1; (os,;,6S,;,ns,;,nS‘;,pS‘;)
layer u

layer (u + l)

f

” y  d
ST;'<nuix(a^,n), maxfbS;+ 4 , , 4 ,  /I J ,  n S‘,+±Pi.r=7i .oS"*')

F ig u re  2.5 Clustering on a fork-node: a general case.

communication. The Spec graph is constructed by embedding/merging the clusters 

layer by layer and is a multi-layer clustered graph as shown.

2.4.2 C lu s te r in g  U n d irec ted  S ystem  G rap h s

A parallel system that can be modeled as an undirected system graph GP(VP, E P). 

In Gp, Vp = {pi,...,p/v} is a set of processors forming the underlying architecture, 

while Ep is the set of edges representing the interconnection topology of the parallel 

system. We assume that the connections between adjacent processors are bidirec­

tional. Therefore, an edge (PuPj) represents that there is a direct connection between 

processor pt and Pj. The computation speed of processor Pi is denoted by JB,, and 

the communication bandwidth between two processors pi and Pj is denoted by Cjj. 

The transmission rate is a function of the communication bandwidth between pt 

and Pj and the node latencies at Pi and Pj. Both the computational speeds of 

different processors and the transmission rates of different communication links may
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(3. 12. 8 .6. o

(2. 12. 2. 2 .0

(1.12.0.0,0 (1.6.00,0 
nr̂ Ti ftTT

( I.4.O.O. I) 

©

Layer 3

S p e c  g ra p h  

(3. 12. 11.9. I)
'

(2. 12 .2 .2 , 1)

(1.12.0.0.0 (1,8,0.0,1) (1.4.0.0,1)

f 1 ! ■ '?) [ t 3 - l 4 - t 6j ©
,

Layer 4

S p e c  g ra p h  

(3. 12, 11.9. I)

(2 . 12. 2 . 2 . 1)

(1.14.0.0.1) (1,8,0.0.1}

[ l l x 2 •t 7 ] [ t 3 , l 4  X c] @

(1.4.0.0.1)

Layer 5

F ig u re  2.6 A task graph and steps for obtaining the Spec graph.
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be nonuniform. This makes the Cluster-M approach more general than approaches 

such as PYRROS and Hypertool, which assume fully connected uniform systems.

Similar to Spec clusters, the nth Rep cluster at layer v, R ”, is associated with 

the quintuple {crRvn, £R£, n/?,", 7rR”, pR%) defined as part of the Cluster-M model in 

Section 2.3. To construct a Rep graph from an undirected system graph, initially, 

every node with computation speed of B t forms a cluster by itself with parameters 

(1, Z?j, 0, 0, 1), assuming tha t these nodes are all MIMD type. Then clusters tha t 

are completely connected are merged to form a new cluster, and the parameters of 

the new cluster are calculated, as explained below. This process is repeated until no 

further merging is possible. Three clusters R", R y, and R" are completely connected 

if R" contains a node px, Rvy contains a node py, and R vz contains a node pz, so tha t 

nodes px,py, and pz form a clique. This definition can be extended for N  completed 

connected clusters. To calculate the values of the first four parameters for a  new 

cluster, consider a new cluster R”+I, which is generated a t layer (v +  1) by merging 

N  completely connected clusters Ry, RJ>, • • •, RVN at layer v. Then the values of <rR"+1 

and 5R”+] can be easily computed as follows.

We denote the transmission rate between R\ and R” to be Cfp which is defined as 

the sum of the transmission rate (as a function of communication bandwidth and 

switching latency) of each pair of processors (subclusters) pi and pj such that pi is

^ n + ‘ =  ! > * ? (2 .11 )

°Rl+ '
(2 .12 )

^6rty,Pj6ftv Cij. Then nR "+1 and nR%+] can

be calculated as follows.

N  N - 1 N

(2.13)
i— 1 i— 1 j=t+li— 1 i— 1 j=i+\

rw*H   2^i—\ 1 \ /
^  * * '7 1  Kt  /  a r  I \  »  r  /  n  T  -  v

E .-7 1 E1.U., Qi- 2(E,/I t 1 E  )
(2.T1)XULzll N (N  -  1)



32

The algorithm for clustering undirected graphs, called Clustering Nonuniform 

Undirected Graphs (CNUG)1, is shown in Figure 2.7. Instead of using an optimal 

algorithm for finding cliques, we use a heuristic so that, for every cluster, we examine 

the set of edges connected to it in the following manner. The edges are sorted in 

descending order based on the value of Cj7-. The edges are then examined one at a 

time from this list. If more than one of the edges have the same weight, then an 

arbitrary one is selected. A simple example is shown in Figure 2.8.

We now analyze the running time of this implementation. For each layer, we 

first sort all the edges between clusters tha t take 0 (\E V\ log|JFp|), where \EP\ is the 

number of edges in the system graph. Then, we keep merging clusters into the next 

layers. Suppose at a certain layer, there are m  clusters c i , - - - , cm. The time for 

finding cliques among these clusters is at most m  x m  < iV2, where N  is the number 

of processors in the system graph. The most number of layers there can be is N  — I . 

Therefore the total time complexity of this algorithm is 0 ( N ( \ E p\ log J JE7p| +  N'2)). 

Consider the worst case, where the system graph is completely connected (i.e., \EP\ =  

0 ( N 2)), then the time complexity of this algorithm will be 0 ( N 3 log TV). Note that 

most system graphs are not completed connected. Therefore, in practice the time 

complexity of this algorithm will be 0 ( N 3) if the number of edges is proportional to 

the number of nodes.

2.5 C luster-M  M apping A lgorithm

A Spec graph and a Rep graph can be generated directly from a given task graph 

and system graph, using the clustering algorithms presented in the previous section. 

Given a Spec graph and a Rep graph, this section presents an efficient mapping 

algorithm that produces a suboptimal matching of the two graphs in O( MP )  time, 

where P = max(M, N).  Note that the mapping algorithm maps the Spec graph

'Pronounced “see-nudge.”
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Clustering Nonuniform Undirected Graphs (CNUG) Algorithm
for all nodes p* do
begin Make a cluster for p, at clustering layer 1

Set the parameters of the cluster to be (1, Bi, 0, 0)
end
Set cluster layer to be 1
while there is at least one edge linking two clusters do 
begin Sort all edges linking any two clusters 

while sorted edge list is not empty, do 
begin Take the first edge (ci,Cj) from sorted edge list 

Delete the edge from the list 
Merge c, and Cj into cluster d  at next layer 
Calculate the parameters of d  
Delete clusters c* and Cj from current layer 
for each edge (cx , C y ) in sorted edge list 
if cx is a sub-cluster of d  and 
Cjy is not a sub-cluster of any cluster and 
Cy is connected to all other sub-clusters of d , then 
begin Merge cy into d

Recalculate the parameters of d 
Delete (cx,cy) from edge list

end
else if cx and Cy are sub-clusters of 
two different clusters at next layer, then 
begin Add the weight of (cx ,cy) to

the edge between the two super-clusters 
Delete (cx,cy) from edge list

end
end
Increment clustering layer by 1

F ig u re  2.7 Clustering Nonuniform Undirected Graphs (CNUG) algorithm.
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(3,5/3,3,1,1)
Rep graph 
(3,5/3,3.1.1)

(1,2,0,0,1) (1,2.0,0,1)
(2,2,2,2,1)

(1,1,0,0,1)

(2,2,2,2,1) (1.1,0,0,1)

F ig u re  2.8 A nonuniform system graph and its Rep graph.

one layer at a time as explained in Section 2.2.2. Every layer of the Spec graph 

represents a computational step in which a number of concurrent computations are 

represented by a number of Spec clusters. These clusters are formed by tracing the 

data dependency of other subcomputations from a previous step. We are interested 

in mapping the Spec clusters at each layer to the appropriate Rep clusters. In the 

following, we first present a set of preliminaries and then give a high-level description 

of the mapping algorithm. In Section 2.5.3, a few examples are given to illustrate 

the mapping algorithm.

2.5.1 P re lim in aries

We first define the mapping function f m : Vt Vp. Following the precedence 

constraints and the computation and communication requirements of the original 

task graph, a schedule can be obtained by assigning each task module /.* to the 

processor / m((j). We assume that the communication time for a task graph edge 

(U, t j ) is equal to E(Pl,p„)ePath(/m(q)1/m(tJ)) where pa th (pifpj) is the shortest path 

between processor pi and Pj.

A schedule can be illustrated with a Gantt chart tha t consists of a list of all 

processors and a list of all task modules allocated to each of the processors ordered 

by their execution time [23]. We define the total execution time of a schedule, Tm, 

to be the latest finishing computation time of the last scheduled task module on any
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processor. Obviously, Tm is equal to the total execution time of a given task on a 

given system. As we consider the shortest execution time of a given task on a system 

to be the ultimate goal in scheduling, we take Tm as our measure of quality to scale 

how good a mapping is.

2.5.2 T he A lgorithm

A detailed description of the mapping algorithm is presented in Figure 2.9. Tn the 

following, we give an overview of the algorithm. The mapping is done recursively at 

each clustering layer, where we try to find the best matching between Spec clusters 

and Rep clusters. Assume that at a certain step of mapping, m Spec clusters of layer 

u, S“, S£, • • •, S£,  are to be mapped onto n Rep clusters of layer v, R \ , R • • •, Rvn. 

We denote the execution time of mapping the Spec cluster S? onto the Rep cluster 

R'- by r ( S “, /?.’•) expressed by (2.1). Then the mapping process at each layer can be 

viewed as an optimization problem, as follows.

m
min ' £ t ( S ? , U S ? ) )  (2.15)

i= 1

The time complexity of finding an optimal solution to the above formula can be 

costly. Therefore, we propose the following greedy algorithm for finding a near- 

optimal solution to the formula for each layer. In this greedy algorithm, we assume 

that all the computations are MIMD. Therefore, we only deal with four of the five 

parameters in the process. The greedy algorithm continues as follows. First, the 

Spec and Rep clusters are sorted in descending order with respect to the order of the 

four parameters (a, 5, IT, 7r). For example, Spec clusters with larger sizes are sorted 

before those with smaller sizes, and for Spec clusters with the same size, those with 

larger amount of sequential computation are sorted first.

Secondly, we compute a reduction factor denoted by which is the ratio of 

the total size of the Rep clusters over the total size of the Spec clusters and is used 

to estimate how many computation nodes to share a processor. This is essential for
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mapping task graphs of size M  onto system graphs of size N,  where M  > N.  The 

value of /(U)U) is computed as:

T n n R v
/„ . , ,  =  | | ^  (2.16,

Third, we map each of the Spec clusters Sf ,  1 < i < m, as follows. We first 

search for a Rep cluster R”, 1 < j  <  n, with the best matched size, that is, closest 

to /(„,„) x aSf .  Therefore, we try to minimize the function in Equation (2.17). Tf 

multiple Rep clusters with the matching size are found, we select the one with the 

minimum estimated execution time. If no Rep cluster with a matching size can be 

found for a Spec cluster, we either merge or split (unmerge) Rep clusters until a 

matching Rep cluster is found.
m

l /m l =  £ l / < « , » )  X °S? -  0 - [ /m ( S “ )l | ( 2 .1 7 )
i =  1

Finally, for every matched pair of the Spec and Rep clusters, we do the following 

to embed communication intensive nodes together. This is similar to the clustering 

process in [74, 59, 76]. However, in this chapter, we only do it in the mapping 

step so that the clustering of the task graph is kept independent of the system 

graph, as described in the previous section. Assume that a Spec cluster 5 “ having 

k subclusters, £ “-1, R^-1, • • •, S*-1, is mapped to a Rep cluster R!-. If the commu­

nication overhead for processing the subclusters in parallel is greater than the 

computation overhead for processing the subclusters sequentially, then we embed all 

subclusters into one subcluster having the largest size so that they will be executed 

sequentially. We then calculate the parameter quadruple for the new cluster. In

Inequality (2.18), irSf/nR''- is the communication time if the subclusters are executed

in parallel and

1 imn{aS\l- lS S r \ a S ^ S S ^ 1, • • • ,  a S ^ S S ^ )
f(u ,v )

is the computation time for executing the subclusters sequentially on Rv-. The 

embedded cluster is inserted back in the proper position in the sorted list of Spec
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clusters for mapping, and the matching process is repeated for the remaining Spec 

clusters in the list. If no embedding is necessary, then the mapping of this Spec 

cluster onto a Rep cluster is done for this layer, and, therefore, this Spec cluster is 

removed from the list.

In the above mapping algorithm, the worst case of the time complexity of the 

mapping algorithm at layer i occurs in one of the following two cases. In case 1, 

for each Spec cluster, all the remaining Rep clusters have the matching size, thus 

(2.1) is used to select the best Rep cluster. In case 2, for each Spec cluster, no Rep 

cluster of matching size is found, thus Rep clusters are merged or split recursively 

until a Rep cluster of matching size is obtained. Suppose the number of Spec clusters 

at layer i is A',-. In both cases described above, or in any combination of the two 

cases, it takes 0 {K jN )  time to find the best matches for all A, Spec clusters, as 

the total number of clusters in the Rep graph is O(N),  where N  is the number of 

processors. For each pair of matching Spec and Rep clusters, if Inequality (2.18) is 

satisfied, then an extra O(M)  time for embedding will be needed. The total number 

of Spec clusters is 0 ( M ), that is, J2i A'i =  O(M),  where M  is the number of nodes in 

original task graph. Therefore, the total time complexity of this mapping algorithm 

is Zi(I<iN + M) — O (M N)  +  0 ( M 2) =  O(MP),  where P  =  max (A/, N).

2.5.3 M apping Exam ples

In Section 2.4, we constructed a Spec graph and a Rep graph from the original task 

graph and system graph, as shown in Figures 2.6 and 2.8. Figure 2.10 shows the 

snapshot of the mapping process. Figure 2.11 shows the final schedule obtained from 

the above mapping by following the data and operational precedence of the task 

graph. As shown in the Gantt chart, Tm =  10.

7rS“ 1
— -  >  x

mm{aS\L- x5 S r \  • • •, ffSjf"1̂ - 1)
8 R ’

(2.18)
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Mapping Algorithm
for each layer of Spec graph do

Sort all Spec clusters at top layer in descending order of aSf.  SSf , TTSf. and nrS)L. 
Sort all Rep clusters at top layer in descending order of oR}■ 8R”, IIR”, and 7r/2”. 
Calculate if /(„,„) > 1, let = 1.
Calculate the required size of the Rep cluster matching 5“ to be J(u,v) x c S f  
for each Spec cluster at top layer sorted list, do 

if the cluster has only one sub-cluster, then 
Go to a lower layer where there are multiple or no sub-clusters 

if at least a Rep cluster of required size is found, then 
Select the Rep cluster of required size with minimum 
estimated execution time according to Equation (2.1)
Match the Spec cluster to the Rep cluster 
Delete the Spec and Rep clusters from Spec and Rep lists 

for each unmatched Spec cluster, do
if the size of the first Rep cluster > the required size, then 

Split the Rep cluster into two parts with one part of the required size 
Match the Spec cluster to this part
Insert the other part to proper position of the sorted Rep cluster list 
Merge Rep clusters until the sum of sizes > the required size 
if =  then Match the Spec cluster to the merged Rep cluster 
else

Split the merged Rep cluster into two parts with one of required size 
match the Spec cluster to this part 
Insert the other part to the sorted Rep list 

for each matching pair of Spec cluster and Rep cluster, do 
if the Rep cluster contains only one processor, then 

Map all the modules in the Spec cluster to the processor 
else if Inequality (2.18) is satisfied, then

Select the sub-cluster of the Spec cluster with the largest size
Embed the nodes of other sub-clusters
to the connected nodes of the selected sub-cluster
Calculate the parameters for the new cluster
Insert it into the sorted Spec cluster list

else
Delete the Spec and the Rep clusters from the cluster lists 
Go to the sub-clusters of the Spec and Rep cluster 
(thus they are pushed to top layer)
Call the same mapping algorithm for these clusters

Figure 2.9 Mapping algorithm.
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F ig u re  2.10 A mapping example.

To show that the same task graph can be mapped onto various system graphs, 

three different system graphs are chosen and shown in Figure 2.12. Figure 2.12(a) is 

the same task graph as shown in Figure 2.6. Figure 2.12(b) shows a uniform, fully 

connected system graph and its clustering. The computation speed of each processor 

and communication bandwidth of each communication link are equal to 2. The result 

of Cluster-M mapping onto this graph is shown in Figure 2.12(c). In Figure 2.12(d), 

the system is fully connected with computation speed of 1 at each processor, but the

0 1  2 3 4 5 6 7 8 9  10

P i t l t2 t7

Pt *3 t4 15 k>
P.3

Figure  2.11 Gantt chart of the obtained schedule.
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F ig u re  2.12 Mappings on different system graphs.
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communication bandwidths are nonuniform. In this case, the Cluster-M algorithm 

distributes the task modules to all three processors, as shown in Figure 2.12(e), to 

utilize the relatively high communication bandwidth available. If the system is fully 

connected with uniform communication bandwidth and nonuniform computation 

speeds as shown in Figure 2.12(f), however, Cluster-M mapping algorithm maps all 

the task modules onto the processor with the highest speed to avoid the relatively 

expensive communication cost. This is shown in Figure 2.12(g).

SUBROUTINE K J I ( A ,L D A ,N )
C
C SAXPY 
C FORM K JI-SA X PY  
C

REAL A(LDA,N)
DO 40 K = l , N - l  

DO 10 I= K + 1 ,N
A ( I ,  K) = -A  ( I ,  K) / A (K, K)

10 CONTINUE
DO 30 J= K + 1 , N 

DO 20 I= K + 1 , N
A ( I , J )  =A ( I , J )  +A ( I , K) * A ( K ,J )

20  CONTINUE
30 CONTINUE
40  CONTINUE 

RETURN

Figure 2.13 The Fortran code of the Gaussian elimination on a N  x TV matrix.

