
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-1996

Theory and design of portable parallel programs for Theory and design of portable parallel programs for

heterogeneous computing systems and networks heterogeneous computing systems and networks

Ying-Chieh Wu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wu, Ying-Chieh, "Theory and design of portable parallel programs for heterogeneous computing systems
and networks" (1996). Dissertations. 1024.
https://digitalcommons.njit.edu/dissertations/1024

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1024?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

UMI Number: 9635200

Copyright 1996 by Wu, Ying-Chieh
All rights reserved.

UMI Microform 9635200
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

A B ST R A C T

TH EO R Y A N D D ESIG N OF PO RTABLE PARALLEL PR O G R A M S
FO R H ETER O G EN EO U S C O M PU T IN G SY STEM S A N D

N ETW O R K S

by
Y ing-C hieh Wu

A recurring problem with high-performance computing is that advanced archi­

tectures generally achieve only a small fraction of their peak performance on many

portions of real applications sets. The Amdahl’s law corollary of t his is that such

architectures often spend most of their time on tasks (codes/algorithms and the

data sets upon which they operate) for which they are unsuited. Heterogeneous

Computing (HC) is needed in the mid 90’s and beyond due to ever increasing super­

speed requirements and the number of projects with these requirements. HC is

defined as a special form of parallel and distributed computing that performs compu­

tations using a single autonomous computer operating in both SIMD and MiMD

modes, or using a number of connected autonomous computers. Physical implemen­

tation of a heterogeneous network or system is currently possible due to the existing

technological advances in networking and supercomputing. Unfortunately, software

solutions for heterogeneous computing are still in their infancy. Theoretical models,

software tools, and intelligent resource-inanagement schemes need to be developed

to support heterogeneous computing efficiently. In this thesis, we present a hetero­

geneous model of computation which encapsulates all the essential parameters for

designing efficient software and hardware for HC. We also study a portable parallel

programming tool, called Cluster-M, which implements this model. Furthermore,

we study and analyze the hardware and software requirements of HC and show that

Cluster-M satisfies the requirements of HC environments.

TH EO R Y A N D D E SIG N OF PORTABLE PARALLEL PR O G R A M S
FO R H ETER O G EN EO U S C O M PU T IN G SY STEM S A N D

NETW O R K S

by
Ying-Chieh W u

A D issertation
Subm itted to the Faculty o f

N ew Jersey Institu te o f Technology
in Partial Fulfillm ent o f th e Requirem ents for th e Degree of

D octor of Philosophy

D epartm ent o f C om puter and Inform ation Science

May 1996

Copyright © 1996 by Ying-Chieh Wu

ALL RIGHTS RESERVED

APPROVAL PAGE

THEORY AND DESIGN OF PORTABLE PARALLEL PROGRAMS
FOR HETEROGENEOUS COMPUTING SYSTEMS AND

NETWORKS

Ying-Chieh Wu

Dr. Mary M. Eshaghian, Dissertation Advisor 	 Date
Director of Advanced Computer Architecture and Parallel Processing Laboratory
Assistant Professor of Computer and Information Science and
Electrical and Computer Engineering, NJIT

Or. John D. Carpinelli, Committee Member 	 Date
Director of Computer Engineering
Acting Associate Chair of Electrical and Computer Engineering
Associate Professor of Electrical and Computer Engineering and
Computer and Information Science, NJIT

Dir. Peter A. Ng, Committee Member 	 Date
Professor and Chairperson of Computer and Information Science, NJIT

Dr. Alice C. Parker, Committee Member 	 Date
The Vice Provost for Research and Dean of Graduate Studies
Professor of Electrical Engineering-Systems,
University of Southern California, Los Angeles, CA

Dr. Richard B. Scherl, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Sotiros G. Ziavras, Committee Member 	Date
Associate Professor of Electrical and Computer Engineering and
Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Ying-Chieh Wu

Degree: Doctor of Philosophy

Date: May 1996

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1996

• Master of Science in Computer Science,
University of Missouri, Columbia, MO, 1992

• Bachelor of Science in Computer Science,
Tunghai University, Taichung, Taiwan, 1989

Major: Computer Science

Journal Publications:

1. A Suboptimal Heterogeneous Mapping, with M. M. Eshaghian and A. C.
Parker, accepted for publication in Journal of High Performance Computing,
1996.

2. Evaluation of Two Programming Paradigms for Heterogeneous
Supercomputing, with S. Chen, M. M. Eshaghian, R. Freund and J. L. Potter, Journal

of Parallel and Distributed Computing, 31(1), pp. 41-55, Nov., 1995.

3. Mapping Arbitrary Nonuniform Task Graphs onto Arbitrary Nonuniform
System Graphs, with S. Chen and M. M. Eshaghian, in revision for publication
in IEEE Transactions on Parallel and Distributed Systems.

4. The Heterogeneous Optimal Selection Theory, with S. Chen, M. M. Eshaghian,
A. Khokhar and M. E. Shaaban, in revision for publication in Parallel
Processing Letters.

5. On Estimating The Resource Requirements of Heterogeneous Tasks, with M.
M. Eshaghian and A. C. Parker, submitted to Future Generations Computer
Systems.

iv

Book C hapters and M agazines

1. A Portable Programming Model for Network Heterogeneous Computing, in
M. Eshaghian (ed.) Heterogeneous Computing, Artech House, Norwood, MA,
1996.

2. Mapping and Resource Estimation in Network Heterogeneous Computing, in
M. Eshaghian (ed.) Heterogeneous Computing, Artech House, Norwood, MA,
1996.

3. A Portable Parallel Programming Tool, with M. Eshaghian, submitted to IEEE
Computer, Oct., 1995.

Conference Publications:

1. A Suboptimal Algorithm for Mapping Parallel Tasks onto Heterogeneous
Systems, with M. M. Eshaghian and A. C. Parker, submitted to Fifth
IEEE International Symposium on High Performance Distributed Computing,
.January 1996.

2. Mapping Arbitrary Non-Uniform Task Graphs onto Arbitrary Non-Uniform
System Graphs, with S. Chen and M. M. Eshaghian, Proc. of the International
Conference on Parallel Processing, Vol. II, pp. 191-195, Oconomowoc, WT,
August, 1995.

3. On Estimating The Resource Requirements of Heterogeneous Tasks, with M.
M. Eshaghian and A. C. Parker, Proc. of the IPPS Workshop on Heterogeneous
Computing, pp. 47-52, Santa Barbara, CA, April, 1995.

4. A Sub-Optimal Assignment of Application Tasks onto Heterogeneous Systems,
with J. Desouza-Batista, M. M. Eshaghian, A. C. Parker, and S. Prakash,
Proc. of the IPPS Workshop on Heterogeneous Computing, pp. 9-16, Cancun,
Mexico, April, 1994.

5. Scalable Heterogeneous Programming Tools, with S. Chen, M. M. Eshaghian,
R. F. Freund, and J. L. Potter, Proc. of the IPPS Workshop on Heterogeneous
Computing, pp. 89-96, Cancun, Mexico, April, 1994.

To my lovely wife and my parents

vi

A C K N O W LED G M EN T

The author wishes to express his sincere gratitude to his advisor, Professor

Mary M. Eshaghian, for her guidance, friendship, and moral support throughout

this research.

Special thanks to Professor John D. Carpinelli, Professor Peter A. Ng, Professor

Alice C. Parker, Professor Richard B. Scherl, and Professor Sotirios G. Ziavras for

serving as members of the committee and offering invaluable suggestions to this

dissertation.

The author appreciates the consistent help from the Cluster-M project team

members: Geetha Chitti, Ajitha Gadangi, Javier G. Vasquez, and especially Dr. Song

Chen.

Lastly, the author wants to thank his dear wife, Shiu-Ling Chen, for her love,

understanding and help without which he simply can not complete this dissertation.

TABLE OF C O N T EN T S

Chapter Page

1 INTRODUCTION TO HETEROGENEOUS COMPUTING 1

1.1 Introduction... 1

1.2 Network L a y e r ... 2

1.3 Communication L ay er.. 4

1.4 Intelligent L a y e r.. 5

1.4.1 Code Profiling and Analytical Benchm arking............................... 5

1.4.2 Heterogeneous Optimal Selection Theory 6

1.5 Organization of the D issertation.. 8

1.5.1 Portable Programming M odel... 9

1.5.2 Partitioning, Mapping and Scheduling... 10

1.5.3 Hardware Estim ation.. 12

1.5.4 Software E nvironm ents... 12

2 A PORTABLE PARALLEL PROGRAMMING MODEL FOR HETERO­
GENEOUS COM PUTING.. 14

2.1 In troduction... 14

2.2 Cluster-M Portable Parallel Programming T o o l 17

2.2.1 C luster-M .. 17

2.2.2 Basic C oncepts ... 18

2.3 A Portable Parallel Programming M odel... 20

2.3.1 Machine-Independent Program P a ra m e te rs 22

2.3.2 Program-Independent Machine P a ra m e te rs 23

2.3.3 Evaluation F u n c tio n ... 23

2.4 Non-Uniform C lu s te r in g .. 24

2.4.1 Clustering Directed Task G r a p h s .. 24

2.4.2 Clustering Undirected System G rap h s... 29

viii

C hapter Page

2.5 Cluster-M Mapping A lgorithm ... 32

2.5.1 P relim inaries.. 34

2.5.2 The A lgorithm .. 35

2.5.3 Mapping E xam ples.. 37

2.6 Comparison Results ... 44

2.6.1 Scheduling... 44

2.6.2 Task Allocation... 55

2.7 Conclusion.. 61

3 MAPPING AND SCHEDULING FOR HETEROGENEOUS COMPUTING 62

3.1 In troduction... 62

3.2 A Survey of Heterogeneous M appings.. 64

3.2.1 Nondeterministic A lgorithm s... 65

3.2.2 Graph-Based A lgorithm s... 68

3.2.3 Semi-Dynamic A lgorithm s... 72

3.3 An Augmented Cluster-M M a p p in g .. 73

3.3.1 Task Clustering... 74

3.3.2 System C lustering.. 76

3.3.3 Augmented Cluster-M M ap p in g ... 78

3.3.4 Comparison Study ... 82

3.4 Conclusion.. 84

4 HARDWARE ESTIMATION OF HETEROGENEOUS COMPUTING . . . 86

4.1 Task Compatibility and Task Conflict G ra p h s .. 87

4.2 The Greedy Algorithm ... 90

4.3 Special Task Conflict and Compatibility Graphs 91

4.3.1 Interval G raphs... 92

4.3.2 Chordal G r a p h s .. 93

4.3.3 Comparability G rap h s .. 93

Chapter Page

4.4 Estimating Using Clustering Technique.. 95

4.5 Comparison Results ... 96

4.6 Concluding R em arks... 102

5 SOFTWARE REQUIREMENTS OF HETEROGENEOUS COMPUTING 104

5.1 S ca lab ility ... 105

5.1.1 Homogeneous Scalab ility .. 105

5.1.2 Heterogeneous Scalability.. 107

5.2 Cluster-M C o n stru c ts .. 110

5.2.1 Implementation of the Cluster-M C o nstructs................................ I l l

5.2.2 Cluster-M Problem Specification M acros.. 117

5.3 Heterogeneous Associative Computing(HAsC)... 122

5.3.1 Instruction E x ecu tio n .. 125

5.3.2 IIAsC A dm inistration .. 126

5.3.3 IIAsC Instruction S e t .. 127

5.3.4 Associative Instruction Levels.. 128

5.4 Cluster-M and HAsC .. 131

5.4.1 Concurrent use of Cluster-M and HAsC 132

5.4.2 Scalability of Cluster-M and H A sC ... 132

6 CONCLUDING R EM A R K S... 135

REFERENCES ... 138

LIST OF TABLES

Table Page

1.1 Notations used in HOST form ulation .. 9

2.1 Gaussian elimination mapping results using two processors with speed 2
and 1.6... 43

2.2 Gaussian elimination mapping results using two processors with speed 1
and 1.. 43

2.3 Gaussian elimination mapping results using two processors with speed
0.8 and 0.7.. 43

2.4 Comparison of Cluster-M and MH on system (1)... 46

2.5 Comparison of Cluster-M and Mil on system (2)... 47

2.6 Comparison of Cluster-M and MH on system (3)... 47

2.7 Comparison of Cluster-M and MH on system (4)... 48

2.8 Comparison of Cluster-M, MFMC, and MH on system (2).......................... 48

2.9 Comparison of Cluster-M, MFMC, and MH on system (3).......................... 49

2.10 Comparison of Cluster-M, MFMC, and MII on system (4).......................... 49

2.11 Mapping of Bokhari’s algorithm and C luster-M .. 60

2.12 Comparisons of mappings of Bokhari’s algorithm and C luster-M 61

4.1 Comparison of different, resource estimating techniques....................................102

xi

LIST OF FIG U R ES

Figure Page

1.1 A heterogeneous network-based parallel computing system......................... 3

1.2 Intelligent layer services... 6

1.3 Input format of HOST... 7

2.1 Cluster-M mapping process... 18

2.2 Horizontal and vertical partitioning of a task graph...................................... 20

2.3 Clustering Nonuniform Directed Graphs (CNDG) algorithm...................... 26

2.4 Clustering on a join-node: a general case.. 28

2.5 Clustering on a fork-node: a general case... 29

2.6 A task graph and steps for obtaining the Spec graph..................................... 30

2.7 Clustering Nonuniform Undirected Graphs (CNUG) algorithm.................... 33

2.8 A nonuniform system graph and its Rep graph.. 34

2.9 Mapping algorithm... 38

2.10 A mapping example.. 39

2.11 Gantt chart of the obtained schedule.. 39

2.12 Mappings on different, system graphs.. 40

2.13 The Fortran code of the Gaussian elimination on a TV x TV m atrix 41

2.14 (a) The task graph and (b) the mapping result of the Gaussian
elimination on a 5 x 5 matrix... 42