Finally, we give an example for mapping a real application task. We choose the 

Gaussian elimination algorithm used in UNPACK. The FORTRAN code is given in 

Figure 2.13. Suppose using a baseline computer, it takes one clock cycle to perform 

an addition or subtraction, and it takes two clock cycles to do a multiplication or 

division of two real numbers. Also, we assume the communication amount on an edge 

to be the number of real numbers that need to be sent. A task graph for computing 

the Gaussian elimination of a 5 x 5 matrix is shown in Figure 2.14(a). In each 

task module 71*, column j  is modified by using column k. Suppose that the system 

running this task contains only two workstations p\ and P2 ■ Workstations p\ and p -2 

have speeds of 2 and 1.6, respectively, and are connected with a link of bandwidth 1.
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F ig u re  2.14 (a) The task graph and (b) the mapping result of the Gaussian 
elimination on a 5 x 5 matrix.

The mapping result using our technique is illustrated in Figure 2.14(b). For a more 

practical illustration of our algorithms, we performed the following two experiments. 

Tables 2.1 - 2.3 shows the mapping results of doing Gaussian eliminations on various 

sizes of matrices using different two-processor systems. The speeds of the processors 

are 2 and 1.6, 1 and 1, and 0.8 and 0.7, respectively, while the communication 

bandwidth is assumed to be 1. To illustrate the efficiency of the Cluster-M mapping, 

we experimented with mapping a 500 x 500 Gaussian elimination problem on 1 to 10 

uniformly weighted and fully connected processors. As shown in Figure 2.15, near- 

optimal speedups have been obtained. These experiments were done manually as we 

do not yet have an interface which automatically generates a task graph from a given 

program. However, given a task or a system graph, we can automatically generate 

a clustered graph, and then run the mapping code for allocating and scheduling 

the task graph onto the system graph. In the next section we show the mapping 

generated using the Cluster-M code on randomly generated task and system graphs.
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Table 2.1 Gaussian elimination mapping results using two processors with 
speed 2 and 1.6.

Width of Matrix 100 200 300 400 500
Speedup 1.196 1.180 1.175 1.171 1.170

Table 2.2 Gaussian elimination mapping results using two processors with 
speed 1 and 1.

Width of Matrix 100 200 300 400 500
Speedup 1.494 1.474 1.468 1.465 1.463

Table 2.3 Gaussian elimination mapping results using two processors with 
speed 0.8 and 0.7.

Width of Matrix 100 200 300 400 500
Speedup 1.308 1.290 1.285 1.281 1.280

500x500 Matrix Gaussian Elimination

s- <>

N u m b e r  o f  P r o c e s s o r s

Figure 2.15 More Gaussian elimination mapping results.
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2.6 Com parison R esults

In this section, we first present our comparison results for the scheduling problem and 

then for the allocation problem. The following five criteria are used for evaluating the 

performance of the algorithms examined: (1) the total time complexity of executing 

the mapping algorithm, Tc; (2) the total execution time of the generated mappings, 

Tm; (3) the speedup Sm = Ts/T m, where T, is the sequential execution time of the 

task; (4) efficiency r] — Sm/N m, where Nm is the number of processors used; and (5) 

the actual time of running the mapping algorithm on a certain computer, Tc.

2.6.1 Scheduling

In this section, we present a set of experimental results we have obtained in comparing 

our algorithm with other leading scheduling techniques. The comparisons presented 

in this section are classified into two categories: (1) mapping arbitrary nonuniform 

task graphs onto arbitrary nonuniform system graphs, and (2) mapping arbitrary 

nonuniform task graphs onto uniform fully connected system graphs. We first present 

the comparison for the first category and then the second one.

2.6.1.1 M apping Nonuniform  Tasks onto N onuniform  System s The

mapping techniques in this category include El-Rewini and Lewis’ mapping heuristic 

(MH) [22] and Lo’s Max Flow/Min Cut (MFMC) algorithm [44]. To the best of 

our knowledge, they are the only known efficient mapping techniques that can 

map arbitrary nonuniform task graphs onto arbitrary nonuniform system graphs 

in polynomial time. The experimental results shown in this section are obtained 

by running a set of simulations on a SUN SPARCstation 20 workstation, and all 

running times are measured in second on this machine. The nonuniform task graphs 

are randomly generated. We map these task graphs onto four different nonuniform
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systems'2: (1) a randomly generated system graph with 100 nodes, where the compu­

tation speed of the nodes and the communication bandwidth of the edges range 

from 1 to 5, (2) a randomly generated system graph with five nodes, where the 

computation speed of the nodes and the communication bandwidth of the edges 

range from 1 to 5, (3) a completely connected system graph with four nodes as 

shown in Figure 2.16, and (4) a hypercube with eight nodes as shown in Figure 2.17.

F ig u re  2.16 System (2): A completedly connected system.

4

4

F ig u re  2.17 System (3): A hypercube system.

C o m p ariso n  w ith  E l-R ew in i an d  Lew is’ M H  We first compare our algorithm 

with El-Rewini and Lewis’ mapping heuristic (MH) algorithm. MH is an improved 

list scheduling algorithm. The time complexity of MH is 0(M '2N 3), while ours has 

an O (M N )  time complexity. In Table 2.4, comparison results are shown for mapping 

nonuniform random task graphs ranging from 100 to 1000 nodes onto the random 

system graph of size 100. The running time of MH grows significantly when the

2For comparing against MFMC, we use three system configurations, system (2)-(4). The
time complexity of MFMC in practice is too high and for the first system configuration, 
each experiment takes several days. For more detail, see Section 2.6.1.2.



46

size of task graph grows. The running time of Cluster-M remains stable. Tables 

2.5, 2.6, and 2.7 shows the comparison results obtained on system (2), (3), and (4), 

respectively. In these three tables, the size of randomly generated task graphs ranges 

from 10 to 100 nodes. In most cases, Cluster-M obtains better speedup than Mil. 

But in all cases Cluster-M has a significantly lower time complexity. For example, 

for a random nonuniform task graph of size 1000, and a random nonuniform system 

graph of size 100, Cluster-M generates a mapping result with the speedup of 3.49 in

0.01 second, while Mil produces one with the speedup of 2.73 but in 10753.4 seconds 

(i.e., Cluster-M is faster by a factor of nearly 1,000,000). Theoretically, Cluster-M is 

bister by a factor of 0 ( M N 2).

Table 2.4 Comparison of Cluster-M and MH on system (1).

Size of 
Random Graph Ta

Cluster-M [O(MN)] MH [0{M2N A)\
Tm Sm Tc T1 m Sm Tc

100 286 88.80 3.22 0.01 95.80 2.99 128.4
200 630 133.20 4.73 0.01 231.82 2.72 425.9
300 855 345.55 2.47 0.01 240.25 3.56 971.3
400 1162 478.40 2.43 0.01 496.30 2.34 1725.0
500 1514 550.80 2.75 0.01 458.07 3.31 2768.6
600 1793 358.20 5.01 0.01 599.07 3.00 3954.3
700 2075 690.85 3.00 0.01 685.57 3.03 5348.3
800 2376 474.00 5.01 0.01 967.57 2.46 7026.5
900 2653 1113.80 2.38 0.01 1117.67 2.37 8812.2
1000 2966 850.15 3.49 0.01 1087.08 2.73 10753.4

Com parison w ith  Lo’s M ax F low /M in  Cut Lo’s algorithm is based on Stone’s 

work [63], where the mapping problem is transferred into a network flow model and 

is solved using a Max Flow/Min Cut algorithm. Stone’s model provides an optimal 

solution for two-processor problem only. Lo [44] extended Stone’s work to find a 

suboptimal solution of the mapping problem for general distributed (nonuniform) 

systems. Lo’s algorithm is a heuristic which combines recursive invocation of Max-
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Table 2.5 Comparison of Cluster-M and MH on system (2).

Size of 
Random Graph Ts

Cluster-M [O(MN)] MH [0(M 27Va)]
Tm Sm Tc Tm Sm Tc

10 27 7.93 3.40 0.01 11.13 2.43 0.1
20 64 19.00 3.37 0.01 26.33 2.43 0.1
30 73 20.65 3.54 0.01 31.10 2.35 0.2
40 112 23.15 4.84 0.01 29.97 3.74 0.3
50 155 35.57 4.36 0.01 50.93 3.04 0.4
60 183 46.27 3.96 0.01 44.23 4.14 0.6
70 217 86.60 2.51 0.01 55.03 3.94 0.8
80 237 92.33 2.57 0.01 94.17 2.52 1.0
90 260 88.45 2.94 0.01 101.95 2.55 1.3
100 280 75.57 3.71 0.01 93.90 2.98 1.5

Table 2.6 Comparison of Cluster-M and MII on system (3).

Size of 
Random Graph Ta

Cluster-M [O 'MN)] MH {0 (M 2N'A)]
Tm &m Tc T1 m sm Tc

10 27 9.00 3.00 0.01 17.33 1.56 0.1
20 64 19.00 3.37 0.01 33.83 1.89 0.1
30 73 30.67 2.38 0.01 38.17 1.91 0.2
40 112 47.33 2.37 0.01 43.83 2.56 0.3
50 155 78.17 1.98 0.01 64.67 2.40 0.3
60 183 53.33 3.43 0.01 82.17 2.23 0.6
70 217 78.33 2.77 0.01 107.17 2.02 0.7
80 237 80.67 2.94 0.01 127.17 1.86 0.9
90 260 117.17 2.22 0.01 157.67 1.65 1.2
100 280 109.00 2.57 0.01 137.83 2.03 1.3
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Table 2.7 Comparison of Cluster-M and MH on system (4).

Size of 
Random Graph TA  S

Cluster-M [O MN)] MH [0(M'-Wa)]
Tm Sm T1  C T1 m Sm T1  c

10 27 9.83 2.75 0.01 17.92 1.51 0.1
20 64 19.00 3.37 0.01 44.83 1.43 0.1
30 73 35.58 2.05 0.01 54.25 1.35 0.3
40 112 47.33 2.37 0.01 42.92 2.61 0.4
50 155 58.17 2.66 0.01 91.58 1.69 0.7
60 183 58.80 3.13 0.01 87.83 2.08 0.9
70 217 91.83 2.36 0.01 93.00 2.33 1.2
80 237 96.67 2.45 0.01 150.25 1.58 1.6
90 260 162.58 1.60 0.01 158.83 1.64 1.8
100 280 122.42 2.29 0.01 151.25 1.85 2.2

Flow/Min-Cut algorithms with a greedy-type algorithm. The time complexity of 

Lo’s algorithm is 0 ( M 4N  log M).  Tables 2.8, 2.9, and 2.10 shows the comparison 

results obtained on system (2), (3), and (4), respectively. In addition to MFMC, 

the simulations results using MH on these task graphs are also integrated in these 

tables. We only compare small task graphs here since it takes days for MFMC to 

run larger task graphs. As shown, Cluster-M produces similarly good results but in 

significantly less amount of time.

Table 2.8 Comparison of Cluster-M, MFMC, and MH on system (2).

Size of 
Graph T1  S

Cluster-M [O(MN)] MFMC [0(M 4N  log M)] MH [OiM^N6)}
Tm Sm T1  c

T  x m &m T1  c Tm &m Tc
10 27 7.93 3.40 0.01 8.10 3.33 0.8 11.13 2.43 0.1
12 33 8.23 4.00 0.01 16.85 1.96 4.1 9.03 3.65 0.1
14 45 8.20 5.49 0.01 18.25 2.47 23.9 16.87 2.67 0.1
16 46 12.50 3.68 0.01 23.70 1.94 109.1 14.05 3.27 0.1
18 54 20.33 2.66 0.01 27.90 1.94 556.3 19.98 2.70 0.1
20 64 19.00 3.37 0.01 34.70 1.84 2762.3 26.33 2.43 0.1
22 60 23.40 2.56 0.01 33.20 1.80 13430.0 28.29 2.12 0.1
24 86 16.00 5.38 0.01 39.65 2.17 21323.0 32.75 2.63 0.1
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T able  2.9 Comparison of Cluster-M, MFMC, and MH on system (3).

Size of 
Graph Ta

Cluster-M [O(MN)} MFMC [0(M*N  log M)\ MH [0 (M 2N A)\
Tm Sm T1  C Tm Sm T1 c Tm Sm Te

10 27 9.00 3.00 0.01 15.33 1.76 0.8 17.33 1.56 0.1
12 33 13.50 2.44 0.01 17.83 1.85 3.7 17.00 1.94 0.1
14 45 13.67 3.29 0.01 19.00 2.37 21.8 20.67 2.18 0.1
16 46 21.00 2.19 0.01 22.50 2.04 99.6 20.50 2.24 0.1
18 54 19.33 2.79 0.01 26.83 2.01 503.8 32.00 1.69 0.1
20 64 19.00 3.37 0.01 31.17 2.05 2504.8 33.83 1.89 0.1
22 60 24.50 2.45 0.01 35.83 1.67 13445.3 39.17 1.53 0.1
24 86 26.67 3.23 0.01 39.83 2.16 15225.2 48.17 1.79 0.1

T ab le  2.10 Comparison of Cluster-M, MFMC, and MH on system (4).

Size of 
Graph Ts

Cluster-M [0(MN)\ MFMC [0(M 4N  log M)] MH [0{M2N'A)\
Tm Sm Tc Tm Sm Tc T1 m Sm Tc

10 27 9.83 2.75 0.01 18.66 1.45 1.1 17.92 1.51 0.1
12 33 21.33 1.54 0.01 19.33 1.71 5.3 17.08 1.93 0.1
14 45 13.67 3.29 0.01 39.00 1.15 29.3 16.17 2.78 0.1
16 46 21.00 2.19 0.01 45.83 1.00 141.2 25.83 1.78 0.1
18 54 19.33 2.79 0.01 29.50 1.83 715.4 33.58 1.61 0.1
20 64 19.00 3.37 0.01 60.17 1.06 3579.5 44.83 1.43 0.1
22 60 26.00 2.31 0.01 40.83 1.47 17298.8 51.00 1.18 0.2
24 86 26.67 3.23 0.01 71.83 1.20 30081.7 41.17 2.09 0.2

2.6.1.2 M ap p in g  N onun ifo rm  Tasks on to  U n ifo rm  S ystem s The mapping 

techniques in this category include McCreary-Gill’s Clan [48], Sarkar’s Edge-Zeroing 

clustering [59], Wu-Gajski’s MCP [74], and Yang-Gerasoulis’ DSC [76]. These 

algorithms have proven to be very effective and efficient in mapping arbitrary and 

nonuniform directed tasks but work only for uniform and fully connected systems. 

Similar to our algorithm, these algorithms also cluster the task graphs before the 

mapping. However, they all assume that the target systems are fully connected with 

unbounded number of uniform processors and communication links. If the number 

of processors is bounded and smaller than the number of obtained clusters of task
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modules, some clusters will be merged until the number of clusters is no less than 

the number of processors. The examples selected here are not designed by us, rather 

are those presented and studied by the authors of the papers reporting the leading 

techniques.

Com parison w ith  M cC reary-G ill’s Clan We compare Cluster-M with McCreary- 

Gill’s Clan algorithm, which finds suitably sized grain (cluster) of task modules to 

be assigned to the same processor before scheduling the tasks [48]. A clan is a set 

of nodes X  of the directed task graph Gt if and only if for all tx, ty G A' and all

l.z G Gt — X  such tha t t.z is a parent node of tx if and only if tz is a parent node of 

ly\ or l.z is a child node of tx if and only if tz is a child node of ty. Informally, a clan 

is a subset of nodes where every element outside the set is related in the same way 

to each member in the set. An 0 ( M 3) parsing algorithm has been proposed that 

decomposes a task graph into clans. In McCreary-Gill’s algorithm, it is also assumed 

that the underlying system is fully connected and all the processors and commu­

nication links are uniform (Si =  1, Rij =  1, for all i, j ) .  Using McCreary-Gill’s 

algorithm, the following task modules of the task graph shown in Figure 2.18(a) 

are clustered together and are assigned to the processors of a fully connected four 

processor system:

1,2, 9
Pi- 3, 4, 10
Pi- 5, 6, 11
Pa- 7, 8, 12

As task module 13 receives data from 9 and 10, it is assigned to p\. Similarly, 14 is 

assigned to p2 and 15 is assigned to p x. The schedule resulting from this assignment 

appears in Figure 2.18(c). Even though our clustering and mapping algorithms are 

different and more generic than Clan, we have obtain similar results, as shown in 

Figure 2.18(b).
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(c) Cluster-M mapping, Tc = O(MP), Tm =  59, Nm = 4

F ig u re  2.18 Comparison example with Clan.

C o m p ariso n  w ith  W u -G ajsk i’s M C P  The modified critical path (MCP) 

algorithm [74] is based on critical path introduced by Hu [37]. A critical path 

in a directed acyclic graph (DAG) is a path of greatest weight from a source node to 

a sink node, including the weights of all the nodes and edges along this path. The 

critical paths can be shortened by removing communication weights (zeroing edges) 

and embedding the nodes on the path. MCP assumes that the weights of task nodes 

and edges are the actual computation and communication times. Therefore, given 

the same task graph as shown in Figure 2.6 and the system graph as shown in Figure 

2.12(b), a  transformed task graph incorporating the information about the system 

graph has to be generated first, as shown in Figure 2.19(b). The mapping results by 

our technique and MCP are shown in Figure 2.19(c) and (d), respectively. We have
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(a) The original task graph (b) The transformed task graph

0 1 2 3 4 5 6 7 8 9  10 0 1 2 5 6 7 8 8.5 9.5 10.5

Pj • l l l 2 1 | t 7 Pi 111*31 *2 1

p? t3 t 4 tS | t 6 l P2 14 *6 17
P.3 P3

(c) Cluster-M, Tc =  O(MP) 
Tm = 10, Nm — 2

(d) MCP, Tc = 0(M2 log M) 
Tm =  10.5, Nm — 3
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(g) Clan, Tc = 0(M 3),Tm = 13, Nm = 1

F ig u re  2.19 Comparison example with MCP, Sarkar, DSC and Clan.
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obtained a mapping with Tm = 10, while their Tm =  10.5. The time complexity of 

MCP is 0 ( M 2 logM ).