2.15 More Gaussian elimination mapping results... 43

2.16 System (2): A completedly connected system.. 45

2.17 System (3): A hypercube system.. 45

2.18 Comparison example with Clan... 51

2.19 Comparison example with MCP, Sarkar, DSC and Clan........................ 52

2.20 Comparison example 2 with DSC and Clan.. 54

2.21 Comparison example 3 with DSC and Clan... 55

xii

Figure Page

2.22 Comparison example 4 with DSC.. 56

2.23 Comparison example 1 with Chaudhary and Aggarwal: task graph 57

2.24 Comparison example 1 with Chaudhary and Aggarwal: mapping
results.. 57

2.25 Comparison example 2 with Chaudhary and Aggarwal: task graph 58

2.26 Comparison example 2 with Chaudhary and Aggarwal: mapping
results... • ... 58

2.27 Comparison example with Bokhari: task and system graph........................ 59

3.1 The Augmented Task Clustering (ATC) algorithm.. 74

3.2 A heterogeneous subtask consists of MIMD and SIMD code segments. . . 76

3.3 Clustering the MIMD code segment.. 77

3.4 The Augmented System Clustering (ASC) algorithm.................................... 77

3.5 The system graph and its clustering of a heterogeneous suite............... 78

3.6 Augmented Cluster-M mapping algorithm.. 81

3.7 The Gantt chart of obtained schedule... 82

3.8 The mapping results by using different algorithms.. 83

3.9 The mapping results of Gaussian elimination by using different
algorithms... 84

4.1 A task flow graph G ... 88

4.2 The task compatibility graph of G .. 89

4.3 The task conflict graph of G ... 89

4.4 Greedy-Clique-Cover-Algorithm... 91

4.5 An interval graph and its interval representation [62]................................... 92

4.6 A chordal graph and its subtree representation [62]....................................... 93

4.7 Two kinds of astroidal triples [62]... 95

4.8 Clustering algorithm... 97

4.9 A task graph and steps for obtaining the Spec graph.................................... 98

4.10 Task flow graph of Example 1.. 99

xiii

Figure Page

4.11 Task compatibility graph of Example 1.. 100

4.12 Identified cliques of Figure 4.11.. 100

4.13 Gantt charts of Example 1, using a) estimated number of processors
obtained by the task compatibility graph approach and b) optimal
minimum number of processors.. 100

4.14 Task flow graph of Example 2.. 101

4.15 Task compatibility graph of Example 2.. 101

4.16 Identified cliques of Figure 10... 101

4.17 Gantt charts of Example 2, using a) estimated number of processors
obtained by the task compatibility graph approach and b) optimal
minimum number of processors.. 101

4.18 The task flow graph used for Table 4.1... 102

4.19 The estimated result obtaining from method 1.....................102

4.20 The estimated result obtaining from method 2 and method 3.......... 103

4.21 The estimated result obtaining from method 4........103

5.1 Hierarchical breakdown of a t a s k ... 108

5.2 PCN System S tru c tu re ... 112

5.3 Cluster-M Specification of associative binary macro...................................... 119

5.4 Cluster-M Specification of broadcast macro.. 122

5.5 Associative Configuration of a Network..123

5.6 A Layered Heterogeneous N etw ork.. 124

5.7 Instruction Synchronization... 130

5.8 Cluster-M aided HAsC computation within HAsC nodes 133

5.9 Switching between Cluster-M and H A sC .. 133

5.10 Scalability of HAsC and Cluster-M .. 134

C H A P T E R 1

IN T R O D U C T IO N TO H ETER O G EN EO U S C O M P U T IN G

In this chapter, we introduce heterogeneous computing in Section 1.1 and discuss

the three layers of heterogeneous computing in Sections 1.2 to 1.4. The organization

of this thesis is then presented in Section 1.5.

1.1 Introduction

Today’s supercomputing applications are characterized by a high level of diversity

in terms of the type of embedded parallelism and by an ever-increasing demand for

computational performance. Conventional parallel supercomputing systems utilize

a number of homogeneous processors to cooperate on solving parallel tasks. These

systems are usually classified according to the multiplicity of data and instruction

streams [31].

Such homogeneous systems provide efficient solutions to tasks with embedded

parallelism matching that offered by the system (i.e. SIMD, MIMD, vector). If more

than one type of parallelism is present in a task, the system performance is greatly

degraded. If greater computational power is needed, the whole system needs to be

replaced by a more powerful homogeneous system, a costly solution.

Heterogeneous computing is a novel approach that overcomes several short­

comings of conventional homogeneous parallel systems. Heterogeneous computing

(HC) is defined as a special form of parallel and distributed computing tha t performs

computations using a single autonomous computer operating in both SIMD and

MIMD modes, or using a number of connected autonomous computers. This

approach aims a t providing high performance by executing portions of code on

machines offering similar types of parallelism.

1

2

The HC environment, is comprised of several hardware and software components

that manage the suite of heterogeneous machines in the system, thus enabling appli­

cations to run efficiently. The hardware and software requirements for HC can be

classified into three layers: network layer, communication layer, and intelligent layer.

In this thesis, we concentrate on issues related to the intelligent layer. We next

describe each of these layers.

1.2 N etw ork Layer

The network layer in HC includes the physical aspects of interconnecting the

autonomous high performance machines in the system. This includes low level

network protocols and machine interfaces. Current Local Area Networks (LANs)

can be used to connect existing machines but this approach is not suitable for IIC.

In order to realize a HC environment, higher bandwidth and lower latency networks

are essential. The bandwidth of commercially-available LANs is limited to about

10 Mbits/sec. However, in HC, assuming machines operating at 25 MHz clock with

40 MIPS instruction rate and 16 bits word length, a bandwidth in the order of 1

Gbits/sec is required to match computation and communication.

Recent advances in network technology have made it feasible to build gigabit

LANs. Links in these networks are capable of operating on the order of 1 Gbits/sec

or higher rates. Thus having at least 100 more bandwidth than today’s 10 Mbits/sec

Ethernets. Gigabit LAN standards are emerging. The High Performance Parallel

Interface (IIIPPI), whose physical layer has been approved as an ANSI standard, will

likely become the backbone for interconnecting machines in HC. HIPPI-based LANS

support data rates of 800 Mbits/sec and 1.6 Gbit/sec. Such networks have been used

to interconnect CRAY-2 and CM-2 at the Minnesota Supercomputer Center [70]. A

similar project using A CRAY Y-MP and CM-2 was undertaken at the Pittsburgh

Supercomputing Center [47].

3

A llia n l I^X-80

□□□□ □□□□ □ □□□ □□□□
Connection Machine CM-2

S1MD/M2MD
M nchinc

High*spe

User Workstation

Network

Massively Parailcl Processor MPP
Image Understanding Architecture

Figure 1.1 A heterogeneous network-based parallel computing system.

Even with high bandwidth networks, there are three main sources of ineffi­

ciency in current network implementations. First, existing application interfaces

incur excessive overhead due to context switching and data copying between the

user process and the machine’s operating system. Secondly, each machine must

incur overhead of executing high-level protocols tha t ensure reliable communication

between tasks. Also, the network interface burdens the machine with interrupt

handling and header processing for each packet.

Nectar [5] is an example of a network backplane for heterogeneous multicom­

puters. It consists of a high-speed fiber-optic network, large crossbar switches and

powerful network interface processors. Protocol processing is off-loaded to these

interface processors.

In IIC, modules from various vendors share physical interconnections. Since

different manufacturers usually use different communication protocols, the network

management problem becomes more complex [52]. The following three general

approaches in dealing with network heterogeneity are given in [72]:

4

1. To treat the heterogeneous network as a partitioned network, each partition

employs a uniform set of protocols,

2. to have only a single “visible” network management console, and

3. to integrate the heterogeneous management, functions at a single management

console.

1.3 Com m unication Layer

The HC environment achieves efficient execution of parallel tasks by decomposing

the task into several modules which are assigned to machines in the system with a

similar mode of embedded parallelism. The task modules run on assigned machines

as local processes. These processes need to exchange intermediate results and process

synchronization information, either from processes residing in the same machine or

from processes residing on other machines using the network. Since each machine

on the system may utilize different, process communication and synchronization

primitives, a uniform system-wide communication mechanism operating above native

operating systems is needed to facilitate this exchange of information. Due to the

networked nature of HC and the lack of shared memory, such a communication

mechanism must support message passing.

An example of a communication tool suitable for HC is the parallel virtual

machine (PVM) [66]. The PVM system emulates a virtual concurrent, computing

machine on a suite of networked machines by executing system-level processes on each

machine. A process that runs on a local machine can access the virtual machine via

library routines embedded in imperative procedural languages, such as C. Commu­

nication support is provided for process management, via stream-oriented message-

passing, synchronization based on barriers or variants of rendezvous and/or auxiliary

tasks. These library routines interact with the PVM system process on each machine,

5

which then provides the requested actions in cooperation with PVM system processes

running on other machines in the system. Other examples of networking communi­

cation tools are Portable Programs for Parallel Processors (P4) and Message Passing

Interface (MPI). MPI includes a number of utilities for supporting message passing

while P4 can handle both message passing and shared memory. MPI is a message

passing interface for MIMD distributed memory concurrent computers. MPI includes

point-to-point and collective communication routines, as well as support for process

groups, communication contexts, and application topologies.

1.4 Intelligent Layer

The intelligent layer of the HC environment provides system-wide tools and

techniques necessary to manage the suite of heterogeneous machines and to

insure proper and efficient execution of tasks. Such tools operate over the native

operating systems of the individual machines and use the process communication

primitives provided by the communication layer. The services provided by this

layer are the most challenging ones in HC and include programming environments,

language support, application task decomposition, mapping and scheduling, and load

balancing, as illustrated in Figure 1.4. We next briefly describe two functions which

are essential for designing and supporting these various services. These functions are

used in the Heterogeneous Optimal Selection Theory (HOST) presented in Section

1.4.2.

1.4.1 C ode Profiling and A nalytical Benchm arking

Traditional program profiling involves testing a program assumed to be comprised

of several modules, by running it on some test data. The profiler monitors the

execution of the program and gathers statistics including the running time of each

program module. This information is then utilized to modify different, modules

6

Task m odules

Parallel task
■ ^► C ode analysis ■ ■ ^► P artitio n in g ^^^ -

written using

program m ing

environm ent

M apping/
scheduling

Figure 1.2 Intelligent layer services.

improving the overall execution time. In IIC, profiling is not done only to estimate

the execution time of code, but the type of the code according to the execution mode

is also considered. This is achieved by code-type profiling. The code-type profiling

introduced in [35] is a code-specific function to determine the code-type (e.g. SIMD,

MIMD, vector, scalar, etc.).

Analytical benchmarking provides a mean to measure how well the available

machines perform on a given code-type [35]. While code-type profiling identifies

the type of code, analytical benchmarking ranks machines in terms of efficiency in

executing a given code. Thus, analytical benchmarking techniques determine the

relative effectiveness of a given parallel machine on various computation types.

1.4.2 H eterogeneous O ptim al Selection Theory

In Freund’s Optimal Selection Theory (OST), it can be assumed th a t the number of

machines available is unlimited and that an application task is comprised of several

uniform and non-overlapping code segments. Code segments are considered to be

7

Subtaske

Taak 1 • T

D P (Coda Segments {SIMD, MIMD, vector etc.)

□

□
Figure 1.3 Input format of HOST.

1 *iik 1 va*CZZI]
Code blocks (homogeneous)

executed in a series. Each code segment has homogeneous parallelism embedded

in its computations. A code segment is decomposed into code blocks. All code

blocks within a code segment have the same type of parallelism and can be executed

concurrently. This type is determined by the process of task profiling. The goal

of OST is to assign the code blocks, within each code segment, to the available

matching machine types so tha t it may be optimally executed. Information about

how fast a given machine type can execute a code type is assumed to be known as

a result of analytical benchmarking. Augmented Optimal Selection Theory (AOST)

[71] extended OST to incorporate the performance of code segments on non-optimal

machine choices, assuming that the number of available machines for each type is

limited. Based on this assumption, a code segment most suitable for one type of

machine may have to be assigned to another type.

The Heterogeneous Optimal Selection Theory (HOST) [16] is an extension

of AOST in two ways: it incorporates the effects of various, fine-grain, mapping

techniques available on individual machines and it assumes heterogeneous embedded

parallelism. The input format of HOST, as shown in Figure 1.3, allows concurrent

execution of mutually indejjendent, code segments. An application task is decomposed

into several subtasks which are then executed in series. Each subtask may contain

a collection of code segments which can be executed in parallel. A code segment

consists of a set of code blocks and a code block consists of a number of instructions.

8

All the code blocks within a code segment arc of the same type and are to be

executed concurrently or sequentially on the machines of the same type, depending

on their interdependencies. A machine type is identified according to the underlying

architecture, such as SIMD, MIMD, vector or scalar. Each machine type may have

more than one model, for example, the Ncube and Mesh are two models of an SIMD

machine type. In HOST, heterogeneous code blocks of different code segments can

be executed concurrently on different machine types, thus exploiting the hetero­

geneous parallel computations embedded in a given application. Narahari et, al.[51]

extended HOST to the Generalized Optimal Selection Theory (GOST). GOST allows

non-optimal selections of machines, as in AOST, and heterogeneous code blocks, as

in HOST. Tt further incorporates data communication time, system reconfiguration

time and data conversion time [51].

To express the formulation of HOST, some parameters must be defined.

Table 1.1 contains a complete listing of this notation. For a more detailed description

of these terms, see [16]. HOST is formulated as follows:

s
For any subtask , there exists a t with min y[r] subject to 5Z(7[T[j], j] x c[lr[?']]) < C

.7 = 1

Based on HOST, an optimal machine selection leading to a minimum execution time

exists. To find such an optimal solution, however, is not computationally feasible.

Therefore, we present an overview of a set of sub-optimal solutions in the next section.

1.5 O rganization o f the D issertation

This thesis focuses on the design issues of the intelligent layer in IIC. In this section,

we briefly present an overview of these issues. They are presented in detail later in

this thesis.

9

s the number of code segments of the given task
M the number of different, machine types to be considered
v[y] the number of machine models of type y
a[y] the number of mappings available on machine type y
P[y, !■] the number of available machines of model I of type y
v[y , j] the maximum number of code blocks code segment j can be

decomposed
i [y , j \ the number of machines of type y actually used to execute code

segment j
m[y, k\ mapping technique used for a code block k on machine type y
6[y, m] the optimal speedup for a particular mapping m on machine type y
n[y , j] how well a code segment j can be matched with machine type y
A [y, k] utilization factor when running code block k on a machine of type y
P[j\ the percentage of execution time of code segment j within a given

subtask
p[j , k] the percentage of execution time of block k within code segment j

p[v, j] mapping vector for code segment j on machine type y
% , / , p] execution time of segment j with mapping /i on machine type y
A[y, j] minimum execution time of segment j among all possible mappings

on type y
T machine type selection vector
X[r] execution time of the given subtask with machine type selection r
Y[j] the type of machine selected to execute code segment j

the cost of machine selected to execute code segment j
c the total cost constraint

Table 1.1 Notations used in HOST formulation

1.5.1 Portab le Program m ing M odel

A programming paradigm suitable for the intelligent layer must allow portable

software to be shared and/or distributed among various computers in the hetero­

geneous suite. Furthermore, it must support architecturally independent programming

which does not include any architecturally specific details. Since homogeneous

programming tools are not suitable to heterogeneous computing, we need to develop

a new tool based on a heterogeneous programming model. We present a hetero­

geneous parallel programming model, called Cluster-M, in Chapter 2. This model

is proposed to bridge between software and hardware for heterogeneous computing.

10

It acts as an intermediate medium based on which portable parallel programs are

specified and can be mapped onto dynamically reconfigured heterogeneous organi­

zations. The implementation of this model as a portable programming tool is

also presented. Using Cluster-M, a single program can be ported among various

heterogeneous architectures or suite of computers.

1.5.2 Partitioning, M apping and Scheduling

In HC, similar to homogeneous systems, the problems of partitioning a parallel

task into several modules, mapping resulting modules into various machines and

scheduling the execution of each module are pertinent. In the past, the partitioning

and mapping problems for homogeneous parallel environments have been investigated

extensively [9, 10, 18, 30, 43, 44, 61, 63, 64]. However, HC poses new constraints. In

the following, we define partitioning and mapping as two different, problems and also

differentiate between the contexts of these terms in homogeneous and heterogeneous

environments.

In a homogeneous environment, the partitioning problem addressed in [12, 36,

39] can be divided into two sub-problems. Parallelism detection determines the

parallelism in a program. Clustering combines several operations into tasks and

thus partitions the application into several tasks. Each cluster is then assigned to a

processor. Both of these sub-problems can be performed by the user, the compiler

or by the machine at run time.

The mapping/allocation of program modules to processors has been addressed

by many researchers in the past [9, 18, 30, 43, 44, 61]. Informally, in homogeneous

environments the mapping problem can be defined by assigning program modules

to processors. Thus, the number of pairs of communicating modules that fall on

pairs of directly connected processors is maximized [9]. In HC, machines are globally

connected through a high-bandwidth network, and therefore the assignment of

11

communicating modules to directly-connected machines is not an issue. However,

other objective functions for mapping, such as matching the code-type to the

machine-type, add additional constraints. If such mapping has to be performed at

run time, for load balancing purposes or due to failure of a machine, the mapping

becomes more complicated.

In homogeneous environments, the scheduling process assigns each task to

a processor in order to achieve better processor utilization and high throughput.

Three levels of scheduling are generally employed. High-level scheduling selects a

subset of all submitted jobs competing for the available resources. Intermediate-level

scheduling responds to short-term fluctuations in the system load by temporarily

suspending and activating processes to achieve smooth system operation. Low-level

scheduling determines the next ready process to be assigned to a processor for a

certain duration.

In IIC, while all of the above three levels of scheduling may reside in each

machine, a fourth level of scheduling is needed. This level deals with scheduling

at the system level. The scheduler maintains a balanced system-wide workload by

monitoring the progress of all the tasks in the system. The scheduler needs to know

the different task-types and available machine-types (i.e., SIMD, MIMD, Mixed-

mode, etc.) in the system, since tasks may be reassigned due to changes in the system

configuration or due to overload problems. Communication bottlenecks and queueing

delays incurred due to the heterogeneity of hardware add additional constraints on

the scheduler. The scheduler also needs to use information from code-type profiling

and analytical benchmarking.

In Chapter 3, we extend the algorithms of Chapter 2 to incorporate the “type

heterogeneity” (i.e. SIMD and MIMD) of tasks and systems in IIC. The augmented

mapping algorithm presented maps tasks to processors of similar computation type

and proceeds with an enhanced fine-grain mapping technique. Since the expected

12

number of clusters at every level of the firie-grain mapping is constant, we propose to

use an optimal matching strategy to enhance the algorithm. Therefore, we formulate

and solve each step of the fine-grain cluster mapping by using an Integer Linear

Programming (ILP) model.

1.5.3 Hardware E stim ation

Once the information provided by code-type profiling is available, it is desirable to

know how many processors are needed for each of the code types. In Chapter 4,

we propose two methods for estimating the minimum number of processors required

for each of these code types in HC. The first method involves making use of task

compatibility graphs. We show that a task compatibility graph can be generated

by analyzing certain compatible relations between task module pairs of a given task

flow graph. We define the resource (processor) minimization problem therefore to be

equivalent to finding the minimal number of cliques that cover the task compatibility

graph, or to finding the minimal number of colors tha t color the vertices of its

complement graph, called task conflict graph. We solve this problem using a greedy

approach in 0{\V \ log|V| -I- \E \) time, where |F | and I#! are the number of vertices

and edges of the task compatibility graph. We further show that for special types

of task compatibility graphs, the optimal solution can be obtained in polynomial

time. The second method studied in Chapter 4 uses the Cluster-M methodology for

estimating the minimum number of processors. Examples are shown to compare the

estimated results obtained using different, techniques.

1.5.4 Software Environm ents

In HC, machine-independent and portable parallel programming languages arid tools

arc required. Also, a IIC software package should be portable among and executable

on various architectures. Certain tools are needed to act as intermediate media

based on which machine-independent, algorithms can be designed using a single

13

programming language. These are then mapped onto the desired architecture. One

such programming model, Linda [13, 11] defines a logically shared data structuring

memory mechanism called tuple space. However, Linda is difficult to implement

on architectures not supporting a shared memory structure. In contrast to Linda,

the programming tool Express supports a distributed-memory system organization.

However, algorithms coded using Express are machine dependent, and therefore are

not fully portable. Other candidate parallel programming environments for IIC are:

the Actors Programming model [1, 2, 3] and Tool for Large-Grained Concurrency

(TLC). TLC, developed by BBN, employs implicitly parallel constructs to specify

the dependencies among a set of coarse-grained remote computations. The Actors

model, on the other hand, allows massively parallel execution of algorithms. At

extra cost of implementing such a system, Actors is machine independent: it can be

executed on shared memory computers and over distributed networks.

Cluster-M, presented in Chapter 2, is a model which provides an environment

for porting various tasks onto the machines in a heterogeneous suifci, so tha t resource

utilization is maximized and the overall execution time is minimized. In Chapter 5,

we formally define the scalability of heterogeneous programming paradigms. Also, we

present another portable and scalable programming paradigm, called Heterogeneous

Associative Computing (HAsC)[54]. HAsC models a heterogeneous network as a

coarse-grained associative computer and is designed to optimize the execution of

problems where the size of the program is small compared to the amount of data

processed. It uses broadcasting to avoid the mapping problem. Ease of programming

and execution speed, not the utilization of idle resources are the primary goals of

HAsC. We show that both Cluster-M and HAsC are scalable. We then illustrate

how these two paradigms can be used together to provide an efficient medium for

heterogeneous programming.

C H A PT E R 2

A PO RTABLE PARALLEL PR O G R A M M IN G M ODEL FO R
H ETER O G EN EO U S C O M PU T IN G

We present a heterogeneous parallel programming model called Cluster-M. This

model is proposed to bridge between software and hardware for heterogeneous

computing. It acts as an intermediate medium based on which portable parallel

programs are specified and then can be mapped onto dynamically reconfigured

heterogeneous organizations. The implementation of this model as a portable

programming tool is presented in this chapter. Using Cluster-M, a single software

can be ported among various heterogeneous architectures or suite of computers.

2.1 Introduction

A programming paradigm suitable for the intelligent layer should allow portable

software to be shared and/or distributed among various computers in the hetero­

geneous suite. Furthermore, it should support architecturally independent programming

that does not include any architecturally specific details. A number of homogeneous

programming tools have been developed that take a high-level program as the input

and map it onto the underlying systems. The question is whether or not these

homogeneous programming tools can be directly used for heterogeneous computing.

Examples of these tools include Linda, Prep-P, Oregami, Hypertool, PARSA, and

PYRR.OS [13, 8, 45, 74, 75]. Linda [13] defines a logically shared memory mechanism

called tuple space. Tuple space holds two kinds of tuples: process tuples, which are

under active evaluation, and data tuples, which are passive. Ordinarily, building a

Linda program involves dropping a process tuple into tuple space and then spawning

other process tuples. This pool of process tuples, all executing simultaneously,

exchange data by generating, reading, and consuming data tuples. Once a process

tuple has finished executing, it turns into a data tuple that is indistinguishable from

14

15

other data tuples. Linda requires large volumes of data to be exchanged to and from

the shared memory. For this reason, Linda has been mostly used for coarse-grain

computations.

Prep-P, Oregami, Hypertool, and PYRROS, however, all include an architec­

turally independent mapping component that can map a fine-grain given parallel

program onto either a special or an arbitrary system. However, the mapping

components of Prep-P [8] and Oregami [45] are basically libraries of specialized

mapping algorithms th a t only map regularly structured programs onto regularly

structured systems. Their mappings for irregularly structured programs or systems

tha t are not found in the libraries may be slow and ineffective. Hypertool [74] and

PYRROS [75] generate fast and near-optimal mappings for arbitrary programs by

using a clustering method. However, they can only be mapped onto fully connected

systems. Therefore, they are not suitable for a heterogeneous network that may

have arbitrary interconnections. This chapter will only focus on the tools th a t can

efficiently map arbitrary program tasks onto arbitrary computer systems. Since

homogeneous programming tools are not suitable to heterogeneous computing, we

need to develop a new tool based on a heterogeneous programming model. An

essential component of such a tool will be an efficient mapping algorithm, which

maps an arbitrary task onto an arbitrary system.

A program task can be represented by a task graph, with each node representing

a task module and each edge representing data communication between two modules.

Each node is associated with a weight representing the time needed to execute the

instructions contained in the node on a baseline computer, while the weight of an

edge represents the communication amount. Similarly, a parallel computer system

can be modeled as a weighted undirected system graph, whose weights represent

processor speeds and transmission rates of communication links. If the task graphs

and the system graphs are known before program execution, then mapping of the task

16

graphs onto the system graphs is called static mapping. Here, we consider only static

mapping. In static mapping, the assignments of the nodes of the task graphs onto the

system graphs are determined prior to the execution and are not changed until the

end of the execution. Static mapping can be classified in two general ways. The first

classification is based on the topology of task and/or system graphs [15]. Based on

this, the mappings can be classified into four groups: (1) mapping specialized tasks

onto specialized systems, (2) mapping specialized tasks onto arbitrary systems, (3)

mapping arbitrary tasks onto specialized systems and (4) mapping arbitrary tasks

onto arbitrary systems. The second classification can be based on the uniformity

of the weights of the nodes and the edges of the task and/or the system graphs.

Based on this, the mappings can be categorized into the following four groups: (1)

mapping uniform tasks onto uniform systems [7, 9, 15, 24, 43], (2) mapping uniform

tasks onto nonuniform systems, (3) mapping nonuniform tasks onto uniform systems

[22, 48, 59, 74, 76] and (4) mapping nonuniform tasks onto nonuniform systems

[44, 60],

Two of the earlier static mapping algorithms that can map arbitrary nonuniform

task graphs onto arbitrary nonuniform system graphs are Lo’s Max Flow/Min Cut

algorithm [44], and El-Rewini and Lewis’ mapping heuristic (MH) algorithm [22].

The time complexity of these two algorithms are 0 (M * N log M) and 0 (M 2N 3)

respectively, where M is the number of task modules and N is the number of

processors. In this chapter we present a mapping technique that is used in the

mapping module of an implemented tool, which is based on a portable programming

model for heterogeneous computing called Cluster-M. Using this paradigm, we can

produce near-optimal mapping of arbitrary nonuniform architecture-independent,

task graphs onto arbitrary nonuniform system graphs in O(MP) time, where

P = ma x (M, N) . Similar to BSP and LogP, the Cluster-M model serves as an

intermediate layer between software and hardware. Therefore, it supports portable

17

machine-independent programming. BSP and LogP support portable programming

for a set of uniform (homogeneous) processing units, while the Cluster-M model

allows the processing units to be nonuniform (heterogeneous).

The rest of this chapter is organized as follows. In Section 2 we present the

Cluster-M heterogeneous model of computation. In Section 3, the components of the

Cluster-M tool are presented. The efficiency of the Cluster-M mapping module is

discussed in Section 4. Concluding remarks are in Section 5.

2.2 Cluster-M Portable Parallel Program m ing Tool

A tool implementing the Cluster-M model, presented in the last section, must support

portable parallel algorithm design and programming. It must provide a mechanism

so that both set of parameters can be extracted from any given problem and any

underlying heterogeneous organization. Furthermore, this tool must provide an

efficient mechanism for mapping these portable programs onto heterogeneous systems

using these two sets of parameters. The Cluster-M tool, presented below, is an imple­

mentation of the model satisfying these conditions.