Com parison w ith  Sarkar’s Edge-Zeroing Algorithm  The basic idea of Sarkar’s 

Edge-Zeroing algorithm is to repetitively zero the highest weighted edge if it does 

not increase the estimated Tm, until all the edges have been examined. Its time 

complexity is 0 ( \ E t\(M + \Et \)), where \Et\ is the number of edges in the task graph. 

Figure 2.19(e) shows the mapping result obtained by the edge-zeroing algorithm on 

the same example used for MCP in the last section. This result matches ours. 

C om parison w ith  Yang-G erasoulis’ DSC Yang-Gerasoulis’ dominant sequence 

clustering (DSC) algorithm [76] is also based on critical path and edge zeroing, and 

it incorporates several other heuristics for better clustering. DSC can find optimal 

schedules for some special DAGs such as fork and join. However, the task graphs 

considered in DSC are not machine-independent and similar to the above three 

techniques, it cannot map to nonuniform systems such as those shown in Figure 

2.12(d) and (f). The time complexity of DSC is 0 ( ( \E t\ +  M )logM ), where \Et \ is 

the number of edges in the task graph.

Figure 2.19(f) shows the mapping result obtained by DSC for the same example 

studied in comparison with MCP and Sarkar’s algorithms. Among the results for this 

example, the DSC algorithm produces the best mapping results but does not have 

the lowest time complexity. In the following, we show several more comparisons with 

DSC. These examples are taken from [76]. Figure 2.20 and 2.21 show the mapping of 

two task graphs onto an unbounded number of identical processors fully connected 

by identical communication links. The task graph in Figure 2.22 was taken from 

an example studied by El-Rewini and Lewis’s 0 ( M 2N 3) MH algorithm [22]. It is 

to be mapped onto a eight-processor hypercube with unit computation speed and 

communication bandwidth. The mapping by MII has Tm =  26 and Nm — 7. An 

optimal mapping using eight processors and having Tm = 25 is given in [15]. (In
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[15], graphs with uniform edges were considered.) The mapping results using our 

technique and DSC are illustrated in Figure 2.22(b) and (c). Tf a four-processor 

hypercube is used, DSC’s and our mappings of the same task graph are shown in 

Figure 2.22(d) and (e).

(a) Task graph

0 1 2 3 4 5 0 1 2 3  4

P i t l *3 1 *41 t6 P i t l t 3 l  1 4 ! t 6

p 2 t 2 P 2 t 2

P 3 . .  ,‘ s  I J i . 7 P 3 15 1 1 t 7

(b) Cluster-M, Tm =  5, Nm =  3 (c) DSC, Tm =  5, Nm - - 3

0 1 2 3 4 5 6 7 8 9  10

Pi
p 2

p 3

*1 *2 *3 <4 *5 *6 17

(d) Clan, Tm =  10, Nm = 1 

F ig u re  2.20 Comparison example 2 with DSC and Clan.

C o m parison  w ith  C h au d h a ry  and  A ggarw als’ A lg o rith m  Next, we 

compare our mapping results with Chaudhary and Aggarwal. We present two 

examples. In the first example, the task graph of Figure 2.23 is mapped onto a 

2-cube. The mapping results for this example is shown in Figure 2.24. In the second 

example, the task graph of Figure 2.25 is mapped onto a 2-cube. The mapping 

results for this example is shown in Figure 2.26. As we see in all the examples in this 

section, Cluster-M mapping has a superior running time, and the results obtained 

are similar to or better than those from the other algorithms.
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(a) Task graph
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(b) Transformed task graph
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(c) Cluster-M mapping result, Tm — 9, Nm
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(d) DSC-I’s mapping result, Tm =  9.5, Nm =

0 1 2.5 3 5 9
Pi ti 1 t2 |t3 ts 1 ................. ............
p2 t4

(e) Clan mapping result, Tm -  9, Nm — 2

F igure 2 . 2 1  Comparison example 3 with DSC and Clan.

2.6.2 Task A llocation

A generic mapping technique must be able to do both task scheduling as well as task 

allocation. Cluster-M can efficiently be applied to the both cases. The goal of task 

allocation is to minimize the communication delay between processors and to balance 

the load among processors. The problem of task allocation arises when specifying 

the order of executing the task modules is not required. Therefore, the task graph in 

task allocation is undirected and the clustering-undirected-graphs algorithm is used 

to generate the Spec graph in this case. We consider the measure of mapping quality 

in task allocation to be Tm.

We compare our results to Bokhari’s mapping (allocation) algorithm [9] using 

undirected task graphs. Bokhari’s algorithm has the running time complexity of 

0 ( N 3), while ours is O(MN).  Bokhari’s algorithm assumes that the computation



(a) Task graph
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(c) DSC’s mapping on 8  processors, Tm =  27, Nm — 7
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(e) DSC’s mapping on 4 processors, Tm = 27, Nm — 4

F igure 2 . 2 2  Comparison example 4 with DSC.
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F igure 2.23 Comparison example 1 with Chaudhary and Aggarwal: task graph.
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(a) Chaudhary and Aggarwal, Tc - 0 ( M A), Tm = 10, Sm = 1.6, 77 =  0/1.
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(b) Cluster-M, Tc = O(MN), Tm = 10, Sm = 1.6, 7] = 0.4.
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(c) Optimal, Tc = 0( 2MN), Tm = 8 , Sm — 2, rj — 0.5.

F igure 2.24 Comparison example 1 with Chaudhary and Aggarwal: mapping 
results.
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Figure 2.25 Comparison example 2 with Chaudhary and Aggarwal: task graph.
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(c) Optimal, Tc = 0 ( 2 MN), Tm =  6 , Sm = 1.3, 77 =  0.65.

Figure 2.26 Comparison example 2 with Chaudhary and Aggarwal: mapping 
results.
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amount, of each task module, the amount of data communication along each task 

graph edge, the computation speed of each processor, and the data transmission rate 

along each communication link are all uniform, that is, 1. It further assumes the 

number of task modules is no greater than the number of processors, so that the 

mapping can be one-to-one. In this case, a lower bound on Tm can be S +  1, where 

S is the degree of a given task graph.

Task graph System graph

Figure 2.27 Comparison example with Bokhari: task and system graph.

In comparing Cluster-M with Bokhari, we use the example shown in Figure 

2.27, which has a 33-node task graph and a 6 x 6 finite element machine (FEM) 

[9]. A Sun SPARCstation 1 was used for the experiments. The results are shown 

in Table 2.11. Note that the running time of clustering the task graph and system 

graph by Cluster-M, which is 0.7 seconds, is not included in Tc, as our clustering is 

independent of the mapping. However, even if we included it, the running time of 

Cluster-M would still be 200 times faster than Bokhari’s algorithm. The lower bound 

on Tm as described before is 9, and yet both Cluster-M and Bokhari’s algorithms 

obtained near optimal results of Tm =  17 and 13, respectively. The above example 

uses the same structured task and system graph as in [9]. We have also tested other 

randomly generated task and system graphs. Table 2.12 shows the mapping results
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Table 2-11 Mapping of Bokhari’s algorithm and Cluster-M

Task
Module

Mapped processor
Bokhari Cluster-M

1 5 0
2 30 1
3 3 2
4 0 6
5 2 3
6 6 4
7 1 7
8 8 8
9 7 9
10 15 5
11 13 12
12 14 10
13 20 11
14 9 13
15 19 19
16 10 18
17 17 14
18 18 15
19 11 26
20 12 20
21 16 27
22 22 32
23 23 21
24 21 16
25 29 28
26 26 17
27 27 22
28 28 33
29 31 24
30 33 23
31 25 25
32 32 30
33 34 31
Tm 13 17

Tc (sec) 152.5 0.05
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T able  2.12 Comparisons of mappings of Bokhari’s algorithm and Cluster-M

Random Graphs 
of 10 Nodes

T1 m Tc (sec)
Bokhari Cluster-M Lower Bound Bokhari Cluster-M

1 15 15 8 0.82 0.03
2 9 13 7 1.58 0.03
3 10 11 8 1.20 0.03
4 11 14 8 1.00 0.03
5 11 12 9 1.02 0.03
6 10 12 8 2.35 0.02
7 11 12 8 1.40 0.03
8 10 12 8 1.18 0.03
9 10 13 9 1.20 0.02
10 9 10 7 1.03 0.02

and comparisons for 10 randomly generated task and system graphs of 10 nodes. 

Similar results were obtained for the set of random graphs.

2.7 Conclusion

This chapter presents a portable parallel programming model called Cluster-M that 

bridges software and hardware for heterogeneous computing. This model allows 

software portability without imposing any restrictions on the hardware and provides 

a mechanism for estimating the performance of a given parallel program on any 

heterogeneous computers or suite of computers. Using the parameters of this model, 

portable parallel programs can be specified and then mapped onto dynamically recon­

figured heterogeneous organizations. An implementation of this model as a portable 

programming tool was also presented. Two clustering algorithms were presented that 

need to be applied only once for each problem (system), independent of any system 

(problem), and need not be repeated for each mapping. The mapping module of the 

Cluster-M tool was shown to produce efficient and near-optimal mappings for any 

given task and system graphs. Using Cluster-M a single software can be ported and 

shared among various computing units in a heterogeneous suite.



C H A P T E R  3

M A P P IN G  A N D  SC H ED U LIN G  FO R  H ET ER O G E N E O U S  
C O M PU T IN G

This chapter consists of two parts. In the first part, we present a brief survey 

of existing heterogeneous mapping techniques. In the second part, we illustrate a 

suboptimal Cluster-M-based solution to the problem of mapping application tasks 

onto heterogeneous computing systems. We propose two clustering algorithms for 

generating clustered task and system graphs on behalf of mapping. The mapping 

algorithm employs integer linear programming recursively for mapping clusters of 

the task graphs onto clusters of the system graphs in order to find a suboptimal 

solution.

3.1 Introduction

The mapping problem, in its general form, has been known to be NP-complete and 

has been studied intensively for homogeneous parallel computers during the past 

two decades [6, 9, 15, 21, 22, 25, 43, 45, 53, 76]. In mapping, an application task 

and a computing system are usually modeled in terms of a task flow graph and a 

system graph. The problem, then, is how to map efficiently the task flow graph 

to the system graph. A task flow graph is a directed acyclic graph (DAG) that 

consists of a set of vertices and a set of directed edges. A vertex denotes a task 

module decomposed from the given task. Each vertex is associated with a weight that 

denotes the computation amount within the corresponding task module. A directed 

edge joining two task modules denotes that data communication and dependency 

exist between the two task modules. The weight of an edge represents the amount 

of data communication. While a task flow graph is usually directed, the system 

graph is usually an undirected graph. A set of vertices in a system graph denote 

processors and a set of undirected edges indicate physical communication links for

62
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processor pairs. The weight, of a vertex (edge) represents the speed (bandwidth) of 

the corresponding processor (communication link). We define a graph as nonuniform 

if and only if the weights of all vertices or the weights of all edges are not the same; 

otherwise it is uniform.

In recent years, trends in heterogeneous computing (HC) have drawn researchers’ 

attention to the problem of mapping tasks onto a suite of heterogeneous computers 

[71, 16, 38, 40, 56, 17, 20]. In HC, the task and system graphs can be nonuniform. 

Therefore, the mapping problem in HC can be viewed as mapping of an arbitrary 

nonuniform task graph onto an arbitrary nonuniform system graph. This chapter first, 

presents an overview of a number of existing heterogeneous mapping techniques and 

then illustrates a suboptimal Cluster-M-based heterogeneous mapping algorithm. 

An essential part of mapping is a way to “cluster” nonuniform task and system 

graphs. These algorithms are the augmented versions of the clustering algorithms 

presented in the previous chapter, so that the vertices of the graphs are clustered 

if and only if they are of the same computational type. For example, all the single 

instruction, multiple data  (SIMD) nodes in a task (system) graph are grouped 

together. The clustering algorithms are done only once for each task (system) graph, 

independent of any system (task) graphs, and need not be repeated for every pair of 

system-task graphs to be mapped.

The Cluster-M mapping algorithm presented in Chapter 2 maps arbitrary 

clustered task graphs with nonuniform nodes1 and edges onto arbitrary clustered 

system graphs with nonuniform nodes and edges. The mapping process of this 

algorithm is then performed in a recursive fashion by a greedy algorithm matching the 

clusters of the task graphs (Spec clusters) to the clusters of the system graphs (Rep 

clusters). In this chapter, we use an extended version of the algorithm which incor­

porates the type heterogeneity [i.e., SIMD and multiple instruction, multiple data 

'In this chapter, “vertex” and “node” are used interchangeable.
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(MIMD)] of tasks and systems in HC. The augmented mapping algorithm presented 

first maps Spec clusters to Rep clusters of similar computational type and then 

proceeds with an enhanced fine-grain mapping technique. Since the expected number 

of clusters at every level of the fine-grain mapping is constant, we propose to use 

an optimal matching strategy to enhance the algorithm. Therefore, we formulate 

and solve each step of the fine-grain cluster mapping by using an integer linear 

programming (ILP) model. We then compare the mapping results of our algorithm 

with those of some other heterogeneous mapping techniques.

The remainder of this chapter is organized as follows. We first review a number 

of heterogeneous mapping techniques in Section 3.2. We then present augmented 

Cluster-M clustering and mapping algorithms in Section 3.3. A comparison study is 

also included in this section. The conclusion is presented in Section 3.4.

3.2 A Survey o f H eterogeneous M appings

In this section, we present an overview of a number of recently proposed hetero­

geneous mapping algorithms[27, 28, 65]. We categorize these algorithms into two 

groups: static and semi-dynamic algorithms. In static mapping, the structure of 

both task and system are known prior to execution and do not change throughout 

the computation. In semi-dynamic mapping, the structure of the task is not known 

prior to execution, but the structure of the system is known, and it is assumed not 

to change. The rest of this section is organized as follows. The static algorithms 

are presented in two groups. The first group is a set of nondeterministic mapping 

algorithms presented in Section 3.2.1. The second group, presented in Section 3.2.2, 

is a set of graph-based algorithms. Semi-dynamic algorithms are explained in Section

3 .2 .3
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3.2.1 N ondeterm inistic Algorithm s

Tao et al. [38] proposed three static heuristic mapping algorithms based on simulated 

annealing, tabu search, and stochastic probe approaches. Three types of costs are 

taken into account: computation, communication, and interference costs.

The computation cost of a processor is the sum of the computation time of 

tasks on the processor. Communication cost is the time consumed by communi­

cation over the interconnection network between two interacting tasks located on 

two different processors. Interference cost is the time incurred when two tasks 

compete for the resources available on one processor where the two tasks are assigned. 

The execution time of a processor under a mapping is estimated as the sum of 

its computation, communication, and interference costs. The completion cost of a 

mapping is defined as the maximum execution time of all processors. The objective 

function of the mapping problem is to find a mapping so tha t the completion cost 

is minimized. These algorithms are nondeterministic, hence their time complexities 

cannot be known in advance. Another disadvantage of these algorithms is tha t data 

dependency is not considered. This implies the assumption that there is no interde­

pendent relation between any two tasks. This assumption does not hold, however, 

in most application tasks.

•  Simulated Annealing

Simulated annealing utilizes occasional uphill moves to avoid entrapment in 

poor local optimums. To achieve this, a random-number generator and a 

control parameter called temperature are used. A typical implementation of 

simulated annealing usually has two nested loops and two other parameters, 

a cooling ratio r and a temperature length L. The following shows a typical 

simulated annealing heuristic.
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Got a random initial solution 7r 

Get an initial temperature T  > 0 

While stop criterion not met do:

Perform the following loop L times:

Let 7r' be a random neighbor of n 

Let A =  cost(7r) - cost(7r')

If A >  0 (downhill move)

set 7T =  7r'

If A < 0 (uphill move) 

set 7r =  i t 1 with probability eA/r  

Set T  = rT  (reduce temperature)

Return the best 7r visited

In the implementation of Tao et al., temperature length, L, is set to be nx  

SIZEFACTOR,  where n is the number of task modules and SIZEFACTOR  is a 

parameter tha t must be tuned. The initial temperature T  is chosen so that the 

initial acceptance rate is around another parameter, which needs to be tuned, 

called INITPROB.  The stop criterion of their implementation is that: (1) 

for five temperatures, the acceptance rates are all lower than MINPERCENT  

which is the third parameter that needs to be tuned, and (2) the best visited 

solution is not improved during this period of time. All three parameters are 

tuned for each problem instance. This is not an easy task and it is often 

obtained by trial and error. It has been determined that for most problem 

instances, the following values are appropriate, r =  0.95, SIZEFACTOR — 

16, INITPROB = 0.4 and MINPERCENT = 0.02.

•  Tabu Search

In typical tabu search, listed below, t is the length of the tabu list. During
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each iteration, the algorithm makes an exhaustive search of the solutions in 

the neighborhood of the current solution that have not been traversed in the 

last t iterations. The current solution is replaced by the neighboring solution 

that has the best cost. A circular list is used to implement the tabu list and 

to maintain the vertices moved in the last t iterations.

Get a random initial solution 7T 

While stop criterion not met do:

Let 7r' be a neighbor of 7r maximizing A=cost(7r)-cost(7r') and not 

visited in the last t iteration 

Set 7T =  tt'

Return the best t t  visited

• Stochastic Probe Approach

The stochastic probe algorithm is a combination of the stochastic search process 

in simulated annealing and the aggressive search process in the tabu search. 

In the algorithm, S(tt ,v)  denotes the subset of moves in S(tt) that redefines 

n(v), where S(ir) represents the set of moves applicable to solution tt and tt(v) 

indicates the processor that v is assigned to under solution 7r. Given any integer 

p > 0, random(— p) denotes a random integer such that — p < randoin(—p) < 0. 

The value of /3 is set to between 10% to 15% depending on problem instance. 

The stochastic probe algorithm is detailed as follows.

Get a random initial solution i t

Let L  be a circular list of the vertices in V

Set v to any of the vertices in V  (the current vertex)

While stop criterion not met do:

While there is any A > 0 in the last k iterations of this loop do:
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Let v be the next vertex down the list L

Let s £ S (7r, v ) and t t '  —  s ( t t )  such that A =  cost,(7r) - cost,(7r') is maximized 

If A > random(— p ) ,  set t t  =  n '  , p  =  p 0 

Perturb randomly the value of ir(u) for (3% of the vertices u in V  

Return the best t t  visited

The algorithm consists of a sequence of probes and each probe searches for a 

local optimum. The last solution of a probe will be modified randomly to be 

used as the initial solution of the next probe. In experimental studies, the cost- 

performance of the stochastic probe heuristic is superior to heuristics based on 

simulated annealing and tabu search.

3.2.2 G raph-Based Algorithm s

The mapping problem can be formulated in a graph theoretic manner. One of 

the most famous graph-based approaches is Stone’s work [63]. Stone transfers the 

mapping problem into a network flow model and solves this problem using a Max 

Flow/Min Cut algorithm. Stone’s model provides an optimal solution only for the 

two-processor problem. Lo [44] extended Stone’s work to find a suboptimal solution 

of the mapping problem for general distributed (heterogeneous) systems. Lo’s 

algorithm, called Algorithm A, is a heuristic that combines recursive invocation of 

Max-Flow/Min-Cut algorithms with a greedy-type algorithm. Algorithm A consists 

of the following three parts:

1. Grab. For a given processor p,, the n-processor system graph is converted 

into a two-processor system with pt and a supernode pi, which represents the 

other n — 1 processors. Apply a Max Flow/Min Cut algorithm to the two- 

processor system to find those tasks that would be assigned to p These steps 

are repeated for each processor to yield a partial mapping.
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2. Lump. For those tasks that remain unmapped in Grab, map all of them to one 

processor.

3. Greedy. For those tasks that remain unmapped in Lump, identify clusters of 

tasks between which communication costs are large. Merge such clusters of 

tasks, and map all tasks in the same cluster to the processor which could finish 

executing these tasks earliest.

The major flaw of this algorithm is its high time complexity, which is equal to 

0 ( M 4N  log M), where M and N  are the number of tasks and processors, respectively. 

Another problem is that it does not take into account data dependencies between 

tasks.

Another graph-based algorithm is Shen and Tsai’s graph-matching approach 

[60]. The mapping problem is transformed into a graph-matching model based on the 

weak homomorphism from task graph to system graph. A graph G\{V\, E\) is weakly 

homomorphic to a graph G2 {V2, £ 2) if there exists a mapping M  : V1 —» V2 such that 

if edge (a, b) € £ j,  then edge (M (o), M{b)) € E2. They consider a cost function tha t 

represents the total execution and communication time for completing the given task, 

and a minimax criterion for the minimization of the cost function. The search of 

optimal weak homomorphism corresponding to optimal mapping is next formulated 

as a state-space search problem. The problem is then solved using the well-known A* 

algorithm in artificial intelligence [73]. In a state-space search problem, each state is 

denoted by a node. Node expansion is an operation for generating successors of nodes. 

A solution path is a path defined by a sequence of node expansions that leads a start 

node to one of the goal nodes. A* algorithm is a heuristic that combines branch-and- 

bound and dynamic programming approaches. In an A* algorithm, an evaluation 

function is used to decide the order of nodes for examination. It is guaranteed to 

find a solution path optimal in term of minimized path cost. An evaluation function



70

is defined as f (n )  = g(n) + h(n), where g(n) is the minimum path cost from the start 

node to node n  in the state space and h(n) is an estimate of the minimum path cost 

from node n  to a goal node. The problem with the A*-type algorithms is that if the 

estimate of h.(n) is chosen inappropriately, then the optimal solution path may not 

be easily found.

Tan et al. [67] propose a minimum spanning tree based algorithm for finding 

minima] scheduling time of sequentially executed subtasks. Two types of data distri­

butions are considered, namely data reuse and multiple data copies. D ata reuse 

occurs when two subtasks located at one processor need the same data item from a 

subtask at another processor. Multiple data copies arise when two subtasks need 

the same data item from another subtask and all three subtasks are located at 

different processors. They assume that atomic input operations of two subtasks 

can be executed in an interleaved fashion. This assumption makes it possible to 

reduce communication delay among interacting subtasks. This algorithm involves 

the following two steps.

1. Constructing a graph with respect to the given information including subtask 

flow graph, the representation of the heterogeneous computing system, and an 

arbitrary matching scheme.

2. Using a modified version of Prim ’s minimum spanning tree algorithm [4] to 

find a minimum spanning tree in the graph generated from step 1. The 

order of the vertices added to the minimum spanning tree corresponds to the 

executing order of the corresponding atomic input operation, hence the minimal 

scheduling.

The time complexity of this algorithm is 0 ( E  +  V  log V) where E  and V  are 

the number of edges and the number of vertices in the graph obtained from step 1.
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The main drawback of this technique is that subtasks are assumed to be executed in 

sequential order.

Lcangsuksun and Potter [41] propose a set of heterogeneous mapping algorithms. 

The first algorithm, HP greedy, is the simplest and is used as an initial phase in 

other algorithms. The HP greedy algorithm is performed as follows.

1. Partition the input task graph into independent subgraphs.

2. For each subgraph (starting from the top to the bottom), sort tasks in the 

subgraph by their weights.

3. Starting from the heavier node, map each task to the processor leading to the 

best expected execution time.

4. Remove the chosen processor from the processor list. If the processor list 

becomes empty, it is reset to include all processors.

Another algorithm, called one level reach-out greedy (OLROG), is similar to 

HP greedy except that it uses the simple processor list assignment policy and it takes 

waiting time into account in the processor selection decision. Waiting time includes 

the previous scheduled task completion time, communication time, and delay time 

of the current task. The empirical results show that algorithm OLROG performs 

better but has larger complexity. The main drawback of these techniques is that the 

communication bandwidth of the links are not taken into account. Therefore, the 

accurate data communication time cannot be well captured.

Cluster-M mapping, presented in the last chapter, can map arbitrary structured 

nonuniform task graphs with M  task modules onto arbitrary structured nonuniform 

system graphs with N  processors in O(MP)  time, where P  =  max(M, N). In 

Cluster-M, a clustered task (system) graph is a multilayered partitioned graph 

such that every level contains a number of clusters, each representing a partition
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subgraphs[15, 25, 17]. This simplifies the mapping process since at every level 

independent subgraphs of the task graph are mapped onto the subgraphs of the 

system graph. An extended version of the Cluster-M clustering and mapping 

algorithms is presented in the next section. These augmented algorithms are more 

suitable for HC.

3.2.3 Sem i-D ynam ic A lgorithm s

Leangsuksun et, al. [42] developed two semidynamic mapping schemes, centralized 

and distributed, that differ in the extent of system knowledge and location(s) of 

the task allocator(s). It is assumed that task execution and communication times 

are not known until execution and that the system condition is invariant. In 

the distributed mapping algorithm, called K  nearest-neighboring algorithm, each 

computing node has a local mapper that allocates tasks in its local task queue 

to the most suitable node among itself and its K  highest communication capacity 

neighbors. The algorithm consists of the following steps.

1. I< nearest neighbor grouping; for each processor, group K  highest communi­

cation capacity neighboring nodes for its local mapper.

2. Premapping; each mapper gets the same number of tasks in its local queue.

3. Local queue length equalizing (LQE); each mapper determines the best node 

among the group of nodes in step 1 to execute tasks.

The complexity of the K  nearest-neighboring algorithm is (D(KN/M),  where 

N  and M  are the total number of tasks and processors.

In the centralized mapping algorithm, the global queue equalizer (GQE) 

algorithm, there is only one global mapper located in a master host. The host node 

collects global system information and determines task assignment. The algorithm 

consists of the following two procedures.
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1. Master host selection; selecting a master node as the centralized mapper.

2. GQE-OLROG module; for each task in the global queue, the algorithm 

determines task allocation by choosing a node which has the most communi­

cation bandwidth.

The master host selection module in the GQE algorithm can be carried out 

prior to execution time, and therefore its complexity can be disregarded. Within 

the GQE-OLROG module, there are M  choices for the best task-machine selection. 

Considering communication time in order to obtain a better performance, there 

are, a t most, M  — 1 possible machines executing parent nodes of a current task. 

Therefore, the total complexity of the GQE algorithm is 0 ( N M 2). Although these 

two algorithms are proposed to handle dynamic cases, they are not fully dynamic 

since task rescheduling and migration are not considered.

3.3 An A ugm ented Cluster-M  M apping

Our proposed technique is based on the Cluster-M paradigm [15, 25, 17] which 

facilitates the design and mapping of portable parallel programs. A Spec (Rep) 

graph may be obtained by clustering a given task (system) graph. A graph is called 

nonunform if the weights of all the nodes are not the same and the weights of the 

edges also difTer. The weight of a node in a  task graph (system graph) represents 

the number of instructions (speed) in that code block (processor). In Chapter 2, 

two algorithms were proposed for clustering arbitrary nonuniform task graphs and 

arbitrary nonuniform system graphs. In this section, we extend those algorithms 

by incorporating the heterogeneity of tasks and systems in HC. The extended task 

graph clustering takes into account the type of parallelism present in each portion 

of the task by clustering each code segment independently. The modification to 

the system graph clustering takes into account the presence of different machines in
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the system, which provides a spectrum of computational modes. Furthermore, the 

mapping algorithm presented in this chapter is an augmented version of the original 

one presented in Chapter 2. The mapping algorithm uses integer linear programming 

instead of the greedy algorithm in every step of mapping.

3.3.1 Task C lustering

As defined by the input format of HOST explained in Chapter 1, a task is composed 

of a number of subtasks. Each of the subtasks contains a number of heterogeneous 

code segments. Each code segment is further decomposed into several homogeneous 

code blocks. These correspond to the input format of HOST presented in Chapter 

1. The Clustering Nonuniform Directed task Graph (CNDG) algorithm, presented 

in Chapter 2, clusters the task graph without distinguishing between different, layers 

(i.e., subtask, code segment and code block). We present the Augmented Task 

Clustering (ATC) algorithm to cluster a subtask graph having such a hierarchical 

structure. The ATC algorithm first clusters code blocks inside each code segment 

concurrently; it then clusters code segments at the subtask level.

A lgorithm  ATC(G)
Input: Subtask graph G consists of code segments G;, 1 < i < n
O utput: Spec graph S
begin

for each Gj, 1 < i < n do in parallel 
begin

G- = CNDG(Gj)
end
G' = U"=1G'
S  = CNDG(G')

end

Figure 3.1 The Augmented Task Clustering (ATC) algorithm.
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The input to the algorithm is a subtask graph G tha t contains n subgraphs 

(code segments) Gj, 1 < i < n, and the output is a Spec graph. These code segments 

are clustered in parallel by calling the CNDG subroutine. Notice that by clustering 

each code segment independently, we are clustering only code blocks having the same 

computational type. The returned Spec clusters from these subroutines then form a 

new subtask graph in which each node (code segment) is a Spec cluster. The new 

graph is further clustered using CNDG subroutine.

As discussed in Chapter 2, the time complexity of the CNDG algorithm is 

0 ( M 2), where M  is the number of nodes on the input graph. To analyze the time 

complexity of the ATC algorithm, we assume that the number of nodes in the subtask 

graph is M.  Then the number of code segments, n, will be in the range, 1 < n < M.  

When n = 1, that is, there is only one code segment, the code segment is exactly 

the same as the subtask and the time complexity is bound by 0 ( M 2). If n =  M, 

(i.e., each code segment has only one node), it implies that the new subtask graph 

is the same as the original subtask graph, then the time complexity is still 0 ( M 2). 

Therefore the time complexity of the ATC algorithm is also 0 ( M 2).

To illustrate this algorithm, consider the heterogeneous subtask flow graph, 

which consists of one MIMD code segment and one SIMD code segment, as shown 

in Figure 3.2. Each vertex is labeled with its computation amount, and each edge is 

labeled with its data communication amount. Using the CNDG algorithm, a single 

Spec graph would have been obtained in which the two code segments were not 

distinguishable. However using the ATC algorithm, the obtained Spec graph will 

consist of two subgraphs: one contains MIMD-type clusters and the other contains 

SIMD-type clusters. The MIMD-type Spec subgraph is illustrated in Figure 3.3. The 

Spec graph is constructed by merging the clusters when they have communication 

needs. In our illustration, embedding operations are represented by perforated lines 

and merging operations are represented by dotted and rounded rectangles.
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8

6

MIMD type SIMD type

F ig u re  3.2 A heterogeneous subtask consists of MIMD and SIMD code segments. 

3.3.2 S y stem  C lu s te rin g

An IIC system contains a number of autonomous and heterogeneous parallel 

machines. Each one of these parallel machines can be modeled as an undirected 

graph in which nodes depict processors and edges represent the interconnection 

topology of the machine. These graphs further constitute an undirected graph that 

can represent the HC system. Therefore, two levels of undirected graphs are used to 

model the HC system: a machine-level graph and a system-level graph. The CNUG 

algorithm, presented in Chapter 2, clusters a system graph without distinguishing 

between machine and system level. Therefore, it may cluster a node from one 

machine to another before all the nodes in one machine are clustered first. In this 

section, the augmented system clustering (ASC) algorithm is presented to cluster an 

IIC system graph having two levels. The system level graph is clustered after the 

clustering of all machine level graphs are done. The algorithm utilizes the CNUG 

algorithm [17] as a subroutine to cluster both levels of undirected graphs. The 

subroutine takes a system graph as its input and outputs a Rep graph.
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Figure 3.3 Clustering the MIMD code segment.

A lgorithm  ASC(G )
Input: System graph G consists of machine level graphs G;, 1 < i leqn
O utput: Rep graph R
begin

for each Gf, 1 < i < n do in parallel 
begin

G' =  CNUG(Gj)
end
G' =  U-LjG- 
I? =  CNUG(G')

end

Figure 3.4 The Augmented System Clustering (ASC) algorithm.
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The ASC algorithm is shown in Figure 3.4. The analysis of the time complexity 

is similar to that in the previous section. The time complexity of the algorithm is 

equal to the running time of the CNUG subroutine, which is 0 ( N ( E \ o g E  -f N 2)), 

where E  is the number of edges and N  is the number of processors in the system 

graph. In the worst case, the time complexity of this algorithm will be G ( N 3 log N 2), 

where the system graph is completely connected so that E  — 0 ( N 2).

Consider the heterogeneous computing system shown in Figure 3.5, which 

consists of one MIMD machine and one SIMD machine. The MIMD machine has 

three processors, P I, P2, and P3. The SIMD machine has two processors, P4 and 

P5. Each node denotes a processor and is associated with a computation speed; 

each edge is associated with a communication bandwidth. The clustering of the Rep 

graph is also illustrated in Figure 3.5.

(3,4/3,5,5/3,1)

( 1,2 ,0 ,0, 1)

'(1,3,0,0,0) ( 1,2,0,0,0).(1,1,0,0,1
P4

MIMD marhinp SIMD machine

Figure 3.5 The system graph and its clustering of a heterogeneous suite. 

3.3.3 A ugm ented C luster-M  M apping

This section presents an augmented suboptimal Cluster-M-based mapping algorithm 

for mapping the Spec graph onto the Rep graph, generated using the ATC and 

ASC algorithms, respectively. The mapping algorithm presented here is a modified 

version of the Cluster-M nonuniform mapping algorithm presented in Chapter 2. 

The Cluster-M nonuniform mapping algorithm is proposed to map arbitrary clustered 

task graphs with nonuniform nodes and edges onto arbitrary clustered system graphs
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with nonuniform nodes and edges. In the mapping algorithm, the mapping process 

is performed in a recursive fashion by a greedy algorithm matching the Spec clusters 

to the Rep clusters. In contrast to this technique, the algorithm presented here 

first maps code segments onto machines with the same computation type. It then 

proceeds with an enhanced recursive fine-grain mapping so that at every level an 

optimal assignment of Spec clusters to Rep clusters is found. We formulate and 

solve each step of the fine-grain cluster mapping using an ILP model. ILP solvers 

with polynomial time complexity are now available in software packages such as 

Mathemalica, so we will treat these tools as a ‘black box’ and not go into the details 

of how ILP programs are solved.

We assume that the expected number of clusters at every level of mapping 

is a constant. This is based on the observation that most parallel architectures 

have bounded-degree nodes (every processor is connected to a constant number 

of other processors). Examples of such systems are mesh, binary tree, ring, and 

torus. Similarly, a large set of computational tasks can be expressed in the form of 

bounded-degree task graphs. Examples of such tasks are algorithms using a divide- 

and-conquer technique, which are very common in image processing.

In the original Cluster-M nonuniform mapping, five parameters are used to 

evaluate an optimization function at every level of clustering. Therefore it allows, 

for example, an SIMD node in the task graph to be mapped onto an MIMD node 

in the system graph (if the tradeoffs are substantial) by evaluating the execution 

time estimation function for various options. The solution obtained a t every level of 

mapping is suboptimal since it does not evaluate the function for all the possibilities. 

The augmented Cluster-M mapping algorithm is different in two ways. First, in 

this algorithm we restrict mapping so that, for example, an MIMD node in the task 

graph can only be mapped onto an MIMD node in the system graph. Second, for 

every level of mapping we obtain an optimal solution by considering all possible task
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graph-system graph-node pairs, with the restriction that they are of the same type. 

To map a code segment onto a machine of the same type, the following is done to 

obtain the fine-grain mapping.