2.2.1 C luster-M

Cluster-M is a programming tool that facilitates the design and mapping of portable

parallel programs [15]. Cluster-M has three main components: the specification

module, the representation module and the mapping module. In the specification

module, machine-independent algorithms are specified and coded using the program

composition notation (PCN) [34] programming language [25]. Cluster-M specifi­

cations are represented in the form of a multilayer clustered task graph called a Spec

graph. Each clustering layer in the Spec graph represents a set of concurrent compu­

tations, called Spec clusters. A Cluster-M representation represents a multilayer

partitioning of a system graph called a Rep graph. At every partitioning layer

18

of the Rep graph, there are a number of clusters called Rep clusters. Each Rep

cluster represents a set of processors with a certain degree of connectivity. Given

a task (system) graph, a Spec (Rep) graph can be generated using one of the

Cluster-M clustering algorithms. The clustering is done only once for a given

task (system) graph, independent of any system (task) graphs. It is a machine-

independent (application-independent) clustering, therefore it is not necessary to

repeat it for different mappings. For this reason, the time complexities of the

clustering algorithms are not included in the time complexity of the Cluster-M

mapping algorithm. In the mapping module, a given Spec graph is mapped onto a

given Rep graph. This process is shown in Figure 2.1. In an earlier publication [15],

two Cluster-M clustering algorithms and a mapping algorithm were presented for

uniform graphs. Next, the basic concepts used in Cluster-M clustering and mapping

will be explained. In Section 3, we will show how uniform Cluster-M algorithms can

be extended and applied to nonuniform task and system graphs.

Task Graph System Graph

Specification
Module

Representation
Module

Spec Graph Rep Graph

Mapping Module

Mapping o f a Spec graph onto a Rep graph

Clustering

Mapping

Clustering

F ig u re 2.1 Cluster-M mapping process.

2.2.2 Basic C oncepts

There are a number of reasons and benefits in clustering task and system graphs in

the Cluster-M fashion. Basically, Cluster-M clustering causes both task and system

graphs be partitioned so that the complexity of the mapping problem is simplified

19

and good mapping results can be obtained. In clustering an undirected graph,

completely connected nodes are grouped together forming a set of clusters [15, 25].

Clusters are then grouped together again if they are completely connected. This is

continued until no more clustering is possible. When an undirected graph is a task

graph, then doing this clustering essentially identifies and groups communication­

intensive sets of task nodes into a number of clusters called Spec clusters. Similarly

for a system graph, doing the clustering identifies well-connected sets of processors

into a number of clusters called Rep clusters. In the mapping process, each of the

communication intensive sets of task nodes (Spec clusters) is to be mapped onto

a communication-efficient subsystem (Rep cluster) of suitable size. Note that the

mapping of undirected task graphs onto undirected system graphs is referred to as

the allocation problem. An earlier publication [15] showed that Cluster-M clustering

and mapping algorithms can lead to good allocation results. It compared its results

with Bokhari’s 0 (N 3) algorithm and showed that its algorithm has a lower time

complexity of O(MN) , where M and N are the number of nodes in the task and

system graphs, respectively.

Clustering directed graphs (i.e., directed task graphs) produces two types of

graph partitioning: horizontal and vertical. Horizontal partitioning is obtained

because, as part of clustering, we divide a directed graph into a layered graph such

that each layer consists of a number of computation nodes that can be executed in

parallel and a number of communication edges incoming to these nodes. This is

shown in Figure 2.2(a). The layers are to be executed one at a time. Therefore, the

mapping is done one layer at a time. This significantly reduces the complexity of

the mapping problem since the entire task graph need not be matched against the

entire system graph.

Vertical graph partitioning is obtained because, as part of the clustering, the

nodes from consecutive layers are merged or embedded. All the nodes in a layer are

20

layer 1

layer 2

layer 3

layer 4

layer 5

(a) Horizontal (b) Vertical

Figure 2.2 Horizontal and vertical partitioning of a task graph.

merged to form a cluster if they have a common parent node in the layer above or

a common child node in the layer below. Doing this traces the flow of data. This

information will be used later as part of the mapping so that the tasks are placed

onto the processors in a way that total communication overhead is minimized. For

example, to avoid unnecessary communication overhead, the task nodes along a path

may be embedded into one another so that they are assigned to the same processor.

The effect, of this type of partitioning is shown in Figure 2.2(b).

Both horizontal and vertical graph partitionings are accomplished by performing

the clustering in a bottom-up fashion. The Clustcr-M mapping will then be

performed in a top-down fashion by mapping the Spec clusters one layer at a

time onto the Rep clusters. The next two sections show how these clustering and

mapping ideas work for nonuniformly weighted graphs. The nonuniform algorithms

shown in this chapter are nontrivial extensions of the Cluster-M uniform algorithms

presented in an earlier publication [15].

2.3 A Portable Parallel Program m ing M odel

A computational model is designed such that it can be an efficient bridge between

software and hardware; high-level languages can be compiled efficiently on to the

21

model; yet it, can be efficiently implemented in hardware [69]. The von Neumann

model is a computational model that successfully bridges the gap for sequential

computations. For parallel computing, a number of models have been introduced.

One of the earliest and most widely used parallel models is the parallel random access

machine (PRAM) model [32]. This model is unrealistic because it assumes that all

processors work synchronously and that interprocessor communication is free [19].

Several variations of the PRAM model have been proposed to identify restrictions

that would make it more practical while preserving the unrealistic assumption that

communication is free. Algorithms tha t are designed based on PRAM and its

variations perform very poorly once mapped onto parallel machines with electrical

interconnects. If the electrical interconnects are to be replaced with optical ones,

however, the PRAM algorithms can be implemented efficiently [29, 26]. The optical

model of computation (OMC) is a computational model for parallel architectures

with unit-delay optical interconnects.

The bulk-synchronous parallel model (BSP) developed by Valiant [69] attem pts

to bridge theory and practice for all types of parallel computations. It assumes

processors work synchronously, and it models latency and limited bandwidth. It

requires few machine parameters as long as a certain programming methodology

is followed. An improvement over the BSP model is the LogP model proposed

by Culler et al. [19]. LogP allows algorithm designers to address key performance

issues without specifying unnecessary details. It allows machine designers to give a

concise performance summary of their machines, against which algorithms can be

evaluated. Using LogP, portable parallel algorithms can be designed, if processors

are all assumed to be identical (homogeneous).

Heterogeneous computing is defined as a special form of parallel and distributed

computing that performs computations using a single autonomous computer

operating in both SIMD and MIMD modes, or using a number of connected

22

autonomous computers. Furthermore, the heterogeneous architectures may be

changed at every step of computation as new resources become available or occupied.

Because of the nonuniformity and the unpredictability in the availability of the

processing units, the LogP model will not be suitable as a model for heterogeneous

computing [58]. The following presents the portable programming model called

Cluster-M, which can efficiently bridge the software and hardware in a hetero­

geneous environment. This model allows software portability without imposing

any restrictions on the hardware. The Cluster-M model consists of two sets of

parameters, one for representing a portable parallel program and the other for

specifying the organization of the underlying heterogeneous architecture or suite. In

addition, the Cluster-M model consists of an evaluation function for predicting the

time performance of any two sets of parameters being considered.

2.3.1 M achine-Independent Program Param eters

A given parallel program consists of a sequence of steps such that in each step

a number of computations can be done concurrently. Each step is called a layer.

These concurrent computations for a given step (layer) can each be presented by a

cluster called a Spec cluster. The rath Spec cluster at layer u is denoted by 5 ^ and

associated with the following parameters.

a S The size of S,“ , which is the maximum number of nodes in this cluster tha t can

be computed in parallel.

S S The maximum sequential computation amounts (i.e., the maximum number of

clock cycles required to execute all the instructions sequentially using a baseline

computer) in S,“ .

I1S“ The total amount of communication from layer 1 to layer u of 5^.

7rS," The average communication amount at the layer u in S

23

pS'ln The computational type of Sf" . Its value is set to 0 for a single instruction,

multiple data (SIMD) type and 1 for a multiple instruction, multiple data

(MIMD) type.

2.3.2 Program -Independent M achine Param eters

Any heterogeneous architecture can be similarly represented in a multilayered format

such that each layer presents a set of processing units tha t are completely connected.

Each processing unit is represented by a cluster called a Rep cluster. The nth Rep

cluster a t layer v is denoted by 72" and associated with the following parameters.

er72” The number of processors contained in R ".

J/2" The average computation speed of the processors in 72".

U Rvn The total data transmission rate including the transmission rate over the links

(communication bandwidth) and over the nodes (switching latency) from layer

1 to layer v in 72".

7rT2" The average data transmission rate at layer v of 72".

p72" The computational type of the Rep cluster. Its value is set to 0 for a SIMD

type and 1 for an MIMD type.

2.3.3 Evaluation Function

In heterogeneous computing, the structure of the underlying heterogeneous organi­

zation may be changed dynamically. Therefore, it is desirable to be able to compute

an estimated total execution time for mapping a program onto the heterogeneous

architecture at every step of the computation. We denote the estimated total

execution time of mapping the Spec cluster 5 “ onto the Rep cluster 72" by r (5 “, 72"),

which includes computation time and communication time. The total computation

amount of 5 “ is estimated to be a S f x $£“, and the total computation power of 72"

24

can be calculated as aRj x 8RV-. Therefore, the computation time for executing 5 “ on

RVj is estimated to be (aSf x S S f) / (a R ” x SR”). Similarly, the total communication

requirement of 5 “ is IlS f and the total communication capacity of 7?" is TIT?”, hence

the estimated communication time for mapping 5 ” on R v- will be U Sf /X\RV-. A slow­

down factor, d, is defined that indicates the factor of slow down due to mismatch of

the computation type between 5" and /?”. This leads to an estimated execution time

in (2.1). Note that the estimated execution time does not take into consideration

the memory requirements of a given problem and the memory space available in the

underlying organization. This is mainly due to the fact th a t the model does not

contain any parameters for memory size requirements and availabilities.

/ o n r>v\ . c t S " x S S f I T S "r(S l‘, F %) = d x
aS f if pSf = 1 and pRv, = 0

1 (2 .1)
1 otherwise

The Cluster-M tool presented in the previous section is an implementation of this

model. We will show that using the clustering algorithms presented in Section 2.4

as part of the tool, the above two set of parameters can be extracted from any given

task or system graph.

2.4 N on-U niform Clustering

In this section we first present a clustering algorithm to be used for directed task

graphs independent of any system graphs and then present another one for undirected

system graphs independent of any task graphs. Both algorithms are done only once

for any given task or system graph and are not repeated as part of the mapping

process.

2.4.1 C lustering D irected Task Graphs

A task can be represented by a directed graph Gi(Vt, Et), where V) - {/.j , ..., t.M) is

a set of task modules to be executed and E t is a set of edges representing the partial

25

orders and communication directions between task modules. A directed edge (/.,;,/ 7)

represents th a t a data communication exists from module U to tj and that /., must be

completed before tj can begin, where 1 < i , j < M. Each edge (ii,lj) is associated

with Dij, the amount of data required to be transmitted from module to module

t j , where D ,7 > 1. Each task module U is associated with its amount of computation

A,, that is, the number of clock cycles required to execute all the instructions of

on a baseline machine. Note that > 1 and D{j > 1 if there exits an edge

for 1 < i , j < M. If a directed edge (£;, tj) exists, /., is called a parent node (module)

of tj and tj a child node (module) of U. If a node has more than one child, it is called

a fork-node. If a node has more than one parent, it is called a join-node. A task

graph is divided into a number of layers, so that all nodes in a layer can be executed

concurrently.

A clustering algorithm called Clustering Nonuniform Directed Graphs (CNDG)

is shown in detail in Figure 2.3. This nonuniform algorithm is designed as an

extension to the uniform clustering algorithm presented in an earlier publication [15].

The nonuniform algorithm has been designed in such a way that it is a generalization

of the uniform algorithm. For clustering nonuniform directed graphs, a quintuple of

parameters (<r5,“ , £5,“ , 115,“ , 7r5,“ , pS’ln) from the Cluster-M model described in

Section 2.3 is associated with the m-th Spec cluster at layer u denoted by 5,“ . The

clustering is done layer by layer. At layer 1, a node with computation amount A,

is a cluster by itself with parameters (1, A*, 0,0,0) for SIMD type or (1, A,-, 0,0,1)

for MIMD type. Then for other layers, the nodes are clustered as follows. If a node

is a join-node, we first embed it onto one of its parent nodes tha t has the largest

weighted edge connecting to this join-node. If multiple parent nodes have edges

with the same largest weight, we randomly select one of them. When a node with a

computation amount A is to be embedded to 5 then these parameters are updated

to crSf‘n, tf5,“ -I- A*, 115)),, ir5“,, and p5,“ . We then merge all its parent nodes into a

26

Clustering Nonuniform Directed Graphs (CNDG) Algorithm
Divide the directed graph into a number of layers
for each node at layer 1 do

Make it into a cluster and calculate its parameters
For each of the other layers do
begin

for all edges (t{,tj) do
begin if tj is a fork-node then

begin Embed the child node with the largest edge weight to tj
if the child nodes of tj are not in a cluster then
begin Merge them with tj into a cluster

Calculate the parameters of the new cluster
end

end
if tj is a join-node then
begin Embed the child node with the largest edge weight to tj

if the parent nodes of tj are not in a cluster then
begin Merge them with tj into a cluster

Calculate the parameters of the new cluster
end

end
end

end

Figure 2.3 Clustering Nonuniform Directed Graphs (CNDG) algorithm.

new cluster denoted by S“+1. This is shown in Figure 2.4, where a join-node at layer

(u + 1) with computation amount A has n parent nodes S]‘, , " ‘ > S'n a* Jayer u -

The communication amount between the join-node and one of its parent nodes S-‘ is

denoted by A , where 1 < i < n. Also, D\ = maxi<j<„ A - The new cluster 5}1+1 is

generated by embedding the join-node to 5 “ and merging it with all the other parent

nodes. The first four parameters of £ “+1 can be computed as follows.