We first begin by calculating the reduction factor /(«,«) and the estimated 

execution time of each Spec-Rep cluster pair. Then starting from the Spec clusters 

at the top level, assignment of these Spec clusters onto a set of suitable Rep clusters 

must be obtained. To do this, we model the assignment process using an ILP model, 

described as follows. A binary variable //(5“, 72”) is defined to indicate whether a 

Spec cluster 5 ” is mapped onto a Rep cluster 72”, that is, when p(5",72”) =  1, 5 ” 

is mapped to 72”, otherwise, ^ ( 5 “ , 72") =  0. Each Spec cluster can be mapped to 

only one Rep cluster; this is represented by £ f>7-/t(5“, 72”) =  1. The accumulated 

estimated execution time on Rep cluster 72” is denoted by r (7 2 ”), and we have 

r(72”) =  Y,i,j 72”) r (S “, 72”). We denote the overall estimated execution time 

by Tm such tha t for all j , T m > r(7 2 ”). Our objective is to minimize the overall 

estimated execution time; therefore, the objective function of our ILP model can be 

expressed as follows:

minimize Tm, while Tm > F(72”) for all j

Once the minimum Tm is found, matching Spec clusters and Rep clusters can be 

determined by using binary variables n(S?, 72”). After the Spec clusters are mapped 

onto the Rep clusters, the procedure is repeated, mapping the subclusters of every 

Spec-Rep cluster pair.

A detailed description of our mapping algorithm is presented in Figure 3.6. 

The time complexity of this algorithm can be analyzed as follows. We assume that 

the degrees of the given task graph and system graph are bounded by two constants, 

c and k , respectively. Furthermore, it is assumed that at a certain level of mapping 

the hierarchical Spec graph has c Spec clusters and the hierarchical Rep graph has k 

R,ep clusters. Then the total numbers of iterations for the second outer for loop and
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the most inner for loop are c and k. Therefore, the total number of iterations for 

these for loops is bound by 0 ( c  x k). Consider the portion of ILP; it examines all 

instances of (5 “, /?") pairs for all i and all j .  Therefore, the running time of the ILP 

portion is equal to 0 ( k c). Therefore, the overall time complexity of the mapping 

algorithm is 0 (c x  k) +  0 (kc) = 0 (kc).

Augmented Cluster-M Mapping Algorithm(5, R)
Input: A Spec graph S  and a Rep graph R 
begin

for each computational type 
begin

TI &nv.
calculate reduction factor f(u,v) = L
for each Spec cluster S }1 

begin
for each Rep cluster /?"

calculate the estimated execution time r(5“, Rj)
end
Start Integer Linear Programming 
Set the following constraints

X itii*(sr, iy) = i
r(R?) =  Z ijr t s? ,R ' j )T (s? , ]q )
Tm > r ( / ? p  

Specify the following objective function 
Minimize Tm

end
end

F ig u re  3.6 Augmented Cluster-M mapping algorithm.

Consider mapping the task graph illustrated in Figure 3.2 to the system 

graph shown in Figure 3.5. The mapping is done for each type of Spec and Rep 

cluster, respectively. The mapping of the MIMD Spec subgraph onto the MIMD 

Rep subgraph is done below. At the top level, the mapping is trivial since there 

is only one Spec cluster 50(4, 20,6,1,1) and one Rep cluster R q(3, f, 5, | ,  1). At 

the next level, four Spec clusters {iSi(l, 12,0,0,1), 52(1,14,0,0,1), 5.3(1,10,0,0,1),
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5 4 (1, 20,0,0,1)} are mapped to three Rep clusters {/?i(l, 2 ,0 ,0 , 1 ), /22 (1 ,1 ,0 ,0 ,1), 

/?3 (1 ,1 ,0 ,0 ,1)}. Using our mapping algorithm, S3 and S 4 are mapped onto /? |; 

S 2 and Si are mapped to R 2 and R3, respectively. This implies that task modules 

{d, e, g, h, i} are mapped to processor P I, {b, f} are mapped to P2, and {a, c} 

are assigned to P3. The mapping of the SIMD Spec subgraph onto the SIMD Rep 

subgraph can be done in a similar way. The overall mapping result is shown in 

Figure 3.7.

0 4.5 8.5 12j  13 j  16.5 19.5 225 25.67
PI 
P2 
P3

P4 

P5

F ig u re  3.7 The Gantt chart of obtained schedule.

3.3.4 C o m p ariso n  S tu d y

In the following, we compare our algorithm with three other graph-based mapping 

algorithms, including the original Cluster-M mapping algorithm, Lo’s Algorithm A, 

as well as Shen and Tsai’s A* algorithm. For the rest of the chapter, we will use 

Max Flow/Min Cut to refer to the Algorithm A of Lo’s algorithm. Since all of these 

algorithms do not incorporate heterogeneity in computation and machine types in 

their mapping, it is only possible to compare the results of mapping each type of 

task module onto the same type of processor.

Consider the example we discussed in the previous section for mapping the task 

flow graph of Figure 3.2 to the system of Figure 3.5. The scheduling G antt chart, 

using our algorithm on the assignment of the MIMD code segment onto the MIMD 

subsystem, is shown in Figure 3.7. The SIMD code segment shown in Figure 3.2 

represents the forward elimination part of a Gaussian elimination kernel. Suppose 

that, using a baseline computer, it takes one clock cycle to perform an addition or
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subtraction and that it takes two clock cycles to do a multiplication or division of 

two real numbers. Also, assume the communication amount on an edge to be the 

number of real numbers that need to be sent. The mapping results of the MIMD-type 

task modules onto the MIMD-type processors by using our suboptimal mapping, the 

original CIuster-M mapping algorithm, Lo’s Max-Flow/Min-Cut, as well as Shen and 

Tsai’s A* are shown in Figure 3.8. Their total execution times are 22.5, 24.5, 24, 

and 28, respectively. Our suboptimal mapping algorithm produces the best result.

0 4.5 8.5 12.5 13.5 16.5 19.5 22.5

M mapping algorithm
0 2 6 9 21.5 24.5

PI 
P2 
P3

(b) The Cluster-M nonuniform mapping algorithm
0 2 6 10 14 18 21 24

PI 
P2 
P3

(c) Lo’s Max-Flow/Min-Cut algorithm
0 5 9 13 17 19 25 28

PI 
P2 
P3

(d) Shen and Tsai’s A* searching algorithm 

F ig u re  3.8 The mapping results by using different algorithms.

The mapping results of the SIMD-type task modules onto the SIMD-type 

processors are shown in Figure 3.9. The total execution time by the four different 

mapping algorithms are 25.67, 30.17, 38, and 33.83, respectively. Evidently the 

augmented Cluster-M mapping algorithm produces the best mapping, yet the original 

nonuniform Cluster-M algorithm (from Chapter 2) also produces a very good results.

m

m z E

PI  .......................I d I e Is I h i  f
P2 b f [

(a) The Augmented Cluster-
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(a) The Augmented Cluster-M mapping algorithm
0 2.67 6.67 10.67 12.67 15.67 17 19 19.67 29.17 30.17

algorithm
0 2.67 6.67 10.67 14.67 1867 20.67 23.67 26.67 29.67 31 33 35 37 38

P I

P2

35.5 36.5

(c) Lo’s Max-Flow/Min-Cut algorithm
0 6 10 14 18 20 23 26 27.33 29.33 33.83

P I

P2

(d) Shen and Tsai’s A* searching algorithm

F ig u re  3-9 The mapping results of Gaussian elimination by using different, 
algorithms.

3.4 Conclusion

This chapter presents a brief overview of a number of existing heterogeneous mapping 

techniques. It also contains a study of the problem of assigning and mapping a given 

task onto a heterogeneous suite of computers. An optimal solution to this problem is 

one tha t leads to the minimum execution time subject to certain constraints. Finding 

the optimal solution is known to be computationally difficult. Therefore, this chapter 

presented a suboptimal solution. Two algorithms for clustering task flow graphs and 

system graphs were studied. A suboptimal heterogeneous mapping algorithm using 

the ILP model was presented. Both the clustering and mapping algorithms are 

extensions to the original Cluster-M mapping methodology [15, 25, 17] so that they 

are more suitable for heterogeneous computing. The scheduling results obtained for 

the presented examples, compared with other heterogeneous mapping techniques,

t J T 2 1 2
2

t 4
3

t 3 T 3‘ 4

t ] t J T s

4 10 21.5 26 28.33 31.33 32.33

T! t 1 1 2 tJ T 22 tJ T? T? r 5

tJ T S T? t 52
4.67 10.67 16.67 21.17 25.67 28.67

(b) The Cluster-M nonuniform mapping

t ] T j t J T 2 1 2 T 2 1 4 T ?
3

t 4
4

T 4
4

t 5

1
t 3 ^ 5 t !

4.67 10.67 16.67 21.17 24.17



85

are better in terms of total execution time and the running time for obtaining such 

solutions.



C H A PT E R  4

H A R D W A R E  ESTIM A TIO N  OF H ETER O G EN EO U S C O M P U T IN G

In HC, code profiling is the process of determining what types of codes are found 

in a given heterogeneous task. Once this information is available, it is desirable to 

know how many processors are needed for each of the code types. In this chapter, 

we propose two methods for estimating the minimum number of processors needed 

for each of the code types identified in a given heterogeneous task. The first method 

involves making use of task compatibility graphs. We show that a task compat­

ibility graph can be generated by analyzing certain compatible relations between 

task module pairs of a given task flow graph. We define the resource (processor) 

minimization problem to be equivalent to finding the minimal number of cliques that 

cover the task compatibility graph or to finding the minimal number of colors that 

color the vertices of its complement graph, called the task conflict graph. We solve 

this problem using a greedy approach in 0(\V\  log |V| -I- |E |) time, where |V\ and \E\ 

are the number of vertices and edges of the task compatibility graph. We show that 

for certain types of task compatibility graphs optimal solutions can be obtained in 

polynomial time. The second method studied in this chapter utilizes the Cluster-M 

clustering methodology presented in Chapter 2 for estimating the minimum number 

of processors. Examples are shown to compare the estimated results obtained using 

different, techniques.

The rest of this chapter is organized as follows. In Section 4.1, we show how 

to generate a task compatibility graph and a task conflict graph from the task flow 

graph of a given task. Our greedy algorithm for finding a minimal set of cliques for 

a task compatibility graph is presented in Section 4.2. We include a discussion on 

the special structures of task compatibility graphs in Section 4.3. We discuss the 

Cluster-M estimating technique in Section 4.4. Examples are presented in Section

86
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4.5 to illustrate and compare the efficiency of the estimates obtained. The concluding 

remarks of this chapter are presented in Section 4.6.

4.1 Task C om patibility and Task Conflict Graphs

An application task can be represented by a task flow graph in which a set of vertices 

denote task modules and a set of directed edges indicate the dependency relations 

between the task modules. We assume that the code type of each task module is 

identified by a code-type profiler and is incorporated into the vertex set of the task 

flow graph. If the code types of two task modules are identical and these two task 

modules cannot be executed in parallel, then they are said to be compatible and 

should be assigned to the same processor. Then the processor (resource) is said to 

be shared by the two task modules. By analyzing a task flow graph, the number 

of groups of compatible task modules determines the number of processors. The 

idea of resource sharing is not new, it has been extensively studied in high-level 

synthesis of digital systems [49, 50, 55]. The use of clique partitioning for resource 

minimization in high-level synthesis was first discovered by Tseng [68]. The two 

primary advantages of sharing resources are (1) improving the productivity of the 

whole heterogeneous suite, and (2) decreasing the size of system graphs so th a t it 

simplifies the mapping process and reduces the communication overhead.

A task flow graph G(V,E)  consists of a set of vertices, V = {u^l < i < n}, 

which denotes the task modules to be executed, and a set of directed edges, E  = 

{(nj,Uj)|l <  i < n, 1 <  j  < n}, which denotes a data communication existing from 

module V{ to Vj and tha t must be completed before Vj starts. Each task module 

Vi is associated with an amount of computation A,, i.e. the number of clock cycles 

required to execute all the instructions of vi on a baseline machine. Each edge (n,, Vj) 

is associated with Diy , the amount of data required to be transm itted from module 

to module u7-, where Diy > 1. A task flow graph is called nonuniform if the weights
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of all the nodes are not, the same or if the weights of the edges differ. The code 

type of a task module is represented by T(vi). Task modules Vi and Vj are said 

to be compatible if there exists any precedence relation between them (i.e. there 

is a path from vt to Vj, or vice versa) and T(vi)  = T(vj) .  A task compatibility 

graph Gp(Vp,Ep) can be derived from the task flow graph G(V,E) .  The vertex 

set Vp is in one-to-one correspondence with the vertex set V,  and the undirected 

edge set Ep denotes the compatible task module pairs. A group of compatible task 

modules corresponds to a subset of vertices tha t are all connected by edges with each 

other. Such a subset of vertices forms a clique in the task compatibility graph. A 

maximal set of compatible task modules is identical to a maximal clique in the task 

compatibility graph. Minimizing the number of processors is therefore equivalent to 

finding the minimum number of cliques that cover the task compatibility graph. An 

example of a task flow graph is shown in Figure 4.1. Within each vertex, the label 

and the computation time of its corresponding task module are indicated by the top 

and bottom half portions, respectively. A computation time is assumed to be the 

time units consumed to execute a task module on a processor which matches its code 

type. Different code types are represented by different node shapes, as shown in the 

figure. The corresponding task compatibility graph of Figure 4.1 is shown in Figure 

4.2.

Type 1

Type 2

F ig u re  4.1 A task flow graph G.
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F ig u re  4.2 The task compatibility graph of G.

The resource sharing problem can be examined alternatively by considering 

the conflict between task module pairs. Two task modules are said to be conflicting 

if they are not compatible. A task conflict graph G f ( V / , E f ) consists of a vertex 

set Vf , which denotes task modules, and an edge set Ef,  which denotes conflicting 

task module pairs. Note that the task conflict graph is the complement of the 

task compatibility graph as shown in Figure 4.3. Coloring the vertices of a task 

conflict graph provides a solution to the resource minimizing problem by assigning 

each color to a resource instance (processor type). Therefore, finding the minimum 

number of processors is equivalent to finding the minimum number of colors for 

coloring the vertices of a task conflict graph. Both the clique cover and vertex 

coloring problems have been proven to be NP-complete. In the next section, we 

show a greedy algorithm with polynomial time complexity for finding a suboptimal 

solution to the clique covering problem. For some special types of graphs, shown 

in Section 4.3, both the clique covering and the vertex coloring problems can be 

solved optimally in polynomial time. We will examine these special graphs and their 

utilization in minimizing the resource estimations.

Figure 4.3 The task conflict graph of G.
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4.2 T h e  G reedy  A lg o rith m

In this section, we present a suboptimal solution for finding cliques in polynomial 

time. The input to the algorithm is the task compatibility graph derived from a task 

flow graph as described in the previous section. We assume that the input graph G 

is represented by adjacency lists. The task compatibility graph may consist of one 

or more components. Vertices belonging to the same component have an identical 

code type. For example, the task compatibility graph shown in Figure 4.2 has two 

components which have code type one and two, respectively. S  is a set of nodes 

forming a clique found in each iteration of the w hile  loop, and C  denotes a set of all 

cliques found by the entire algorithm. A priority queue Q is maintained to contain 

all the vertices in V — S, keyed by their degree values. The EXTRACT-MAX(<5) 

procedure in the algorithm is used to extract the element with the maximal key 

value from the priority queue Q. The algorithm first sorts vertices according to the 

decreasing order of their degrees. Starting from the vertex with maximal degree, 

which is a clique by itself, the algorithm tends to expand the size of the clique as 

large as possible. It then searches among the adjacent nodes of the vertex to include 

one of them at a time to the clique, if the clique plus the adjacent node with their 

edges still form a clique. This is repeated until it is not possible to include any more 

new adjacent nodes to the clique. The algorithm stops when all vertices of the input 

graph G are covered by a set of cliques. It is a greedy algorithm because it always 

tries to find a clique starting from the vertex with the largest value of degree. A high 

level description of our greedy algorithm is depicted in Figure 4.4.

To analyze the complexity of this algorithm, we denote the size of the vertex 

and edge sets of an input graph G(V,E)  by |F | and |£ j, respectively. If the graph 

is sparse, it is practical to implement the priority queue Q with a binary heap. For 

line 2, it takes (9(|Vj log|V |) time to sort |V| vertices. For each EXTRACT-MAX 

operation at line 7, it takes 0(\og  |Vj) time, and the total worst case time complexity
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Greedy-Clique-Cover-Algorithm(G)
1. begin
2. sort the vertices of V[G] by descending order of degree
3. C *— 0
4. Q i—  V[G]
5. while Q ^ 0 do
6. begin
7. u <— EXTRACT-MAX(Q)
8. S  <—  {u}
9. for each vertex v G Adjacent[u] do

10. begin
11. if S  U {u} forms a clique then
12. begin
13. S < - 5 u { t > }
14. Q i— Q -  {v}
15. end
16. end
17. C i—  CU S
18. end
19. end

F ig u re  4.4 Greedy-Clique-Cover-Algorithm

is C?(|T/|log|V|). Note that edges (u, v) are examined exactly once at line 9, and 

edges (v,w),  where w € 5, are also examined exactly once at line 11. Because u is 

extracted from Q at line 7 and all elements of S  are removed from Q at line 14, no 

m atter if S  U {u} forms a clique or not, edges (it, v) and (u, w) will not be examined 

again in next loop. Therefore, the running time in the for loop of lines 9-16 is 0(\E\) .  

Thus the total running time of the entire algorithm is 0(\V\  log | +  |i?|).

4.3 Special Task C onflict an d  C o m p a tib ility  G ra p h s

The algorithm presented in the last section gives a suboptimal solution for finding 

a minimal set of cliques in polynomial time. In this section, we show that if the 

input task graphs have special structures, then the clique covering or the vertex
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coloring problems can be solved optimally in polynomial time. The applications of 

special conflict and compatibility graphs in high-level synthesis have been thorough 

investigated in [62]. In this section we discuss how these special graphs applying to 

minimizing the resource estimation for HC tasks. The special types of task conflict 

graphs may be interval or chordal graphs, while the task compatibility graphs may be 

comparability graphs. These specific graphs are detailed in the following subsections.

4.3.1 Interval Graphs

We define the lifetime of a task module to be the duration from the beginning to 

the end of its estimated execution based on the task flow graph. Two task modules 

whose lifetimes overlap and whose computational types are the same can not be 

assigned to the same processor. Overlapping lifetimes can be represented by the 

intersection between a set of continuous intervals. An intersection graph is obtained 

by representing each interval by a vertex and connecting two vertices by an edge if 

and only if their corresponding intervals overlap [46]. The intersection graph of a 

set of intervals along the real line is called an interval graph. Figure 4.5 illustrates 

an example of interval graph and its interval representation. Interval graphs can be 

recognized in 0(\V\  +  |J51]) time and colored in 0{\V\  log |F |) time, where |F | is the 

number of vertices and IEI is the number of edges in G(V, E)  [62].