<7S“+I = Y ,a S l l (2.2)
i— 1

£S“+1 = max(5S^ + A , 6S$, -■ ■ t 6S%) (2.3)

T7S“+1 = + A) - D, (2.4)
i— 1

If a node is a fork-node, we will embed one of its child nodes to this fork-node. The

child node is selected so that it has the largest weighted edge connecting to the fork-

node. If multiple child nodes have edges with the same largest weight, we randomly

select one of them. We then merge the rest of the child nodes with the fork-node into

a new cluster. As shown in Figure 2.5, a fork-node S f at layer u has n child nodes at

layer (u + 1). These child nodes have computation amounts A\, A2, • • •, A n, and the

communication amounts between the fork-node and each of them are D i, D2, • • •, £>„,

respectively. Similar to the case of join-node, D\ = maxi<j<„Dj. Then the node

with the computation amount A\ is embedded to the fork-node before we merge the

fork-node with all the other child nodes to generate the new cluster 5 "+1. The first,

four parameters of 5 “+1 is then computed as follows.

For both fork and join nodes, the fifth parameter, p S is determined as follows.

As an MIMD cluster is merged with an SIMD or MIMD cluster, the computation

type of the new generated cluster is MIMD. When two SIMD clusters are merged

then the computation type of the new cluster is decided by their computational form

(addition, subtraction, multiplication, etc.). If the two SIMD clusters have exactly

the same computation form, then the computational type of the new cluster is SIMD;

otherwise, it is MIMD. We denote the computation form of S^ by C F (5 ^). Then

the computational type of a new cluster S£ generated from embedding or merging

e r 5 j ‘+ 1 = m a x (c r 5 “ , n) (2 .6)

5S]l+] = max(6S? + A,, A 2, ■ ■ ■, An) (2.7)
n

n s ; i+1 = n s j ' + ^ D j (2 .8)

(2.9)

28

n clusters, 5 “, 5", • • •, S“, can be formulated as follows.

0 if (pSf = 0, for all i) and [C F(S“) = CF(S%) = • • • = C F (S “)]
(2 .1 0)

1 otherwise

Note that since our task graphs are independent of any system graphs (unlike

[74, 59, 76]), they do not contain the information about computation time and

communication delay. Therefore, we can only embed one node into another as part of

clustering for reducing communication overhead. The embedding of multiple nodes

onto one node is done as part of the mapping, as explained in the next section.

The time complexity of the CNDG algorithm is bounded by the number of

edges in the task graph, which is 0 (\ E t\). For the worst case, we have an upper

bound for this algorithm, that is 0 (M 2), where M is the number of nodes. However,

note tha t most graphs are not completely connected, therefore, in practice, the time

complexity of this algorithm will be O(M) if the number of edges is proportional

to the number of nodes. To illustrate this algorithm, consider the task graph of

seven modules and its Spec graph, as shown in Figure 2.6. Each module is labeled

with its computation amount and each edge is labeled with the amount of data

S u, laS 'l.bSinSU SrP S'j) S“ (a S ^ n S S .n ^ .P ^) (aS“,6S“n S “"S “,P5“)
(j () • o • () la'

S 7 '(ip S ,u,max(6S;+/1.6S5 5S“), ftflS l+ D J-D . t P ‘
i=l i=i n - I

layer (u+I)

layeru

Figure 2.4 Clustering on a join-node: a general case.

29

s1; (os,;,6S,;,ns,;,nS‘;,pS‘;)
layer u

layer (u + l)

f

” y d
ST;'<nuix(a^,n), maxfbS;+ 4 , , 4 , /I J , n S‘,+±Pi.r=7i .oS"*')

F ig u re 2.5 Clustering on a fork-node: a general case.

communication. The Spec graph is constructed by embedding/merging the clusters

layer by layer and is a multi-layer clustered graph as shown.

2.4.2 C lu s te r in g U n d irec ted S ystem G rap h s

A parallel system that can be modeled as an undirected system graph GP(VP, E P).

In Gp, Vp = {pi,...,p/v} is a set of processors forming the underlying architecture,

while Ep is the set of edges representing the interconnection topology of the parallel

system. We assume that the connections between adjacent processors are bidirec­

tional. Therefore, an edge (PuPj) represents that there is a direct connection between

processor pt and Pj. The computation speed of processor Pi is denoted by JB,, and

the communication bandwidth between two processors pi and Pj is denoted by Cjj.

The transmission rate is a function of the communication bandwidth between pt

and Pj and the node latencies at Pi and Pj. Both the computational speeds of

different processors and the transmission rates of different communication links may

30

(1. 2.0.0. 1)

‘2

Layer 1

S p e c g ra p h

(1, 2,0.0, 1)

©

(2 . 12 . 2 . 2 . 1)

(1.12.0.0. I)

.11,2.0.0.0

Layer 2

Spue graph
(2 . 12 . 2 . 2 . 1)

(1. 12.0 .0 . 0 (1.2.0 .0 .0

Uli) ©

Spec graph
(3. 12. 8 .6. o

(2. 12. 2. 2 .0

(1.12.0.0,0 (1.6.00,0
nr̂ Ti ftTT

(I.4.O.O. I)

©

Layer 3

S p e c g ra p h

(3. 12. 11.9. I)
'

(2. 12 .2 .2 , 1)

(1.12.0.0.0 (1,8,0.0,1) (1.4.0.0,1)

f 1 ! ■ '?) [t 3 - l 4 - t 6j ©
,

Layer 4

S p e c g ra p h

(3. 12, 11.9. I)

(2 . 12. 2 . 2 . 1)

(1.14.0.0.1) (1,8,0.0.1}

[l l x 2 •t 7] [t 3 , l 4 X c] @

(1.4.0.0.1)

Layer 5

F ig u re 2.6 A task graph and steps for obtaining the Spec graph.

31

be nonuniform. This makes the Cluster-M approach more general than approaches

such as PYRROS and Hypertool, which assume fully connected uniform systems.

Similar to Spec clusters, the nth Rep cluster at layer v, R ”, is associated with

the quintuple {crRvn, £R£, n/?,", 7rR”, pR%) defined as part of the Cluster-M model in

Section 2.3. To construct a Rep graph from an undirected system graph, initially,

every node with computation speed of B t forms a cluster by itself with parameters

(1, Z?j, 0, 0, 1), assuming tha t these nodes are all MIMD type. Then clusters tha t

are completely connected are merged to form a new cluster, and the parameters of

the new cluster are calculated, as explained below. This process is repeated until no

further merging is possible. Three clusters R", R y, and R" are completely connected

if R" contains a node px, Rvy contains a node py, and R vz contains a node pz, so tha t

nodes px,py, and pz form a clique. This definition can be extended for N completed

connected clusters. To calculate the values of the first four parameters for a new

cluster, consider a new cluster R”+I, which is generated a t layer (v + 1) by merging

N completely connected clusters Ry, RJ>, • • •, RVN at layer v. Then the values of <rR"+1

and 5R”+] can be easily computed as follows.

We denote the transmission rate between R\ and R” to be Cfp which is defined as

the sum of the transmission rate (as a function of communication bandwidth and

switching latency) of each pair of processors (subclusters) pi and pj such that pi is

^ n + ‘ = ! > * ? (2 .11)

°Rl+ '
(2 .12)

^6rty,Pj6ftv Cij. Then nR "+1 and nR%+] can

be calculated as follows.

N N - 1 N

(2.13)
i— 1 i— 1 j=t+li— 1 i— 1 j=i+\

rw*H 2^i—\ 1 \ /
^ * * '7 1 Kt / a r I \ » r / n T - v

E .-7 1 E1.U., Qi- 2(E,/I t 1 E)
(2.T1)XULzll N (N - 1)

32

The algorithm for clustering undirected graphs, called Clustering Nonuniform

Undirected Graphs (CNUG)1, is shown in Figure 2.7. Instead of using an optimal

algorithm for finding cliques, we use a heuristic so that, for every cluster, we examine

the set of edges connected to it in the following manner. The edges are sorted in

descending order based on the value of Cj7-. The edges are then examined one at a

time from this list. If more than one of the edges have the same weight, then an

arbitrary one is selected. A simple example is shown in Figure 2.8.

We now analyze the running time of this implementation. For each layer, we

first sort all the edges between clusters tha t take 0 (\E V\ log|JFp|), where \EP\ is the

number of edges in the system graph. Then, we keep merging clusters into the next

layers. Suppose at a certain layer, there are m clusters c i , - - - , cm. The time for

finding cliques among these clusters is at most m x m < iV2, where N is the number

of processors in the system graph. The most number of layers there can be is N — I .

Therefore the total time complexity of this algorithm is 0 (N (\ E p\ log J JE7p| + N'2)).

Consider the worst case, where the system graph is completely connected (i.e., \EP\ =

0 (N 2)), then the time complexity of this algorithm will be 0 (N 3 log TV). Note that

most system graphs are not completed connected. Therefore, in practice the time

complexity of this algorithm will be 0 (N 3) if the number of edges is proportional to

the number of nodes.

2.5 C luster-M M apping A lgorithm

A Spec graph and a Rep graph can be generated directly from a given task graph

and system graph, using the clustering algorithms presented in the previous section.

Given a Spec graph and a Rep graph, this section presents an efficient mapping

algorithm that produces a suboptimal matching of the two graphs in O(MP) time,

where P = max(M, N). Note that the mapping algorithm maps the Spec graph

'Pronounced “see-nudge.”

33

Clustering Nonuniform Undirected Graphs (CNUG) Algorithm
for all nodes p* do
begin Make a cluster for p, at clustering layer 1

Set the parameters of the cluster to be (1, Bi, 0, 0)
end
Set cluster layer to be 1
while there is at least one edge linking two clusters do
begin Sort all edges linking any two clusters

while sorted edge list is not empty, do
begin Take the first edge (ci,Cj) from sorted edge list

Delete the edge from the list
Merge c, and Cj into cluster d at next layer
Calculate the parameters of d
Delete clusters c* and Cj from current layer
for each edge (cx , C y) in sorted edge list
if cx is a sub-cluster of d and
Cjy is not a sub-cluster of any cluster and
Cy is connected to all other sub-clusters of d , then
begin Merge cy into d

Recalculate the parameters of d
Delete (cx,cy) from edge list

end
else if cx and Cy are sub-clusters of
two different clusters at next layer, then
begin Add the weight of (cx ,cy) to

the edge between the two super-clusters
Delete (cx,cy) from edge list

end
end
Increment clustering layer by 1

F ig u re 2.7 Clustering Nonuniform Undirected Graphs (CNUG) algorithm.

34

(3,5/3,3,1,1)
Rep graph
(3,5/3,3.1.1)

(1,2,0,0,1) (1,2.0,0,1)
(2,2,2,2,1)

(1,1,0,0,1)

(2,2,2,2,1) (1.1,0,0,1)

F ig u re 2.8 A nonuniform system graph and its Rep graph.

one layer at a time as explained in Section 2.2.2. Every layer of the Spec graph

represents a computational step in which a number of concurrent computations are

represented by a number of Spec clusters. These clusters are formed by tracing the

data dependency of other subcomputations from a previous step. We are interested

in mapping the Spec clusters at each layer to the appropriate Rep clusters. In the

following, we first present a set of preliminaries and then give a high-level description

of the mapping algorithm. In Section 2.5.3, a few examples are given to illustrate

the mapping algorithm.

2.5.1 P re lim in aries

We first define the mapping function f m : Vt Vp. Following the precedence

constraints and the computation and communication requirements of the original

task graph, a schedule can be obtained by assigning each task module /.* to the

processor / m((j). We assume that the communication time for a task graph edge

(U, t j) is equal to E(Pl,p„)ePath(/m(q)1/m(tJ)) where pa th (pifpj) is the shortest path

between processor pi and Pj.

A schedule can be illustrated with a Gantt chart tha t consists of a list of all

processors and a list of all task modules allocated to each of the processors ordered

by their execution time [23]. We define the total execution time of a schedule, Tm,

to be the latest finishing computation time of the last scheduled task module on any

35

processor. Obviously, Tm is equal to the total execution time of a given task on a

given system. As we consider the shortest execution time of a given task on a system

to be the ultimate goal in scheduling, we take Tm as our measure of quality to scale

how good a mapping is.

2.5.2 T he A lgorithm

A detailed description of the mapping algorithm is presented in Figure 2.9. Tn the

following, we give an overview of the algorithm. The mapping is done recursively at

each clustering layer, where we try to find the best matching between Spec clusters

and Rep clusters. Assume that at a certain step of mapping, m Spec clusters of layer

u, S“, S£, • • •, S£, are to be mapped onto n Rep clusters of layer v, R \ , R • • •, Rvn.

We denote the execution time of mapping the Spec cluster S? onto the Rep cluster

R'- by r (S “, /?.’•) expressed by (2.1). Then the mapping process at each layer can be

viewed as an optimization problem, as follows.

m
min ' £ t (S ? , U S ?)) (2.15)

i= 1

The time complexity of finding an optimal solution to the above formula can be

costly. Therefore, we propose the following greedy algorithm for finding a near-

optimal solution to the formula for each layer. In this greedy algorithm, we assume

that all the computations are MIMD. Therefore, we only deal with four of the five

parameters in the process. The greedy algorithm continues as follows. First, the

Spec and Rep clusters are sorted in descending order with respect to the order of the

four parameters (a, 5, IT, 7r). For example, Spec clusters with larger sizes are sorted

before those with smaller sizes, and for Spec clusters with the same size, those with

larger amount of sequential computation are sorted first.

Secondly, we compute a reduction factor denoted by which is the ratio of

the total size of the Rep clusters over the total size of the Spec clusters and is used

to estimate how many computation nodes to share a processor. This is essential for

36

mapping task graphs of size M onto system graphs of size N, where M > N. The

value of /(U)U) is computed as:

T n n R v
/„ . , , = | | ^ (2.16,

Third, we map each of the Spec clusters Sf , 1 < i < m, as follows. We first

search for a Rep cluster R”, 1 < j < n, with the best matched size, that is, closest

to /(„,„) x aSf . Therefore, we try to minimize the function in Equation (2.17). Tf

multiple Rep clusters with the matching size are found, we select the one with the

minimum estimated execution time. If no Rep cluster with a matching size can be

found for a Spec cluster, we either merge or split (unmerge) Rep clusters until a

matching Rep cluster is found.
m

l /m l = £ l / < « , ») X °S? - 0 - [/m (S “)l | (2 .1 7)
i = 1

Finally, for every matched pair of the Spec and Rep clusters, we do the following

to embed communication intensive nodes together. This is similar to the clustering

process in [74, 59, 76]. However, in this chapter, we only do it in the mapping

step so that the clustering of the task graph is kept independent of the system

graph, as described in the previous section. Assume that a Spec cluster 5 “ having

k subclusters, £ “-1, R^-1, • • •, S*-1, is mapped to a Rep cluster R!-. If the commu­

nication overhead for processing the subclusters in parallel is greater than the

computation overhead for processing the subclusters sequentially, then we embed all

subclusters into one subcluster having the largest size so that they will be executed

sequentially. We then calculate the parameter quadruple for the new cluster. In

Inequality (2.18), irSf/nR''- is the communication time if the subclusters are executed

in parallel and

1 imn{aS\l- lS S r \ a S ^ S S ^ 1, • • • , a S ^ S S ^)
f(u ,v)

is the computation time for executing the subclusters sequentially on Rv-. The

embedded cluster is inserted back in the proper position in the sorted list of Spec

37

clusters for mapping, and the matching process is repeated for the remaining Spec

clusters in the list. If no embedding is necessary, then the mapping of this Spec

cluster onto a Rep cluster is done for this layer, and, therefore, this Spec cluster is

removed from the list.

In the above mapping algorithm, the worst case of the time complexity of the

mapping algorithm at layer i occurs in one of the following two cases. In case 1,

for each Spec cluster, all the remaining Rep clusters have the matching size, thus

(2.1) is used to select the best Rep cluster. In case 2, for each Spec cluster, no Rep

cluster of matching size is found, thus Rep clusters are merged or split recursively

until a Rep cluster of matching size is obtained. Suppose the number of Spec clusters

at layer i is A',-. In both cases described above, or in any combination of the two

cases, it takes 0 {K jN) time to find the best matches for all A, Spec clusters, as

the total number of clusters in the Rep graph is O(N), where N is the number of

processors. For each pair of matching Spec and Rep clusters, if Inequality (2.18) is

satisfied, then an extra O(M) time for embedding will be needed. The total number

of Spec clusters is 0 (M), that is, J2i A'i = O(M), where M is the number of nodes in

original task graph. Therefore, the total time complexity of this mapping algorithm

is Zi(I<iN + M) — O (M N) + 0 (M 2) = O(MP), where P = max (A/, N).

2.5.3 M apping Exam ples

In Section 2.4, we constructed a Spec graph and a Rep graph from the original task

graph and system graph, as shown in Figures 2.6 and 2.8. Figure 2.10 shows the

snapshot of the mapping process. Figure 2.11 shows the final schedule obtained from

the above mapping by following the data and operational precedence of the task

graph. As shown in the Gantt chart, Tm = 10.

7rS“ 1
— - > x

mm{aS\L- x5 S r \ • • •, ffSjf"1̂ - 1)
8 R ’

(2.18)

38

Mapping Algorithm
for each layer of Spec graph do

Sort all Spec clusters at top layer in descending order of aSf. SSf , TTSf. and nrS)L.
Sort all Rep clusters at top layer in descending order of oR}■ 8R”, IIR”, and 7r/2”.
Calculate if /(„,„) > 1, let = 1.
Calculate the required size of the Rep cluster matching 5“ to be J(u,v) x c S f
for each Spec cluster at top layer sorted list, do

if the cluster has only one sub-cluster, then
Go to a lower layer where there are multiple or no sub-clusters

if at least a Rep cluster of required size is found, then
Select the Rep cluster of required size with minimum
estimated execution time according to Equation (2.1)
Match the Spec cluster to the Rep cluster
Delete the Spec and Rep clusters from Spec and Rep lists

for each unmatched Spec cluster, do
if the size of the first Rep cluster > the required size, then

Split the Rep cluster into two parts with one part of the required size
Match the Spec cluster to this part
Insert the other part to proper position of the sorted Rep cluster list
Merge Rep clusters until the sum of sizes > the required size
if = then Match the Spec cluster to the merged Rep cluster
else

Split the merged Rep cluster into two parts with one of required size
match the Spec cluster to this part
Insert the other part to the sorted Rep list

for each matching pair of Spec cluster and Rep cluster, do
if the Rep cluster contains only one processor, then

Map all the modules in the Spec cluster to the processor
else if Inequality (2.18) is satisfied, then

Select the sub-cluster of the Spec cluster with the largest size
Embed the nodes of other sub-clusters
to the connected nodes of the selected sub-cluster
Calculate the parameters for the new cluster
Insert it into the sorted Spec cluster list

else
Delete the Spec and the Rep clusters from the cluster lists
Go to the sub-clusters of the Spec and Rep cluster
(thus they are pushed to top layer)
Call the same mapping algorithm for these clusters

Figure 2.9 Mapping algorithm.

39

(3. 12. 11.9. 1) (3,5/3.3.1.1)

(2.12. 2. 2. 1)
(1.14.0.0.1) (I.8.0.0.1)

f ‘ l -*2 -17^C‘3 ’*4 (j s)

(1,4.0.0.1)
(2 .2 .2 .2 .1)

(12.0,0.1) (1.2.0,0.1) (1.1.0.0.1)
(S) © ©

(2, 12.2,2. 1)

Inequality (3) is satisfied, em bed

(1.4.0,0.1)

© onto

(1.14.0.0.1) (1.8.0.0.1)

(b •*2 ' G j f b * 4 '*6]

(33/33,1,1)

(2. 14 .4 .4 .1)
r

(2,2,23.1)
(1.14,0,0.1) (1 .1 2 .0 .0 ,1) f(U .0.0.1) (1.2.0,0.1)' (1.1.0.0.1)

(l l ’*2 ' l 7)Cl3 , l 4 ’*5 ’l 6] © © ©

(2 ,14 ,4 .4 ,1)

(1.14,0.0.1) (1 ,1 2 .0 .0 .1)

[l l 2 -*7. [t 3 , t 4 , t s . tg]

(2 .2 .2 .2 .1)

(1,2,0.0,1) (1,2,0,0,1)
© ©

(1.14.0,0.1)

*1 ’(2 '*7)
(1.2,0.0.1)

©

(1. 12 , 0 , 0 . 1)

t 3 , t 4 , t 5 ,tg

(1.2.0.0.1)
©

R esult : l i i l 2 '*7 P i l 3 '*4 , l 5 ' l 6 P2

F ig u re 2.10 A mapping example.

To show that the same task graph can be mapped onto various system graphs,

three different system graphs are chosen and shown in Figure 2.12. Figure 2.12(a) is

the same task graph as shown in Figure 2.6. Figure 2.12(b) shows a uniform, fully

connected system graph and its clustering. The computation speed of each processor

and communication bandwidth of each communication link are equal to 2. The result

of Cluster-M mapping onto this graph is shown in Figure 2.12(c). In Figure 2.12(d),

the system is fully connected with computation speed of 1 at each processor, but the

0 1 2 3 4 5 6 7 8 9 10

P i t l t2 t7

Pt *3 t4 15 k>
P.3

Figure 2.11 Gantt chart of the obtained schedule.

(a) Task graph

(3,2.6,2,1)

(b) A un ifo rm system g raph

(3,1,9,3,1)

(d) A non-uniform system graph

(3,3,3,1,1)

(f) A d ifferen t non-uniform system graph

0 1 2 3 4 5 6 7 8 9 10

Pi
P 2

P 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P i It *2 17

p 2 t 3 I4 Ifi

p 3 15

(e) M apping result on (d)

0 1 2 3 4 5 6 6.5

Pi
P2
P3

(g) M apping result on (0

l l *2 13 >4 lS l6 l7

It *2 1 117
t 3 14 <5 16

(c) M apping result on (b)

F ig u re 2.12 Mappings on different system graphs.

41

communication bandwidths are nonuniform. In this case, the Cluster-M algorithm

distributes the task modules to all three processors, as shown in Figure 2.12(e), to

utilize the relatively high communication bandwidth available. If the system is fully

connected with uniform communication bandwidth and nonuniform computation

speeds as shown in Figure 2.12(f), however, Cluster-M mapping algorithm maps all

the task modules onto the processor with the highest speed to avoid the relatively

expensive communication cost. This is shown in Figure 2.12(g).

SUBROUTINE K J I (A ,L D A ,N)
C
C SAXPY
C FORM K JI-SA X PY
C

REAL A(LDA,N)
DO 40 K = l , N - l

DO 10 I= K + 1 ,N
A (I , K) = -A (I , K) / A (K, K)

10 CONTINUE
DO 30 J= K + 1 , N

DO 20 I= K + 1 , N
A (I , J) =A (I , J) +A (I , K) * A (K ,J)

20 CONTINUE
30 CONTINUE
40 CONTINUE

RETURN

Figure 2.13 The Fortran code of the Gaussian elimination on a N x TV matrix.

Finally, we give an example for mapping a real application task. We choose the

Gaussian elimination algorithm used in UNPACK. The FORTRAN code is given in

Figure 2.13. Suppose using a baseline computer, it takes one clock cycle to perform

an addition or subtraction, and it takes two clock cycles to do a multiplication or

division of two real numbers. Also, we assume the communication amount on an edge

to be the number of real numbers that need to be sent. A task graph for computing

the Gaussian elimination of a 5 x 5 matrix is shown in Figure 2.14(a). In each

task module 71*, column j is modified by using column k. Suppose that the system

running this task contains only two workstations p\ and P2 ■ Workstations p\ and p -2

have speeds of 2 and 1.6, respectively, and are connected with a link of bandwidth 1.

42

8

Processors

25.5

30.625

33.625

34.625

39

40.5

Pl p 2

T i

2

T 2
T i

1'3 T i

T |

t 1
T j

T i
T 4

T i
5

T 5

23

28.625

34.25

38

(a) (b)

F ig u re 2.14 (a) The task graph and (b) the mapping result of the Gaussian
elimination on a 5 x 5 matrix.

The mapping result using our technique is illustrated in Figure 2.14(b). For a more

practical illustration of our algorithms, we performed the following two experiments.

Tables 2.1 - 2.3 shows the mapping results of doing Gaussian eliminations on various

sizes of matrices using different two-processor systems. The speeds of the processors

are 2 and 1.6, 1 and 1, and 0.8 and 0.7, respectively, while the communication

bandwidth is assumed to be 1. To illustrate the efficiency of the Cluster-M mapping,

we experimented with mapping a 500 x 500 Gaussian elimination problem on 1 to 10

uniformly weighted and fully connected processors. As shown in Figure 2.15, near-

optimal speedups have been obtained. These experiments were done manually as we

do not yet have an interface which automatically generates a task graph from a given

program. However, given a task or a system graph, we can automatically generate

a clustered graph, and then run the mapping code for allocating and scheduling

the task graph onto the system graph. In the next section we show the mapping

generated using the Cluster-M code on randomly generated task and system graphs.

43

Table 2.1 Gaussian elimination mapping results using two processors with
speed 2 and 1.6.

Width of Matrix 100 200 300 400 500
Speedup 1.196 1.180 1.175 1.171 1.170

Table 2.2 Gaussian elimination mapping results using two processors with
speed 1 and 1.

Width of Matrix 100 200 300 400 500
Speedup 1.494 1.474 1.468 1.465 1.463

Table 2.3 Gaussian elimination mapping results using two processors with
speed 0.8 and 0.7.

Width of Matrix 100 200 300 400 500
Speedup 1.308 1.290 1.285 1.281 1.280

500x500 Matrix Gaussian Elimination

s- <>

N u m b e r o f P r o c e s s o r s

Figure 2.15 More Gaussian elimination mapping results.

44

2.6 Com parison R esults

In this section, we first present our comparison results for the scheduling problem and

then for the allocation problem. The following five criteria are used for evaluating the

performance of the algorithms examined: (1) the total time complexity of executing

the mapping algorithm, Tc; (2) the total execution time of the generated mappings,

Tm; (3) the speedup Sm = Ts/T m, where T, is the sequential execution time of the

task; (4) efficiency r] — Sm/N m, where Nm is the number of processors used; and (5)

the actual time of running the mapping algorithm on a certain computer, Tc.

2.6.1 Scheduling

In this section, we present a set of experimental results we have obtained in comparing

our algorithm with other leading scheduling techniques. The comparisons presented

in this section are classified into two categories: (1) mapping arbitrary nonuniform

task graphs onto arbitrary nonuniform system graphs, and (2) mapping arbitrary

nonuniform task graphs onto uniform fully connected system graphs. We first present

the comparison for the first category and then the second one.