Figure 4.5 An interval graph and its interval representation [62].
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4.3.2 C h o rd a l G ra p h s

We explained the structure of interval graphs which are a special type of task conflict 

graphs. The other special type of conflict graph called chordal graph is discussed 

here. A graph is a chordal graph if and only if it is the intersection graph of a 

family of subtrees of a tree [46]. Each vertex of chordal graphs corresponds to a 

subtree and two vertices are connected by an edge if and only if their corresponding 

subtrees are intersected. Figure 4.6 [46] shows an example of chordal graph and its 

corresponding subtree representation. Chordal graphs are useful because they can be 

recognized and colored both in polynomial time. Rose et al. [57] used a lexicographic 

breadth-first, search to recognize chordal graphs in 0 ( |F |  +  |jE|) time and Golumbic 

[46] presented a fast algorithm for coloring chordal graphs also in 0{\V\  +  IEI) time.

F ig u re  4.6 A chordal graph and its subtree representation [62].

4.3.3 C o m p arab ility  G rap h s

We have discussed two special types of task conflict graphs and now we turn our 

attention to the special type of task compatibility graphs called comparability graphs. 

Before presenting what a comparability graph is, we need to introduce the transitive 

orientation property. The transitive orientation property states that each edge of 

an undirected graph G can be assigned a one-way direction in such a way that the 

resulting oriented graph G' is closed under transitivity [46]. A comparability graph 

is an undirected graph which is transitively orientable. Transitive orientation of a
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comparability graph and recognition of comparability graphs can be performed in 

0{\V \\E \) time and 0 (\V \  + |i?|) space [46]. If the vertices of the graph, however, 

are linearly ordered in advance, a transitive orientation can be constructed in 0{\E \)  

time. The following propositions hold for comparability graphs.

Theorem  1 (Gilmore and Hoffman [46]) An undirected graph G is an interval graph 

i f  and only i f  G is a chordal graph and its complement G~l is a comparability graph.

T heorem  2 (Lekkerkerker and Boland [46]) An undirected graph G is an interval 

graph if  and only i f  the following two conditions are satisfied:

1. G is a chordal graph, and
2. any three vertices of G can be ordered in such a way that every path 
from the first, vertex to the third vertex passes through a neighbor of the 
second vertex.

The set of three vertices which fail to satisfy the second condition of Theorem 

2, is called an astroidal triple. Springer and Thomas [62] identifies two kinds of 

astroidal triples, branch and skip astroidal triples, which may result from branching 

of overlapping lifetime intervals. A set of intervals are called branch intervals if they 

consist of a branch. Branch astroidal triple arises when more than two branches 

include an interval tha t does not overlap the branch interval. A branch is called short 

branch if it overlaps all intervals in the branch, otherwise it is called long branch. 

Skip astroidal triples can be generated if a branch interval connects two long branches 

but does not overlap one of the short branches. Figure 4.7(a) and 4.7(b) [62] depicts 

examples of branch and skip astroidal triples, respectively. In Figure 4.7(a), interval 

C is a branch interval and vertices (A,E,G) is a branch astroidal triple; vertices 

(A,F,E) in Figure 4.7(b) is a skip astroidal triple. Therefore conflict graphs th a t arc 

interval graphs, and the compatibility graphs which are comparability graphs, can
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D

F

(a) Branch astroidal triples.

E

(b) Skip astroidal triples.

F ig u re  4.7 Two kinds of astroidal triples [62].

be obtained if the lifetimes of task modules generate no branch and skip astroidal 

triples.

We have studied the special cases of compatibility graph and conflict graph, 

called interval graph, chordal graph and comparability graph. The clique covering 

problem or vertex coloring problem can be solved optimally in polynomial time in 

these graphs. Therefore, we can estimate the resource requirements in polynomial 

time for heterogeneous tasks that can be represented by these special graphs.

4.4 E s tim a tin g  U sing  C lu ste rin g  T echnique

Our proposed technique is based on the Cluster-M clustering methodology presented 

in Chapter 2. The algorithm presented in this section is an extension of the CNDG 

algorithm and can be used for estimating the resource requirements of a given hetero­

geneous task. We use clustering here to find out what are the number of processors 

needed if some of the subtasks are to be mapped onto the same processor. The 

clustering algorithm will identify the minimum number of processors required for 

exploring the maximum parallelism in the given task graph. The clustering of join-
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node and fork-node is similar to the CNDG algorithm except that the parent (child) 

node chosen to be embedded must have the same computation type as the join-nodc 

(fork-node).

The proposed clustering algorithm is shown in detail in Figure 4.8. The time 

complexity of this algorithm is the same with the CNDG algorith, which is 0 ( \ E t\). 

In practice, the time complexity of this algorithm is O(M)  if the number of edges is 

proportional to the number of nodes. To illustrate this algorithm, consider the task 

graph of seven modules and its Spec graph as shown in Figure 4.9. Each module 

is labeled with its computation amount and each edge is labeled with the amount 

of data communication. Since the nodes embedded together are to be assigned to 

the same processor, we can estimate the number of processors to be the number of 

clusters that consists of no subclusters. For example, in Figure 4.9, three type-one 

processors are estimated since clusters (A, C, H), (F) and (G) are three nonseparable 

type-one clusters. Similarly, there are two nonseparable type-two clusters, (B, E) and 

(I, J), therefore two type-two processors are required to execute the two clusters.

4.5 Com parison R esu lts

In this section we present a number of examples comparing our estimated results 

to the optimal minimum number of processors needed. For every example we show 

the number of processors of each type estimated by our algorithm, followed by the 

efficiency obtained in using these many processors using an optimal schedule. We 

then compare this with the efficiency obtained using optimal number of processors 

required, with the optimal schedule. To concentrate only on the goodness of our 

resource estimation technique, we assume the architecture is a virtual system in which 

processors are completedly connected, and that an unlimited number of each type 

of processor is available. We further assume that the bandwidth of communication 

links in the architecture is large enough, such that data transportation between two
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Clustering Algorithm  
begin

divide the directed graph into a number of layers 
for each node at layer 1 do

make it into a cluster and calculate its parameters 
for each of the other layers do 
begin

for all edges (Vi,Vj) do 
begin

if Vi is a fork-node then 
begin

select a child node which has the largest edge weight and
the same computation type as Vi
embed the child node to Vi
if the child nodes of Vi are not in a cluster then
begin

merge them with vt into a cluster 
calculate the parameters of the new cluster

end
end
if Vj is a join-node then  
begin

select a parent node which has the largest edge weight and
the same computation type as Vj
embed Vj to the parent node
if the parent nodes of Vj are not in a cluster then
begin

merge them with Vj into a cluster 
calculate the parameters of the new cluster

end
end

end
end

end

F ig u re  4.8 Clustering algorithm.
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Figure 4.9 A task graph and steps for obtaining the Spec graph.



99

processors can be completed in one unit of time. Also, data conversion overheads 

between two dilTerent type of processors are ignored here. We denote the number of 

processor used by N  and the efficiency by r).

Consider Example 1, its task flow graph and task compatibility graph are 

demonstrated in Figure 4.10 and 4.11 respectively. By analyzing the task compati­

bility graph and using our algorithm, we identified a number of cliques as shown in 

Figure 4.12. For the code type one, four cliques are found: {A, D, P}, {G}, {J }, 

{M}. There are three cliques for code type two: {N, E, K}, {B}, {H}, and also three 

cliques for code type three: {0, F, L}, {C}, {I}. This implied th a t we estimate 

four processors of type one, three processors of type two and three processors of type 

three are to be necessary for executing the task graph. In the optimal case, only two 

processors of each type are required to complete this task. The G antt charts and 

efficiencies of the optimal schedule for using both the estimated number of processors 

and the optimal number of processors, are depicted in Figure 4.13. Both of them 

take 12 units of time to complete, therefore in (a) r) = and (b) r) —

T y p e  1

T ype 2 |  |

T ype 3

F ig u re  4.10 Task flow graph of Example 1.

Consider Example 2 which is more complicated than Example 1. Its task flow 

graph, task compatibility graph, and identified cliques are illustrated in Figure 4.14, 

4.15, and 4.16, respectively. The estimated number of processor are also four type- 

one, three type-two and three type-three by our algorithm. Compared to the optimal



100

F ig u re  4.11 Task compatibility graph of Example 1.

F ig u re  4.12 Identified cliques of Figure 4.11.

case, one type-one and one type-two processors are redundant. The G antt charts of 

them are depicted in Figure 4.17 where total running time is 13 time units, therefore 

in (a) v = &  and (b) tj = $ .

Table 4.1 shows the time complexities of the different techniques and the 

estimated number of processors required for the heterogeneous task given in 

Figure 4.18. The first technique is the greedy algorithm presented for estimating 

minimal number of cliques in general compatibility graphs, as shown in Figure 4.19. 

Methods two and three are efficient solutions by exploiting a number of special

O000QB0Q00 O00000
0  r  ■ I  |  ■ I — i-----------1 ■   I 0      i .
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O
B 11 C I

E F
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L
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P

a) N  = 10, ti =  i i  b) N  = 6, r\ =  ^

F ig u re  4.13 G antt charts of Example 1, using a) estimated number of processors 
obtained by the task compatibility graph approach and b) optimal 
minimum number of processors.
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T ype I

Type 2

T ype 3

F ig u re  4.14 Task flow graph of Example 2.

J

F ig u re  4.15 Task compatibility graph of Example 2.

F ig u re  4.16 Identified cliques of Figure 10.

a) N  = 10, fj =  b) N  — 8, r] =

F ig u re  4.17 G antt charts of Example 2, using a) estimated number of processors 
obtained by the task compatibility graph approach and b) optimal 
minimum number of processors.
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structures of compatibility and conflict graphs in polynomial time. This is shown 

in Figure 4.20. The last one is the Cluster-M clustering technique shown in Figure 

4.21.

Method Technique Time Complexity Processors estimated
Type 1 Type 2

1 Greedy Algorithm 0(\V \\og\V \ + \E\) 3 3
2 Interval Graph 0 (|V |lo g |V |) 3 2
3 Chordal Graph 0(\V \  + \E\) 3 2
4 Cluster-M o (  |VT) 3 2

T ab le  4.1 Comparison of different resource estimating techniques.

Type 1 

Type 2

O□
F ig u re  4.18 The task flow graph used for Table 4.1.

F ig u re  4.19 The estimated result obtaining from method 1.

4.6 C onclud ing  R em ark s

In this chapter, we presented two techniques for estimating the resource requirements 

for heterogeneous tasks. Using the first method, we showed that the resource
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F ig u re  4-20 The estimated result obtaining from method 2 and method 3.

p
»
( ' D

1 >/ / 2

I / t F
1 t \ 1

F ig u re  4.21 The estimated result obtaining from method 4.

minimization problem for a given task flow graph is equivalent to the minimal 

clique cover problem for its corresponding task compatibility graph, or the minimal 

coloring problem for its corresponding task conflict graph. We presented a greedy 

algorithm for estimating the minimum number of processors needed for each of the 

code types identified in a given heterogeneous task. We showed that for certain 

structures of task compatibility graphs, the optimal solution can be obtained in 

polynomial time. The second method involved using the Cluster-M nonuniform 

clustering methodology. A number of examples were illustrated to compare our 

estimations to the optimal number of processors.



C H A PT E R  5

SO FTW AR E R EQ U IR EM EN TS OF H ETER O G EN EO U S
C O M PU T IN G

A programming paradigm suitable for HC must allow the design and efficient 

execution of portable software so that it may be shared and/or distributed among 

various computers in a heterogeneous suite. Furthermore, it must support machine 

independent programming which does not include any architecture specific details. 

To meet these requirements, a programming paradigm must be both portable and 

scalable. Cluster-M, presented in Chapter 2, is such a paradigm which provides 

an environment for porting various tasks onto the machines in a heterogeneous 

suite such th a t resource utilization is maximized and the overall execution time 

is minimized. As described in Chapter 2, Cluster-M Specifications are high-level 

machine-independent programs represented in the form of Spec graph. Given a task 

graph, how to obtain the Spec graph was also presented. However, the Cluster-M 

Specification module does not have to receive a task graph as an input, rather a high- 

level parallel specification can be written using the Cluster-M constructs presented 

in this chapter. In this chapter, we first formally define scalability of heterogeneous 

programming paradigms. We then present a set of Cluster-M constructs which 

is essential for writing portable Cluster-M Specifications. Also, presented in this 

chapter is another portable and scalable programming paradigm, called Hetero­

geneous Associative Computing (HAsC) [54]. HAsC models a heterogeneous network 

as a coarse-grained associative computer and is designed to optimize the execution 

of problems where the size of the program is small compared to the amount of data 

processed. It uses broadcasting to avoid the mapping problem. Ease of programming 

and execution speed, not the utilization of idle resources are the primary goals of 

HAsC. We show that both paradigms are scalable. We then illustrate how these two

104
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paradigms can be used together to provide an efficient medium for heterogeneous 

programming.

The rest of this chapter is organized as follows. The definitions of scalability 

for hardware, tasks and software in HC are presented in Section 5.1. We define the 

Cluster-M constructs and present an implementation of them in Section 5.2. HAsC 

is introduced in Section 5.3. The concurrent use of HAsC and Cluster-M is presented 

in Section 5.4.

5.1 S calab ility

Scalability is one of the basic issues related to and addressed by both HAsC 

and Cluster-M, as well as many HPC (High Performance Computing) and MPP 

(Massively Parallel Processing) schemes. Scalability is often understood differently 

by different authors. For our purposes we will consider scalability to refer to 

hardware, tasks and software in roughly analogous fashion. In addition, scalability 

may refer to both homogeneous or heterogeneous architectures.

5.1.1 H om ogeneous S calab ility

The homogeneous case refers to multiple machines which are of the same basic 

architectural type, typically various-sized versions of the same vendor product. For 

example, an eight processor CRAY is a hardware example of a “scaled-up” version 

of a two-processor CRAY.

D efin itio n  1 We define the hardware scalability function, y(a,6), between two 

homogeneous architectures, a (the larger) and b (the smaller), to be the rational­

valued function giving the size multiple of a over b. In the example above, the 

eight-processor Cray has a scalability factor of 4 (x = over the two-processor.

Task scalability is more complex. Typically implied is the ability to take a 

task (algorithm plus data) executing on a small machine and execute the “same”
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task on a “scaled-up” machine, utilizing additional resources of the larger machine, 

with performance “scaled-up” reasonably close to y. One ambiguity in this concept is 

what we mean by the “same” task. If it means only executing the same program, but 

with possibly different, (i.e. larger) data, then tasks in a homogeneous environment 

often “scale,” particularly if the scaling factor of the data size is equal to

D efin ition  2 We define a type 1 task scalability function, T(a,b) for a given program 

applied to two different data set sizes, a (the larger) and b (the smaller) to be the 

rational valued function giving the size multiple of a over b. For example, i f  the size 

of a is 16K items and b is 2K items, then T=8. This means that a program is type 

1 scalable if  it processes data set b eight times faster than data set a, using the same 

hardware configuration.

However, if we apply the above definitions to the case where both the data 

and the algorithm are fixed, then tasks often do not scale, not even on scaled up 

homogeneous hardware. To give a simple example, suppose we are computing a 

pixel-based imagery problem on a SIMD machine in which both the number of pixels 

and the number of processors is IK. If we scaled-up to a 16K processor (y =  16), 

typically this task would not scale, i.e., it would not be able to exploit the additional 

15K processors and we would get no increased performance. However if our original 

task had started with a 16K pixel problem, we would typically be able to achieve a 

scale up in performance, on the 16K machine over the IK machine.

D efin itio n  3 We define type 2 task scalability, between two homogeneous archi­

tectures, a (the larger) and b (the smaller), to be the potential to exploit the inherent 

hardware scalability between them on some task of a size that fills a.

Software scalability refers to the ability to exploit task and hardware scalability 

with little or no changes, other than parameters.
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D efin itio n  4 We define the software scalability function, a(a,b), for the case of two 

homogeneous architectures, a (the larger) and b (the smaller), to be the real-valued 

function giving the increase in performance of a over b. Typically we expect some 

increase in performance but we do not generally (at least in the homogeneous case) 

expect “super-linear” performance, i.e., 1 < a(a, b) < y(a, b). In most cases we expect 

a to be a simple multiple of x,  *-e., a(a,b) =  Ax x ( a >b), where 1 /y (a ,6 ) < A <  1.0. 

If  X is close to 1.0, i.e., A =  1 — e, we usually feel we have scaled up well.

Many examples exist of scaling up in this homogeneous sense though, since 

it depends on a problem data size large enough to “fill” the large machine, it thus 

sometimes depends on an unrealistically large data set size. In particular it appears 

to us tha t some of the most recent HPC machines are “scalable” only in the sense 

tha t they could run matrix or other similar scientific problems of a size that, thus 

far, is not performed.

5.1.2 H e tero g en eo u s S ca lab ility

Heterogeneous scalability is clearly more complicated than homogeneous scalability, 

though it is also the case in which we can aspire the ultimate in heterogeneous 

computing potential, i.e, to achieve er’s significantly greater than x • This is what 

we mean by super-linear performance. In the heterogeneous case, there may be 

no commonality between two different architectures, so “scaling” is based on the 

performance potential. This means, we will have two different scalability standards, 

namely peak MFLOPS (in either fixed 64 or 32 bit mode) or GBS ( “gibbs” ), billions 

of bits per second (processed). Using this, we can extend the x  function to the hetero­

geneous case. For example if we had a large vector machine, a, capable of processing

8.7 billion bits per second or 8.7 GBS, and a small SIMD machine, b, of 1.3 GBS, 

then y(a, b) =  8.7/1.3 =  6.69. Having extended the hardware concept of scalability 

to the heterogeneous case, the task and software scalability follow immediately.
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Functional Find a datum

Non-Sih SIMD

Approach Sort, then search Associative Search 
(not sort), i.e., 0 (1 )i.e., >= 0(log n)

Algorithm Various Sorts (Quicksort, Bubblesort, etc.)

Code Various encodings fo r any 
specific algorithm

Single Associative command, 

e.g., find datum

F ig u re  5.1 Hierarchical breakdown of a task

To understand this theorem, we need to look a t Figure 5.1. We consider there 

to be at least, four levels by which a task is defined. One is at the overall functional 

level, here considered to be the problem “Find a datum .” Approach is the next level. 

By “approach” we mean something at a higher level than algorithm, perhaps a meta­

algorithm. In any case, for this problem, there is a radical difference in the approach 

for a SIMD machine used associatively (see [54]) and non-SIMD machines. In the 

former case, we can use simple associative search, which is 0 (  1); in the latter case we 

would typically use a sort, then search operation, i.e., the asymptotic performance is 

bounded by f2(logn). For the associative search on a suitable SIMD machine, there 

is really only one instruction “find datum ”, so that there is no room for differing 

algorithmic or code variations. However in the non-SIMD case, there are many 

possible variations. For example, depending on the data, parameters, architecture, 

etc., we could use a number of different search techniques. Similarly we could use a 

number of different coding schemes for each algorithm.

In this context, most researchers, when describing “scalability” , do not mean 

that the specific code is heterogeneously scalable and generally do not mean tha t
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the algorithm is heterogeneously scalable. For example, a matrix times a vector 

operation might best be done with a SAXPY style algorithm on one machine and 

an SDOT on another. At the same time, the term “scalability” almost never applies 

to the functional level in a homogeneous environment since this is far too general 

to have any real meaning (in the usual context of scalability). W hat is almost 

always intended is that the term “scalability” apply to the approach level. However 

the example above shows that this is inadequate to support efficient M PP/HPC 

performance. That is, a “scalable” approach to finding data would almost certainly 

be based on the non-SIMD, non-associative approach of “sort, then search”. This 

might get maximal performance on non-SIMD machines and might also work on 

SIMDs, but never optimally. That is, the scalable approach is S7(logn), whereas the 

non-scalable SIMD version is 0(1).  This example illustrates two things:

a. It is possible to have a case where a non-scalable (at the approach level) 

implementation is inherently more effective than a scalable approach implemented 

on the same machine, and

b. It is possible to have hardware scalability one way and task/software scala­

bility the other. Suppose the non-SIMD machine has a hardware scalability factor of 

k over the SIMD, i.e., y(non-SIMD,SIMD) =  k . However if n  (the data size) is large 

enough, i.e., n > 2K, then the SIMD machine would have a task scalability OVER 

the non-SIMD, i.e, cr(SIMD,non-SIMD) > 0 (logn //t). In other words the scalable 

metric is inherently defective in this case. Thus we conclude:

T h eo rem  3 Issues of hardware, algorithmic and software scalability at the approach, 

algorithm and code levels are inherently incapable of measuring the potential of IIPC 

in heterogeneous parallel environments.

The only kind of scalability applicable to a heterogeneous network is type 1 

task scalability at the functional level. In essence h e terogeneous sca lab ility  refers
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to the property that a given software scalable program will execute efficiently on any 

size data set on any heterogeneous network configuration without any modification. 

While functional level scalability may be trivial on a homogeneous network, it is 

fundamental to establish a common unified programming environment for hetero­

geneous networks.

5.2 C lu ste r-M  C o n s tru c ts

The basic operations on the Spec clusters and their contained elements are performed 

by a set of constructs which form an integral part of the Cluster-M model. The 

following is a list and description of the constructs essential for writing Cluster-M 

Specifications.

•  CMAKE(LVL, ELEMENTS, x)

This construct creates a cluster x  at level LVL which contains ELEMENTS  as 

its initial elements. ELEMENTS  is an ordered tuple of the form ELEMENTS  

— [ei,e2 , •••,£„] where n  is the total number of components of ELEMENTS.  

The components of ELEMENTS  could be scalar, vector, mixed-type, or any 

type of data structure required by the problem.

•  CELEMENT(x, j, e)

This construct yields the j-th  element of cluster x , and returns this element as 

e. If j  is replaced by then CELEMENT  yields all the elements of cluster x. 

If x  is replaced by then CELEMENT  yields all the elements of all clusters.

•  CSIZE(x, e)

Returns e as the number of elements of cluster x.

•  CMERGE(x, y, ELEMENTS, z)

This construct merges clusters x, y of level LVL into cluster z, rnina:,?/ of
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level LVL + 1. The elements of the new cluster are given by ELEMENTS.  If 

ELEMENTS  in CMERGE  is replaced by the elements of the new cluster 

are the elements of x concatenated to the elements of y.

« CUN (op, n, x, i, e)

This construct applies unary operation op to the i-th element of cluster x, and 

returns the result by e. If op is left or right shift operation, the number of shifts 

is specified by n.

• CBI(op, x, i, y, j, e)

This construct applies binary operation op to the «-th element of cluster x  and 

the j- th  element of cluster y, and returns the result by e. If i, j  are replaced 

by then the binary operation is applied to all elements of x, y.

• CSPLIT(E, k, El, E2)

This construct splits cluster E  of level LVL at k-th element into two clusters 

El  and E l .

5.2.1 Im p le m e n ta tio n  o f th e  C lu ste r-M  C o n s tru c ts

In this section, we first give a brief introduction to Program Composition Notation 

(PCN), a parallel programming language selected as the implementation medium 

for the various components of Cluster-M. We then discuss the Cluster-M constructs 

implemented in PCN.

5.2.1.1 P ro g ra m  C o m position  N o ta tio n  (P C N ) Program Composition 

Notation is a system for developing and executing parallel programs [14, 34]. 

It comprises of a high-level programming language with C-like syntax, tools for 

developing and debugging programs in this language, and interfaces to Fortran and 

C allowing the reuse of existing code in multilingual parallel programs. Programs
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developed using PCN are portable across many different, workstations, networks, 

parallel computers. The code portability aspect of PCN makes it suitable as an 

implementation medium for Cluster-M.

PCN focuses on the notion of program composition and emphasizes the 

techniques of using combining forms to put individual components (blocks, procedures, 

modules) together. This encourages the reuse of parallel code since a single combining 

form can be used to develop many different parallel programs. In addition, this facil­

itates the reuse of sequential code and simplifies development, debugging and 

optimization by exposing the basic structure of parallel programs. PCN provides a 

set of three core primitive composition operators: parallel, sequential, and choice 

composition, represented by ” ||” , and ”?” respectively. More sophisticated 

combining forms can be implemented as user-defined extensions to this core notation. 

Such extensions are referred to as templates or user-defined composition operators. 

Program development, both with the core notation and the templates is supported 

by a portable toolkit. The three main components of the PCN system are illustrated 

in Figure 5.2.

Application-specific 
composition operators

Portable Toolkit

Core Programming Notation

Figure 5.2 P C N  System Structure
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5.2.1.2 P C N  C lu ste r-M  C o n stru c ts  The seven Cluster-M constructs are imple­

mented in PCN as follows:

/*  1. Makes given elements into one cluster */

C M A K E ( L V L ,  E L E M E N T S , x)

{ || M I N J S L E M E N T ( E L E M E N T S ,  n),

/* n is the smallest number in ELEMENTS */ 

x  =  [LVL, n, E L E M E N T S ]

}

M I N - E L E M E N T ( E ,  n)

{; sys : l i s tJength(E , len),

{? len —— 1— > n =  E[0],

default  — > { ? E l  =  [m | E l] — >

{; M I N . E L E M E N T \ { E \ , m , m i n ) ,  

n = min

}

}

}

M I N J E L E M E N T l ( E l , m, mm)

{? E l?  =  [/i | E2] -  >

{;

{ ? h, < m  — > m l  = h, 

default  — > m l  =  m

} ,

M I N - E L E M E N T l ( E 2 ,  m l ,  min)

h
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defnull  — > min  =  m

}

/*  2. Yields an element of the cluster * / 

C E L E M E N T ( x , j , e )

{; C S I Z E ( x , s ) ,

{ ? j  = =  x l ] -  > e =  x l,

j  <= s, x l  =  [_, xl] -  > C E L E M E N T l  (x l , j ,  e)

}

}

C E L E M E N T l  (x, j, e)

{  ?  j  >  1 -  >

{ ? x? =  [_|xl]— >

C E L E M E N T l ( x l , j  -  l ,e),

},

de f  ault— > e =  x[0]

}

/*  3. Yields the size of the cluster */

C S I Z E ( x ,  s)

{? x? =  [_, x2] - >  C S I Z E l ( x 2 , 0, s), 

de fau l t  — > s =  0

}

C S IZ E l (x ,a c c ,  s)

{?  x? =  [_|xl] - >  C S /Z E ltx l .a c c  +  M ) , 

default  — > s — acc
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/*  A. Merges cluster x and y */

C M E R G E (x ,  y, E L E M E N T S , z)

{? x  ? =  [LVLjx, ., xl], y? =  [LVLjy, _, yl] -  > 

{; M I N J E L E M E N T ( E L E M E N T S ,  min), 

makeduple(3,T),

T[0] =  L V L jc ■+ 1,

T[l] =  mm,

{? E L E m e n ts  -- - “ —" — >

{; sys : list-concat(x1, yl, xy),

T[ 2] =  xy

}.

d e f a u l t -  > T[2] =  E L E M E N T S

},

sys : tuple JoJis t(T ,  Z , [])

}

}

/*  5. Does the Unary operation */

C U N  {op, n, x, i , e)

{; C E L E M E N T ( x ,  i, el),

{? op = =  “ < <  > l e f t s h i f t ( e l , n , e ) ,

op ==  “ > >  > r igh tsh i f t {e \ ,n ,e ) ,

op = =  >  ones-Complement{el , e ) ,

op = =  usqr”— > e =  e l  * e l ,  

op = =  “ — ” — > e =  0 -  el

}

}
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/* 6. Does the Binary operation */ 

C B I( o p ,x , i , y , j , e )

{; C E L E M E N T ( x ,  i, e l ), 

C E L E M E N T ( y , j , e  2),

•§ II II — > e = el +  e2,

op = = 11 _ 11— > e =  el — e2,

op = = -  > e = el * e2,

op = = r _ > e = e l/e2 ,

op - - - > e = el%e2,

op = = - >  biiwise_and{e, el,e2),

op = = T _ > bitwisejor(e, e l, e2),

op = = - > bitwisejvor(e,el,e2)

}

}

/* 7. Does the Split operation * /

C S P L I T  (x ,k ,p ,  q) 

{ || C S IZ E { x , s ) ,  

{? x? =  [Z V L ,n ,E ]- >

{ ? k = = s - >

{ || p = [L K L  +  l ,n ,£ ] ,

9 =  [LFL +  l,O,0],

},

k < s— >

{ || C S P L I T l ( E , k , E l , E 2 ) ,  

M I N J E L E M E N T { E \ ,  n l), 

M I N _ E L E M E N T { E 2 , n2), 

p =  [LFL +  1, n l, El],
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q =  [LVL + l,n 2 , E2],

}

}

}

}

C S P L I T \ { E ,  k, E l ,  E2)

{ ? /c > 0 -  >

{? E? =  [/?{£] — >

{ || C S P L I T l ( t ,  k — 1, E3, E2),

E l =  [/i|E3]

}

},

default— >

{II £1  =  0,

E2 =  E

}

}

5.2.2 C lu ste r-M  P ro b le m  Specification  M acros

Several operations are frequently encountered in designing parallel algorithms. 

Macros can be defined using basic Cluster-M constructs to represent such common 

operations. We next present several macros, their coding in terms of Cluster-M 

constructs and their PCN implementations:

5.2.2.1 A ssoc ia tive  B in a ry  O p e ra tio n  Performing an associative binary 

operation on N  elements is a common operation in parallel applications. The 

Cluster-M Specification graph for input size =  8 is given in Figure 5.3. The resulting
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Specification graph is an inverted tree with input values each in a leaf cluster at level 

1 and the result at the root cluster at level logn +  1. Using Cluster-M constructs, 

the macro ASSOC-BIN, written in PCN, applies associative binary operation * to 

the TV elements of input A and returns the resulting value as follows:

A S S O C  JB IN {*, TV, A) 

int TV, A[ ];

{ ; Ivl =  0,

m ake duple (N , cluster),

{; i over 0 .. TV — 1 ::

{ ; CMAI<E(lvl,[A[t\},c), 

cluster[i\ = c

}

},

BinaryJOp{cluster, TV, op, Z)

}

B inary JOp(X, TV, op, B) 

int TV, n;

{? TV > 1— > { ; n :=  TV/2,

makeduple(n, Y ),

{ ; i over 0 .. n — 1 ::

{ ; B IM E R G E (o p , X[2 * t], X[2 * i +  1], Z),

Y[T] =  Z

}

} ,

Binary-Op(Y, n, op, B)
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} ,

d e fa u lt— > B  = X

}

B I.M E R G E (o p , A 'l, Ar2, M) 

int e;

{ ; C B I ( o p ,X l , l ,X 2 , l , e ) ,  

C M E R G E (X  1, A'2, [e], M)

}

Level 1 
(Input)

Level 2

Level 3  d l  8 |*a;*a3 *a4 a5*a6*»7*a8

Level 4 
(Result) a j *a2*a3 *84*85 *a6*a7*a8

F ig u re  5.3 Cluster-M Specification of associative binary macro.

5.2.2.2 V ecto r D o t P ro d u c t  As a representative example of vector operations 

(Vecops), we consider here the dot product of two vectors. The vector dot product 

of two n-element, vectors A and B  is defined as d = • bf). The cluster-M

Specification graph of this operation is similar to that shown in Figure 5.3. This 

macro can be written in terms of Cluster-M constructs and the above ASSOC-BIN 

macro as follows:
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/* VECTOR DOT PRODUCT*/

DOT-PRODUCTION , op, A, B, Z) 

in tN ,A [] ,B [} ,C [N ],e ;

{; Ivl = 0,

m akeJuple(N , A \), 

m.akeJ,uple(N, B \) ,

{|| i over 0 .. N  — 1 ::

{ ; C M AK E (lvl,[A [i]\,a),

C M A K E (lv l, [£[*]],&),

A\[i] — a,

B\\i] = b

}

} ,

{; j  over 0 .. N  — 1 ::

{ ; C B I(o p ,A l[ j] ,l ,B l[ j] ,l ,e ) ,

C [j} := e

}

},

A SSO C  .B I N  ( “ +  ” , N, C, Z))

}

5.2.2.3 SIM D  D ata Parallel O perations In this class of operations each 

operation is applied to all the input elements without any communication. In this 

case each operand is assigned one cluster in the problem Specification. The desired 

operation is applied to all clusters. The macro DATA-PAR applies operation * to 

all N  elements of input A, as follows:
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D A T /L P A R (op , n, N, A, Z) 

int A[ ];

{; Ivl =  1,

m akeJ.uple(N , duster),

{ ; i over 0 .. N  — 1 ::

{ ; CM4/rE(Mt[,4[i]],c), 

cluster[i] — c

}

} ,

makeJ,uple(N, Z),

{ \ j  over 0 .. N  — \ ::

{ ; C U N  (op, n, cluster[j], 1, e),

Z[ j ]  = c
}

}

}

5.2 .2 .4  Broadcast O peration This is a frequently encountered operation in 

parallel programs. One value is to be broadcast to all processors in the system. The 

problem Specification for a macro that broadcasts one value ’a ’ from processor x  to 

N recipient clusters or processors, can be written in terms of Cluster-M constructs 

as follows:

B R O A D C A S T (N , e, Z) 

{; Ivl — 0,

m akeJuple(N , Z),
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{|| i over 0 to N  — 1 ::

{ ; CM AKE(lvl,[e},c),  

Z[t\ = c

}

}

}

The Specification graph for the broadcast operation when TV =  8 is shown in 

Figure 5.4.

I^evel 1

Level 2

© © o

Figure 5.4 Cluster-M Specification of broadcast macro.

5.3 H eterogeneous A ssociative C om puting(H A sC )

Heterogeneous Associative Computing (HAsC) models a heterogeneous network as 

a coarse-grained associative computer. It assumes tha t the network is organized 

into a relatively small number of very powerful nodes. Basically, each node is a 

supercomputer architecture (vector, SIMD, MIMD, etc). Thus each node of the 

network provides a unique computational capability. There may be more than one 

node of a specific type in the case that special properties are present. For example,
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ono STMD node may be specialized for associative processing, a second SIMD node 

may contain a very powerful internal network configuration.

Figure 5.5 illustrates the logical similarity of an associative machine and a 

heterogeneous network. In particular, a disk-computer node on a network can be 

compared to an associative memory-PE cell. That is, as in an associative cell, 

the node’s computer is dedicated to processing the data on the node’s disk(s). 

The disk-to-machine data transfer rate is much more efficient than the node-to- 

node transfer rate. Similarly, memory-to-PE transfers are much faster than PE- 

to-PE transfers. Note that the associative computer and network diagrams are 

quite different from shared memory MIMD models. Shared memory configurations 

emphasize the concept that all data is equally accessible from all processors. This is 

not the case in a heterogeneous network.

Associative Cells

PB iM emory 1

a -  An Associative Computer 

HAsC Nodes

b -  Associative Configuration o f a Network

Figure 5.5 Associative Configuration of a Network.
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HAsC is “layered” in that any node in the HAsC network may again be 

another network. Thus a HAsC node may be a HAsC cell containing more than one 

computer or it may be a port to another level of computing in the HAsC network. 

For example, most nodes may contain a general purpose computer in addition to 

a supercomputer to function as the node’s port to the rest of the HAsC network 

and for file management and other support roles. Figure 5.6 shows a typical HAsC 

network organization. Each HAsC node has access to a number of instruction stream 

channels. Each channel broadcasts a different sequence of code. The HAsC node 

selects the appropriate channel based on its local data and previous state. The 

selected channel is saved in a channel register. A port, or transponder node, will 

accept a high level command and “translate it” into the commands appropriate for 

the subnetwork.