2.6.1.1 M apping Nonuniform Tasks onto N onuniform System s The

mapping techniques in this category include El-Rewini and Lewis’ mapping heuristic

(MH) [22] and Lo’s Max Flow/Min Cut (MFMC) algorithm [44]. To the best of

our knowledge, they are the only known efficient mapping techniques that can

map arbitrary nonuniform task graphs onto arbitrary nonuniform system graphs

in polynomial time. The experimental results shown in this section are obtained

by running a set of simulations on a SUN SPARCstation 20 workstation, and all

running times are measured in second on this machine. The nonuniform task graphs

are randomly generated. We map these task graphs onto four different nonuniform

45

systems'2: (1) a randomly generated system graph with 100 nodes, where the compu­

tation speed of the nodes and the communication bandwidth of the edges range

from 1 to 5, (2) a randomly generated system graph with five nodes, where the

computation speed of the nodes and the communication bandwidth of the edges

range from 1 to 5, (3) a completely connected system graph with four nodes as

shown in Figure 2.16, and (4) a hypercube with eight nodes as shown in Figure 2.17.

F ig u re 2.16 System (2): A completedly connected system.

4

4

F ig u re 2.17 System (3): A hypercube system.

C o m p ariso n w ith E l-R ew in i an d Lew is’ M H We first compare our algorithm

with El-Rewini and Lewis’ mapping heuristic (MH) algorithm. MH is an improved

list scheduling algorithm. The time complexity of MH is 0(M '2N 3), while ours has

an O (M N) time complexity. In Table 2.4, comparison results are shown for mapping

nonuniform random task graphs ranging from 100 to 1000 nodes onto the random

system graph of size 100. The running time of MH grows significantly when the

2For comparing against MFMC, we use three system configurations, system (2)-(4). The
time complexity of MFMC in practice is too high and for the first system configuration,
each experiment takes several days. For more detail, see Section 2.6.1.2.

46

size of task graph grows. The running time of Cluster-M remains stable. Tables

2.5, 2.6, and 2.7 shows the comparison results obtained on system (2), (3), and (4),

respectively. In these three tables, the size of randomly generated task graphs ranges

from 10 to 100 nodes. In most cases, Cluster-M obtains better speedup than Mil.

But in all cases Cluster-M has a significantly lower time complexity. For example,

for a random nonuniform task graph of size 1000, and a random nonuniform system

graph of size 100, Cluster-M generates a mapping result with the speedup of 3.49 in

0.01 second, while Mil produces one with the speedup of 2.73 but in 10753.4 seconds

(i.e., Cluster-M is faster by a factor of nearly 1,000,000). Theoretically, Cluster-M is

bister by a factor of 0 (M N 2).

Table 2.4 Comparison of Cluster-M and MH on system (1).

Size of
Random Graph Ta

Cluster-M [O(MN)] MH [0{M2N A)\
Tm Sm Tc T1 m Sm Tc

100 286 88.80 3.22 0.01 95.80 2.99 128.4
200 630 133.20 4.73 0.01 231.82 2.72 425.9
300 855 345.55 2.47 0.01 240.25 3.56 971.3
400 1162 478.40 2.43 0.01 496.30 2.34 1725.0
500 1514 550.80 2.75 0.01 458.07 3.31 2768.6
600 1793 358.20 5.01 0.01 599.07 3.00 3954.3
700 2075 690.85 3.00 0.01 685.57 3.03 5348.3
800 2376 474.00 5.01 0.01 967.57 2.46 7026.5
900 2653 1113.80 2.38 0.01 1117.67 2.37 8812.2
1000 2966 850.15 3.49 0.01 1087.08 2.73 10753.4

Com parison w ith Lo’s M ax F low /M in Cut Lo’s algorithm is based on Stone’s

work [63], where the mapping problem is transferred into a network flow model and

is solved using a Max Flow/Min Cut algorithm. Stone’s model provides an optimal

solution for two-processor problem only. Lo [44] extended Stone’s work to find a

suboptimal solution of the mapping problem for general distributed (nonuniform)

systems. Lo’s algorithm is a heuristic which combines recursive invocation of Max-

47

Table 2.5 Comparison of Cluster-M and MH on system (2).

Size of
Random Graph Ts

Cluster-M [O(MN)] MH [0(M 27Va)]
Tm Sm Tc Tm Sm Tc

10 27 7.93 3.40 0.01 11.13 2.43 0.1
20 64 19.00 3.37 0.01 26.33 2.43 0.1
30 73 20.65 3.54 0.01 31.10 2.35 0.2
40 112 23.15 4.84 0.01 29.97 3.74 0.3
50 155 35.57 4.36 0.01 50.93 3.04 0.4
60 183 46.27 3.96 0.01 44.23 4.14 0.6
70 217 86.60 2.51 0.01 55.03 3.94 0.8
80 237 92.33 2.57 0.01 94.17 2.52 1.0
90 260 88.45 2.94 0.01 101.95 2.55 1.3
100 280 75.57 3.71 0.01 93.90 2.98 1.5

Table 2.6 Comparison of Cluster-M and MII on system (3).

Size of
Random Graph Ta

Cluster-M [O 'MN)] MH {0 (M 2N'A)]
Tm &m Tc T1 m sm Tc

10 27 9.00 3.00 0.01 17.33 1.56 0.1
20 64 19.00 3.37 0.01 33.83 1.89 0.1
30 73 30.67 2.38 0.01 38.17 1.91 0.2
40 112 47.33 2.37 0.01 43.83 2.56 0.3
50 155 78.17 1.98 0.01 64.67 2.40 0.3
60 183 53.33 3.43 0.01 82.17 2.23 0.6
70 217 78.33 2.77 0.01 107.17 2.02 0.7
80 237 80.67 2.94 0.01 127.17 1.86 0.9
90 260 117.17 2.22 0.01 157.67 1.65 1.2
100 280 109.00 2.57 0.01 137.83 2.03 1.3

48

Table 2.7 Comparison of Cluster-M and MH on system (4).

Size of
Random Graph TA S

Cluster-M [O MN)] MH [0(M'-Wa)]
Tm Sm T1 C T1 m Sm T1 c

10 27 9.83 2.75 0.01 17.92 1.51 0.1
20 64 19.00 3.37 0.01 44.83 1.43 0.1
30 73 35.58 2.05 0.01 54.25 1.35 0.3
40 112 47.33 2.37 0.01 42.92 2.61 0.4
50 155 58.17 2.66 0.01 91.58 1.69 0.7
60 183 58.80 3.13 0.01 87.83 2.08 0.9
70 217 91.83 2.36 0.01 93.00 2.33 1.2
80 237 96.67 2.45 0.01 150.25 1.58 1.6
90 260 162.58 1.60 0.01 158.83 1.64 1.8
100 280 122.42 2.29 0.01 151.25 1.85 2.2

Flow/Min-Cut algorithms with a greedy-type algorithm. The time complexity of

Lo’s algorithm is 0 (M 4N log M). Tables 2.8, 2.9, and 2.10 shows the comparison

results obtained on system (2), (3), and (4), respectively. In addition to MFMC,

the simulations results using MH on these task graphs are also integrated in these

tables. We only compare small task graphs here since it takes days for MFMC to

run larger task graphs. As shown, Cluster-M produces similarly good results but in

significantly less amount of time.

Table 2.8 Comparison of Cluster-M, MFMC, and MH on system (2).

Size of
Graph T1 S

Cluster-M [O(MN)] MFMC [0(M 4N log M)] MH [OiM^N6)}
Tm Sm T1 c

T x m &m T1 c Tm &m Tc
10 27 7.93 3.40 0.01 8.10 3.33 0.8 11.13 2.43 0.1
12 33 8.23 4.00 0.01 16.85 1.96 4.1 9.03 3.65 0.1
14 45 8.20 5.49 0.01 18.25 2.47 23.9 16.87 2.67 0.1
16 46 12.50 3.68 0.01 23.70 1.94 109.1 14.05 3.27 0.1
18 54 20.33 2.66 0.01 27.90 1.94 556.3 19.98 2.70 0.1
20 64 19.00 3.37 0.01 34.70 1.84 2762.3 26.33 2.43 0.1
22 60 23.40 2.56 0.01 33.20 1.80 13430.0 28.29 2.12 0.1
24 86 16.00 5.38 0.01 39.65 2.17 21323.0 32.75 2.63 0.1

49

T able 2.9 Comparison of Cluster-M, MFMC, and MH on system (3).

Size of
Graph Ta

Cluster-M [O(MN)} MFMC [0(M*N log M)\ MH [0 (M 2N A)\
Tm Sm T1 C Tm Sm T1 c Tm Sm Te

10 27 9.00 3.00 0.01 15.33 1.76 0.8 17.33 1.56 0.1
12 33 13.50 2.44 0.01 17.83 1.85 3.7 17.00 1.94 0.1
14 45 13.67 3.29 0.01 19.00 2.37 21.8 20.67 2.18 0.1
16 46 21.00 2.19 0.01 22.50 2.04 99.6 20.50 2.24 0.1
18 54 19.33 2.79 0.01 26.83 2.01 503.8 32.00 1.69 0.1
20 64 19.00 3.37 0.01 31.17 2.05 2504.8 33.83 1.89 0.1
22 60 24.50 2.45 0.01 35.83 1.67 13445.3 39.17 1.53 0.1
24 86 26.67 3.23 0.01 39.83 2.16 15225.2 48.17 1.79 0.1

T ab le 2.10 Comparison of Cluster-M, MFMC, and MH on system (4).

Size of
Graph Ts

Cluster-M [0(MN)\ MFMC [0(M 4N log M)] MH [0{M2N'A)\
Tm Sm Tc Tm Sm Tc T1 m Sm Tc

10 27 9.83 2.75 0.01 18.66 1.45 1.1 17.92 1.51 0.1
12 33 21.33 1.54 0.01 19.33 1.71 5.3 17.08 1.93 0.1
14 45 13.67 3.29 0.01 39.00 1.15 29.3 16.17 2.78 0.1
16 46 21.00 2.19 0.01 45.83 1.00 141.2 25.83 1.78 0.1
18 54 19.33 2.79 0.01 29.50 1.83 715.4 33.58 1.61 0.1
20 64 19.00 3.37 0.01 60.17 1.06 3579.5 44.83 1.43 0.1
22 60 26.00 2.31 0.01 40.83 1.47 17298.8 51.00 1.18 0.2
24 86 26.67 3.23 0.01 71.83 1.20 30081.7 41.17 2.09 0.2

2.6.1.2 M ap p in g N onun ifo rm Tasks on to U n ifo rm S ystem s The mapping

techniques in this category include McCreary-Gill’s Clan [48], Sarkar’s Edge-Zeroing

clustering [59], Wu-Gajski’s MCP [74], and Yang-Gerasoulis’ DSC [76]. These

algorithms have proven to be very effective and efficient in mapping arbitrary and

nonuniform directed tasks but work only for uniform and fully connected systems.

Similar to our algorithm, these algorithms also cluster the task graphs before the

mapping. However, they all assume that the target systems are fully connected with

unbounded number of uniform processors and communication links. If the number

of processors is bounded and smaller than the number of obtained clusters of task

50

modules, some clusters will be merged until the number of clusters is no less than

the number of processors. The examples selected here are not designed by us, rather

are those presented and studied by the authors of the papers reporting the leading

techniques.

Com parison w ith M cC reary-G ill’s Clan We compare Cluster-M with McCreary-

Gill’s Clan algorithm, which finds suitably sized grain (cluster) of task modules to

be assigned to the same processor before scheduling the tasks [48]. A clan is a set

of nodes X of the directed task graph Gt if and only if for all tx, ty G A' and all

l.z G Gt — X such tha t t.z is a parent node of tx if and only if tz is a parent node of

ly\ or l.z is a child node of tx if and only if tz is a child node of ty. Informally, a clan

is a subset of nodes where every element outside the set is related in the same way

to each member in the set. An 0 (M 3) parsing algorithm has been proposed that

decomposes a task graph into clans. In McCreary-Gill’s algorithm, it is also assumed

that the underlying system is fully connected and all the processors and commu­

nication links are uniform (Si = 1, Rij = 1, for all i, j) . Using McCreary-Gill’s

algorithm, the following task modules of the task graph shown in Figure 2.18(a)

are clustered together and are assigned to the processors of a fully connected four

processor system:

1,2, 9
Pi- 3, 4, 10
Pi- 5, 6, 11
Pa- 7, 8, 12

As task module 13 receives data from 9 and 10, it is assigned to p\. Similarly, 14 is

assigned to p2 and 15 is assigned to p x. The schedule resulting from this assignment

appears in Figure 2.18(c). Even though our clustering and mapping algorithms are

different and more generic than Clan, we have obtain similar results, as shown in

Figure 2.18(b).

51

*1 l 2 l 3 l4 l5 *6 l7 l 8
Kj) © © n o) © © ©) ©

ib\ / 18 18 \ / 18 18 \ / 18 18 \ / 1 8

*9 C M Mo^L « l l (j h iC
lo S s . / I 8 l « \

hsO
(a) Task graph

0 10 20 21 39 40 58 59
tl 15 t9 113 Il15

P2 t2 *6 *10
P3 *3 17 til tl4|
P4 »4 t8 l12

(b) Clan mapping, Tc = 0 (M 3), Tm = 59, Nm = 4

0 10 20 21 39 40 58 5
Pi tl *5 t9 tl3 t15
P2 t2 *6 110
P3 13 17 til tl4j
P4 »4 112

(c) Cluster-M mapping, Tc = O(MP), Tm = 59, Nm = 4

F ig u re 2.18 Comparison example with Clan.