Data

Data

Data

VECTOR

MIMD

Port/
Transponder node

Figure 5.6 A Layered Heterogeneous Network

Some properties of the associative computing paradigm which make it well 

suited for heterogeneous computing are: i) efficient programming and execution with 

large data sets and small programs, ii) optimal data placement, iii) software scala­

bility (see Section 5.1), iv) cellular memory allocation and v) search-process-retrieve 

synchronism [54].
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5.3.1 Instruction  E xecution

In conventional machines, instructions are delivered to a CPU and are then executed 

without question. In HAsC, instructions are broadcast to all of the cells listening 

to a channel but each individual cell must determine whether or not to execute 

the instruction. This determination is performed as follows: Upon receipt of an 

instruction, a node “unifies” it with its local instruction set and data  files.

The unification process is borrowed from Artificial Intelligence. Several 

languages such as Prolog and STRAND [33] incorporate the process. HAsC is 

different, in that it uses unification only at the top level. Thus there is only one 

unification operation per data file, as opposed to one per record or field. This 

difference is critical in a heterogeneous network where communication of individual 

data items would be prohibitively expensive.

If there is a  match, the appropriate instruction is initiated. The “instruction” 

may in turn issue more instructions. Thus control is distributed throughout HAsC. 

That is, a “program” starts by issuing a command from a control node. If a 

receiving node receives a command that is in effect a  subroutine call, it may become 

a transponder control node. It may first perform some local computations and then 

start issuing (broadcasting) commands of its own. If the node happens to be a port 

node the commands are issued to its subnet as well as to its own network. Thus it 

is possible for multiple instruction streams to be broadcast simultaneously a t several 

different logical network levels in a HAsC network.

In general, HAsC assumes that data is resident in a cell. As a result, data 

movement is minimal. However, it is common for one cell to compute a value and 

broadcast it to other cells. Thus, in general, there is a need to synchronize the 

arrival of commands and data. There are basically two cases which are handled 

automatically by the HAsC administrator as a part of the search-process-retrieve 

protocol.
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The normal case is for data to be resident at a cell when the HAsC command 

arrives. Instruction unification and execution proceeds as described above. IIAsC 

allows data transfers but protocol insists that the data transfer be complete before 

any associated commands are broadcast.

The second case involves command parameters. When a  command arrives and 

is unified with resident data at a node, but some parameter data is missing. The 

unified command is then stored in a table to wait for the parameter in a synchronism 

process called a data rendezvous. When parameter data arrives, the rendezvous table 

is searched for a match. If found, the associated command is executed.

5.3.2 H A sC  A dm inistration

HAsC uses network administrators and execution engines to effect the paradigm. 

Each HAsC network level has a system administrator and each node in a network 

has its own local administrator. The local administrator monitors network traffic 

capturing incoming instructions and checking for illegal commands. It is also 

responsible for maintaining the local HAsC instruction set.

The administrator receives all incoming HAsC instructions from the local 

network. It then verifies if each instruction is a legal HAsC instruction. If it is, 

the administrator puts it in the Execution Engine queue. Otherwise, it attem pts to 

identify the source and makes a report to the system administrator. Repeat offenses 

cause escalating diagnostic actions as determined by the network administrator.

If a Meta HAsC instruction such as (un)install, (un)extend or (un)augment is 

received, it is processed immediately. The Meta instructions will create, modify and 

delete HAsC instructions from the local HAsC instruction set respectively. Meta 

instructions can also modify local data structure definitions.

Since the instruction set can be dynamically expanded by the users, it is 

possible for two users to install the same instructions. The node administrator
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distinguishes between the two instructions by a user id and a program id which 

are broadcast with every HAsC instruction.

Instructions can be added at several different logical levels: i) system, ii) 

project, iii) user. Typical systems level instructions would be data move and 

formatting commands. Project commands would be project oriented. For example, 

a numerical analysis project would have a matrix multiply and vector-matrix 

multiply instructions, while a logic programming project might have specialized 

logic instructions, such as unification. At the user level, one user might specify a 

SAXPY operation while another might want a dot product. Scalable libraries may 

exist at any level but most commonly at the project level.

Each node/cell has an execution engine which controls instruction execution 

at tha t node. The execution engine selects the next instruction, makes the bindings 

specified by instruction unification and causes the instruction to be executed. The 

execution engine performs the following tasks:

Save Environment 
Get Next Unified Instruction 
Bind Unified Variables 
Establish Environment 
Execute Unified Instruction 
Restore Old Environment

Instruction execution may take two basic forms. First the instruction may be a 

HAsC program which is executed in the transponder mode. Second, the instruction 

may be a library call written in FORTRAN, C, LISP, etc. In this case, the established 

environment restrictions produces the proper interface for the appropriate language.

5.3.3 H AsC Instruction  Set

This section defines the nature of the operations, the instruction format and the 

instruction synchronization classes of the HAsC instruction set.
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IIAsC is dynamic. As such, it must allow for a dynamic instruction set and 

data structure modifications. Thus the HAsC install meta instruction consist of an 

associative pattern and a body of code. When it is broadcast to the system, all nodes 

which successfully unify with the instruction gather the body of code and install it 

on the local node. The extend instruction consists of a pattern and a data definition. 

Responding nodes add the data definition to the local associations. Extend may add 

a named row or column to an existing association. Augment can be used to add an 

entire new association.

The patterns in these instructions contain administrative data, such as job id, 

project id, etc. If the node is not participating in the project or job then it does 

not unify and the instruction is not installed or the data definition not extended. 

Uninstall, unextend and unaugment perform the inverse operations.

Basic to the HAsC philosophy is the concept that data when initially loaded 

into the system is sent to the appropriate node and never moved. While this would be 

ideal, there will always be a need to move data from one node to another. Accordingly 

there are a number of HAsC move commands. Move commands can be divided into 

intra-association and inter-association instructions. Intra-association instructions 

are very much like expressions in conventional languages and are not discussed here 

due to lack of space. Inter-association instructions include file I/O  as a special case. 

Inter-association moves must have node identifiers and for I/O , a file server, a disk 

or other peripheral is a legal node.

5.3.4 A ssociative Instruction Levels

The essence of HAsC is to model a distributed heterogeneous network as an 

associative data parallel computer where processor synchronization is on an instruction 

by instruction basis. Accordingly, in HAsC, the associative instructions are 

synchronized. An efficient implementation of the synchronization requires an under­
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standing of how the various associative statements are mapped onto sequences of 

virtual machine commands and most importantly the degree of network communi­

cation complexity of the sequences.

Accordingly, this section describes a hierarchy of instructions - from the highest, 

most global (easiest to synchronize) to the lowest, most local (hardest to synchronize). 

HAsC will perform most efficiently if the programs are written using high level 

commands. The lower the level of the command, the more inter-node communication 

is required. Five different levels of instruction coupling are required to implement 

all of the HAsC statements on a heterogeneous network.

The communication and synchronization are built into the HAsC instruction. 

There is no need for the programmer to be aware of the degree of instruction commu­

nication. The five levels of instructions are presented here to more clearly delineate 

the relationship between associative and heterogeneous computing.

The highest level of instruction synchronization is pure associative data paral­

lelism and involves the use of the channel registers only - i.e. there is no global 

coupling. There are two types of top level instructions: i) those which execute based 

on the channel register value only, such as logical and arithmetic expressions and ii) 

those which set the channel register. Data parallel logical expressions (associative 

searchers) can be used to set the channel registers and are “automatically” incor­

porated into many HAsC statements. Thus a data parallel IF or WHERE consists 

of only an associative search, followed by a sequence of data parallel expressions. It 

is a top level instruction. Top level instructions execute in real time and require no 

global response or communication. Most computation is done a t the top level.

Figure 5.7 gives some examples of instruction synchronization. In Figure 5.7, $ 

is the parallel marker and is read as a plural. That is, A$ is read as As. Result$ is a 

data parallel pronoun referring to the last performed data parallel computation. The
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top level synchronization box shows the programming style for algebraic expressions 

supported by HAsC.

add the b$ to the c$
subtract the result$ from the d$
convolve the resultS with the e$
save the resultS in the f$
compare the a$ with the b$
where the resultS are equal d o ... elsewhere do ...

Top level synchronization 
Expressions and WHERE 
commands

move the a$ to the b$ 
save the a$ in the b$ 
read c$

Second level synchronization 
Data move and I/O 
commands

any a$ greater than 5
Third level synchronization 
ANY command

pick one of the responderS 
any a$ greater than the b$

Fourth level synchronization 
Item selection

read matrix a$ 
exit if EOF
convolve a$ with imageS 
display results 
repeat
sum the salaryS

Fifth level synchronization 
Iteration

Figure 5.7 Instruction Synchronization

The second level of instruction coupling requires only global synchronism. 

Prime examples are the data transfer and I/O  commands. I/O  is always local to 

a cell’s processor, but in general the processors may be quite different, physically. 

Therefore I/O  times may vary dramatically requiring synchronization before the 

next HAsC command is issued. Again, the programmer need not be aware of the 

synchronization requirements of this class of instructions. The synchronization is 

automatic. The programmer only recognizes the need for I/O  or data movement.

The third level of complexity consists of simple responder commands. These 

commands require the ORing of the responder results of all processors (i.e. an OR
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reduction). On a SIMD this is a single instruction. In IIAsC, it is the simplest, form 

of a HAsC reduction communication. The instructions at, this level, such as ANY, 

are used to check for error conditions or determine whether special case computing 

needs to be done.

The fourth level is random selection. The HAsC commands in Figure 5.7 at this 

level consist of an associative search, followed by the selection of a responder by the 

“first, reduction” operation. The data object, of the selected responder is broadcast 

to the entire HAsC network for further processing.

The fifth level is iteration. The only use for iteration at, the top level of HAsC 

is for user interaction. For example, a typical program might be one which allows 

the user to interactively specify kernels to be convolved with an image and to review 

the results, as shown in Figure 5.7. D ata iteration does not exist,.

HAsC is a programming paradigm designed to facilitate the utilization of 

heterogeneous networks. The parallel associative programming techniques are well 

suited for this purpose.

5.4 C luster-M  and HAsC

As described in the previous sections, HAsC is most suitable for coarse-grained 

heterogeneous parallel computing. It is intended to ease the programming effort 

and maximize execution speed, at the expense of resource balancing. Cluster-M, 

on the other hand, provides both coarse-grained and fine-grained mapping in a 

clustered fashion. It aims at maximizing both execution speed as well as resource 

utilization. Therefore, both paradigms can be combined to achieve a better overall 

performance featuring ease of programming, increase execution speed and optimal 

resource utilization.
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5.4.1 Concurrent use o f C luster-M  and H AsC

Cluster-M mapping can be applied to HAsC in several ways. First, Cluster-M can be 

used to determine the initial data mapping before HAsC computation begins so tha t 

the overall execution time is minimized. Secondly, Cluster-M mapping can be used 

to decide the fine-grained mapping of HAsC nodes as shown in Figure 5.8. Thirdly, 

Cluster-M can be alternated with HAsC at run time. In this approach, a Cluster-M 

Specification for the task is generated first. The Cluster-M Specification preserves 

computation and communication information in a multi-level cluster organization. 

Clusters at the same level represent computations a t a given step which can be 

executed concurrently. This cluster organizational information can be sent to the 

HAsC network controller which then broadcasts the clusters of HAsC instructions 

(Figure 5.9). As described in section 5.3, the local HAsC nodes determine which of 

the clusters to execute based on their local configuration and data. Global results, if 

any, are returned to the initiating HAsC controller which may use them to select the 

next level of clusters to be broadcast. The process repeats until all cluster levels have 

been processed. This approach is a network implementation of the multiple-SIMD 

architecture originally described in [54].

5.4.2 Scalability o f C luster-M  and H AsC

Both programming paradigms presented in this paper are machine-independent, as 

explained in detail and are therefore heterogeneously scalable. In HAsC, a program 

is broadcast, to the entire network and the individual nodes determine locally which 

instructions to execute. The global broadcasting approach means that there is no 

need to know how nodes are interconnected in the network or how data is distributed 

across the nodes. This allows data files to be analyzed dynamically a t run time as 

they enter the HAsC system and to be directed to the node(s) (i.e. computers) 

best suited to process them. Broadcasting allows scalability. That is, the hardware
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IIAflC 

Node 1

IIAsC 

Node n

Figure 5.8 Cluster-M aided HAsC computation within HAsC nodes

Clustcr-M  Specification

Workstation

M1MP

Figure 5.9 Switching between Cluster-M and HAsC

can be expanded or modified and the problem size can be changed without having 

to reprogram or recompile the basic HAsC program. New nodes consisting of new 

machines with installed HAsC software can be added to a network at any time 

and at any location. HAsC is not dependent on any physical machine or network 

configuration. This is because the instruction broadcast, cell memory organization 

and associative searching allows the removal of any reference to data  set size and 

type from the program.

Cluster-M is also scalable. When a new machine is added to the heterogeneous 

network a new Cluster-M representation of the suite can be generated and a Cluster-

44
2 4

C luster

M apping

C luster

M apping
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Cluster-M

(Clu&ter-M representation)

Machine M achineMachine MachineM achineM achine

M achine Independent Progran

Diatribution Unit Diatribution Unit
(Cluster-M Mapping Module)

Structure o f  a  scalable heterogeneous paradigm  

Problem

Scalability in HAsC

Scalability in  Cluster-M  

Problem

Machine Machine*!
Cluster M  
M apping

Machine!
Cluster-M
M apping

MachineM achine M adiine3
Cluster-M
M apping

M achine Independent Progran

(HAbC Instructions)
Machine Independent Program

(Multi level C luster-M  Specification o f  H A sC  instructions)

(HAbC Controller Broadcasting)

Diatribution Unit

(H AsC  Controller broadcasting)

Diatribution Unit

Scalability in concurrent use o f  H A sC  and C luster M

F ig u re  5.10 Scalability of HAsC and Cluster-M

M specification can be efficiently executed without any change. Also, an appropriate 

new mapping function can be computed to map the Cluster-M specification to the 

new Cluster-M representation. Furthermore, the two paradigms can be used concur­

rently as a hybrid scalable programming paradigm. See Figure 5.10 for an illustration 

of above.



C H A PT E R  6 

C O N C LU D IN G  REM ARK S

In this thesis, we have discussed some theory and design issues of heterogeneous 

computing. We have presented a heterogeneous model of computation which can 

efficiently bridge the software/hardware gap in a heterogeneous environment. This 

model allows software portability without imposing any restrictions on the hardware. 

Furthermore, it allows a mechanism for predicting the performance of a given parallel 

program on any heterogeneous computer or suite of computers. Our Cluster-M model 

consists of two sets of parameters, one for representing a portable parallel program 

and the other for specifying the organization of the underlying heterogeneous archi­

tecture/suite. In addition, the Cluster-M model consists of an evaluation function for 

predicting the time performance of any two sets of parameters being considered. A 

tool implementing the proposed heterogeneous model of computation called Cluster- 

M was presented to support portable parallel algorithm design and programming. 

The Cluster-M tool provides a mechanism such that both sets of parameters can be 

extracted from any given problem and any underlying heterogeneous organization. 

Furthermore, it provides an efficient technique for mapping these portable programs 

onto heterogeneous systems using these two sets of parameters. The Cluster-M 

mapping algorithm, presented in Chapter 2, is the first generic algorithm for mapping 

nonuniform arbitrary task graphs onto nonuniform arbitrary system graphs. Given a 

task graph and a system graph, we have shown efficient techniques for producing the 

Spec and Rep graphs. These two graphs are then input to the mapping algorithm. 

The clustering is done only once for a given task (system) graph independent of 

any system (task) graphs. It is a machine-independent (application-independent) 

clustering and is not distinct for different mappings.

The process of the mapping algorithm presented in Chapter 2 is performed 

recursively by a greedy fashion matching the clusters of the task graphs (Spec
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clusters) to the clusters of the system graphs (Rep clusters). In Chapter 3, we have 

used an extended version of the algorithm to incorporate the “type heterogeneity” 

(i.e., SIMD and MIMD) of tasks and systems in HC. The augmented mapping 

algorithm presented first maps Spec clusters to Rep clusters of similar computation 

type and then proceeds with an enhanced fine-grain mapping technique. Since the 

expected number of clusters at every level of the fine-grain mapping is constant, we 

have used an optimal matching strategy to enhance the algorithm. Therefore, we 

have formulated and solved each step of the fine-grain cluster mapping by using an 

integer linear programming model. We have compared the mapping results of our 

algorithm with those of some other heterogeneous mapping techniques.

In Chapter 4, we have proposed two methods for estimating the minimum 

number of processors needed for each of the code types identified in a given hetero­

geneous task. The input to the first method is a task compatibility graph. We 

have shown that a task compatibility graph can be generated by analyzing certain 

compatible relations between task module pairs of a given task flow graph. We have 

defined the resource (processor) minimization problem to be equivalent to finding the 

minimal number of cliques tha t cover the task compatibility graph, or to finding the 

minimal number of colors that color the vertices of its complement graph, called the 

task conflict, graph. We estimated this using a greedy approach in C?(|V| log |V| +  |Z?|) 

time, where | V| and \E\ are the number of vertices and edges of the task compatibility 

graph. We have shown that for certain types of task compatibility graphs optimal 

solutions can be obtained in polynomial time. The second method proposed was 

using the Cluster-M methodology [25, 15]. We have presented examples comparing 

our estimated results to the optimal number of processors needed.

In Chapter 5, we have presented the collaboration of two heterogeneous 

programming paradigms, Cluster-M and HAsC. HAsC models a heterogeneous 

network as a coarse-grained associative computer. In HAsC a program is broadcast
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to the entire network, the individual node then determines which instruction to 

execute. Cluster-M also allows scalability since programs written using Cluster-M 

are machine-independent and can be efficiently mapped and ported among different 

systems. A definition of scalability suitable for heterogeneous networks has been 

developed. HAsC and Cluster-M have been shown to be both heterogeneously 

scalable.
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