C o m p ariso n w ith W u -G ajsk i’s M C P The modified critical path (MCP)

algorithm [74] is based on critical path introduced by Hu [37]. A critical path

in a directed acyclic graph (DAG) is a path of greatest weight from a source node to

a sink node, including the weights of all the nodes and edges along this path. The

critical paths can be shortened by removing communication weights (zeroing edges)

and embedding the nodes on the path. MCP assumes that the weights of task nodes

and edges are the actual computation and communication times. Therefore, given

the same task graph as shown in Figure 2.6 and the system graph as shown in Figure

2.12(b), a transformed task graph incorporating the information about the system

graph has to be generated first, as shown in Figure 2.19(b). The mapping results by

our technique and MCP are shown in Figure 2.19(c) and (d), respectively. We have

52

1.5 1.5

(a) The original task graph (b) The transformed task graph

0 1 2 3 4 5 6 7 8 9 10 0 1 2 5 6 7 8 8.5 9.5 10.5

Pj • l l l 2 1 | t 7 Pi 111*31 *2 1

p? t3 t 4 tS | t 6 l P2 14 *6 17
P.3 P3

(c) Cluster-M, Tc = O(MP)
Tm = 10, Nm — 2

(d) MCP, Tc = 0(M2 log M)
Tm = 10.5, Nm — 3

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 5 6 7 8 9

Pi t l | t 2 | l7 Pi ‘ l l ‘2 1

P? U 3 I *4 1 ‘5 16 P2 ‘3 *4 ‘5 ‘6 ‘7

P3 P3

(e) Sarkar, Tc = 0(\Et\(M + |Et|)) (f) DSC, Tc = 0{{\Et\ + M) logM)
Tm — 10, Nm — 2 Tm = 9, Nm = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

t | [2 *3 *4 15 lf, *7

(g) Clan, Tc = 0(M 3),Tm = 13, Nm = 1

F ig u re 2.19 Comparison example with MCP, Sarkar, DSC and Clan.

53

obtained a mapping with Tm = 10, while their Tm = 10.5. The time complexity of

MCP is 0 (M 2 logM).

Com parison w ith Sarkar’s Edge-Zeroing Algorithm The basic idea of Sarkar’s

Edge-Zeroing algorithm is to repetitively zero the highest weighted edge if it does

not increase the estimated Tm, until all the edges have been examined. Its time

complexity is 0 (\ E t\(M + \Et \)), where \Et\ is the number of edges in the task graph.

Figure 2.19(e) shows the mapping result obtained by the edge-zeroing algorithm on

the same example used for MCP in the last section. This result matches ours.

C om parison w ith Yang-G erasoulis’ DSC Yang-Gerasoulis’ dominant sequence

clustering (DSC) algorithm [76] is also based on critical path and edge zeroing, and

it incorporates several other heuristics for better clustering. DSC can find optimal

schedules for some special DAGs such as fork and join. However, the task graphs

considered in DSC are not machine-independent and similar to the above three

techniques, it cannot map to nonuniform systems such as those shown in Figure

2.12(d) and (f). The time complexity of DSC is 0 ((\E t\ + M)logM), where \Et \ is

the number of edges in the task graph.

Figure 2.19(f) shows the mapping result obtained by DSC for the same example

studied in comparison with MCP and Sarkar’s algorithms. Among the results for this

example, the DSC algorithm produces the best mapping results but does not have

the lowest time complexity. In the following, we show several more comparisons with

DSC. These examples are taken from [76]. Figure 2.20 and 2.21 show the mapping of

two task graphs onto an unbounded number of identical processors fully connected

by identical communication links. The task graph in Figure 2.22 was taken from

an example studied by El-Rewini and Lewis’s 0 (M 2N 3) MH algorithm [22]. It is

to be mapped onto a eight-processor hypercube with unit computation speed and

communication bandwidth. The mapping by MII has Tm = 26 and Nm — 7. An

optimal mapping using eight processors and having Tm = 25 is given in [15]. (In

54

[15], graphs with uniform edges were considered.) The mapping results using our

technique and DSC are illustrated in Figure 2.22(b) and (c). Tf a four-processor

hypercube is used, DSC’s and our mappings of the same task graph are shown in

Figure 2.22(d) and (e).

(a) Task graph

0 1 2 3 4 5 0 1 2 3 4

P i t l *3 1 *41 t6 P i t l t 3 l 1 4 ! t 6

p 2 t 2 P 2 t 2

P 3 . . ,‘ s I J i . 7 P 3 15 1 1 t 7

(b) Cluster-M, Tm = 5, Nm = 3 (c) DSC, Tm = 5, Nm - - 3

0 1 2 3 4 5 6 7 8 9 10

Pi
p 2

p 3

*1 *2 *3 <4 *5 *6 17

(d) Clan, Tm = 10, Nm = 1

F ig u re 2.20 Comparison example 2 with DSC and Clan.

C o m parison w ith C h au d h a ry and A ggarw als’ A lg o rith m Next, we

compare our mapping results with Chaudhary and Aggarwal. We present two

examples. In the first example, the task graph of Figure 2.23 is mapped onto a

2-cube. The mapping results for this example is shown in Figure 2.24. In the second

example, the task graph of Figure 2.25 is mapped onto a 2-cube. The mapping

results for this example is shown in Figure 2.26. As we see in all the examples in this

section, Cluster-M mapping has a superior running time, and the results obtained

are similar to or better than those from the other algorithms.

55

(a) Task graph

,0.5

h

0.5

(b) Transformed task graph

0 I 2.5 3 5 9

Pi tl 1 12 |l3 *5 1.............................
p? t4

(c) Cluster-M mapping result, Tm — 9, Nm

0 1 2.5 85 95
Pi tl 1 l2 1 1
p2M 1 *5

1.5 2 75
(d) DSC-I’s mapping result, Tm = 9.5, Nm =

0 1 2.5 3 5 9
Pi ti 1 t2 |t3 ts 1
p2 t4

(e) Clan mapping result, Tm - 9, Nm — 2

F igure 2 . 2 1 Comparison example 3 with DSC and Clan.

2.6.2 Task A llocation

A generic mapping technique must be able to do both task scheduling as well as task

allocation. Cluster-M can efficiently be applied to the both cases. The goal of task

allocation is to minimize the communication delay between processors and to balance

the load among processors. The problem of task allocation arises when specifying

the order of executing the task modules is not required. Therefore, the task graph in

task allocation is undirected and the clustering-undirected-graphs algorithm is used

to generate the Spec graph in this case. We consider the measure of mapping quality

in task allocation to be Tm.

We compare our results to Bokhari’s mapping (allocation) algorithm [9] using

undirected task graphs. Bokhari’s algorithm has the running time complexity of

0 (N 3), while ours is O(MN). Bokhari’s algorithm assumes that the computation

(a) Task graph

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Pn “1 12 110 1 I 114 |tl!
Pi 13
P? 14 1 HI I 1 US 1
P, .'1 * 1............
P4 16 1 112 I..-.. 1 US I
P. 17
Pfi 18 1 113 1 117 1
P7 1 * 1 .

(b)Cluster-M mapping on 8 processors, Tm = 26, Nm = 8

0 5 10 15 20 25 27

1 13 1 1 ‘10 1 ‘ 17 |*18

‘4 ‘11 ‘ 14

‘6 ‘ 12 ‘ 15
t8 ‘ 13 I I ‘ 16 1

‘ l l ‘5 t i

‘9

‘7

(c) DSC’s mapping on 8 processors, Tm = 27, Nm — 7

0 5 10 15 20 25 27

Po ‘1 | *7 1 ‘3 1 *10 1 1 ‘14 |*18
Pi 14 ‘5 ‘11 ‘15
P? 16 ‘7 ‘12 *16
Pi 1 ‘8 1 ‘9 1 *13 1 ‘17 1

(d) Cluster-M mapping on 4 processors, Tm — 27, Nm =

0 5 10 15 20 25 2
Po ‘5 l ' 6 ‘,2 ‘16
Pi 1 ‘7 1 ‘3 1 *10 1 ‘17 1

P? ‘11 *2 1 '4 1 ‘11 1 1 >14 1**8

P.l ‘9 ‘8 ‘13 ‘15
(e) DSC’s mapping on 4 processors, Tm = 27, Nm — 4

F igure 2 . 2 2 Comparison example 4 with DSC.

57

F igure 2.23 Comparison example 1 with Chaudhary and Aggarwal: task graph.

P ro c e s s o r s

Time

0 1 2 3 4 5 6 7 8 9 10

0 to tl 17 19

1 t2 t3 t l(t l :
2 14 15 t i l t H

3 t6 18 tl2 t l f

(a) Chaudhary and Aggarwal, Tc - 0 (M A), Tm = 10, Sm = 1.6, 77 = 0/1.

P ro c e s s o r s

0
1
2

3

Time

0 1 2 3 4 5 6 7 8 9 10

to tl t2 t9 t l : t lf
13 t4 tic

15 t6 t i l tl4

17 t8 112

(b) Cluster-M, Tc = O(MN), Tm = 10, Sm = 1.6, 7] = 0.4.

T im e

P r o c e s s o r s ® ̂ 2 3 4 5 6 7 8

0 to t l t2 19

13 t4 t ic t l :
t5 16 t i l

t7 18 112 t 14 t l 5

(c) Optimal, Tc = 0(2MN), Tm = 8 , Sm — 2, rj — 0.5.

F igure 2.24 Comparison example 1 with Chaudhary and Aggarwal: mapping
results.

58

Figure 2.25 Comparison example 2 with Chaudhary and Aggarwal: task graph.

P r o c e s s o r s

T im e

0 1 2 3 4 5 6

0 to t l
1 12 t4
2 13 t6
3 t5 a

(a) Chaudhary and Aggarwal, Tc = 0 (M 4), Tm = 6 , Sm — 1.3, Tj — 0.33.

P ro c e s s o r s
0
1
2

T im e

0 1 2 3 4 5 6

to ti t4 a
12 15
t3 t6

(b) Cluster-M, Tc = 0 (M N), Tm = 6 , Sm = 1.3, rj = 0.43.

P ro c e s s o r s

0
1

T im e

0 1 2 3 4 5 6

to ti t4 13 16 17

t2 t5

(c) Optimal, Tc = 0 (2 MN), Tm = 6 , Sm = 1.3, 77 = 0.65.

Figure 2.26 Comparison example 2 with Chaudhary and Aggarwal: mapping
results.

59

amount, of each task module, the amount of data communication along each task

graph edge, the computation speed of each processor, and the data transmission rate

along each communication link are all uniform, that is, 1. It further assumes the

number of task modules is no greater than the number of processors, so that the

mapping can be one-to-one. In this case, a lower bound on Tm can be S + 1, where

S is the degree of a given task graph.

Task graph System graph

Figure 2.27 Comparison example with Bokhari: task and system graph.

In comparing Cluster-M with Bokhari, we use the example shown in Figure

2.27, which has a 33-node task graph and a 6 x 6 finite element machine (FEM)

[9]. A Sun SPARCstation 1 was used for the experiments. The results are shown

in Table 2.11. Note that the running time of clustering the task graph and system

graph by Cluster-M, which is 0.7 seconds, is not included in Tc, as our clustering is

independent of the mapping. However, even if we included it, the running time of

Cluster-M would still be 200 times faster than Bokhari’s algorithm. The lower bound

on Tm as described before is 9, and yet both Cluster-M and Bokhari’s algorithms

obtained near optimal results of Tm = 17 and 13, respectively. The above example

uses the same structured task and system graph as in [9]. We have also tested other

randomly generated task and system graphs. Table 2.12 shows the mapping results

60

Table 2-11 Mapping of Bokhari’s algorithm and Cluster-M

Task
Module

Mapped processor
Bokhari Cluster-M

1 5 0
2 30 1
3 3 2
4 0 6
5 2 3
6 6 4
7 1 7
8 8 8
9 7 9
10 15 5
11 13 12
12 14 10
13 20 11
14 9 13
15 19 19
16 10 18
17 17 14
18 18 15
19 11 26
20 12 20
21 16 27
22 22 32
23 23 21
24 21 16
25 29 28
26 26 17
27 27 22
28 28 33
29 31 24
30 33 23
31 25 25
32 32 30
33 34 31
Tm 13 17

Tc (sec) 152.5 0.05

61

T able 2.12 Comparisons of mappings of Bokhari’s algorithm and Cluster-M

Random Graphs
of 10 Nodes

T1 m Tc (sec)
Bokhari Cluster-M Lower Bound Bokhari Cluster-M

1 15 15 8 0.82 0.03
2 9 13 7 1.58 0.03
3 10 11 8 1.20 0.03
4 11 14 8 1.00 0.03
5 11 12 9 1.02 0.03
6 10 12 8 2.35 0.02
7 11 12 8 1.40 0.03
8 10 12 8 1.18 0.03
9 10 13 9 1.20 0.02
10 9 10 7 1.03 0.02

and comparisons for 10 randomly generated task and system graphs of 10 nodes.

Similar results were obtained for the set of random graphs.

2.7 Conclusion

This chapter presents a portable parallel programming model called Cluster-M that

bridges software and hardware for heterogeneous computing. This model allows

software portability without imposing any restrictions on the hardware and provides

a mechanism for estimating the performance of a given parallel program on any

heterogeneous computers or suite of computers. Using the parameters of this model,

portable parallel programs can be specified and then mapped onto dynamically recon­

figured heterogeneous organizations. An implementation of this model as a portable

programming tool was also presented. Two clustering algorithms were presented that

need to be applied only once for each problem (system), independent of any system

(problem), and need not be repeated for each mapping. The mapping module of the

Cluster-M tool was shown to produce efficient and near-optimal mappings for any

given task and system graphs. Using Cluster-M a single software can be ported and

shared among various computing units in a heterogeneous suite.

C H A P T E R 3

M A P P IN G A N D SC H ED U LIN G FO R H ET ER O G E N E O U S
C O M PU T IN G

This chapter consists of two parts. In the first part, we present a brief survey

of existing heterogeneous mapping techniques. In the second part, we illustrate a

suboptimal Cluster-M-based solution to the problem of mapping application tasks

onto heterogeneous computing systems. We propose two clustering algorithms for

generating clustered task and system graphs on behalf of mapping. The mapping

algorithm employs integer linear programming recursively for mapping clusters of

the task graphs onto clusters of the system graphs in order to find a suboptimal

solution.

3.1 Introduction

The mapping problem, in its general form, has been known to be NP-complete and

has been studied intensively for homogeneous parallel computers during the past

two decades [6, 9, 15, 21, 22, 25, 43, 45, 53, 76]. In mapping, an application task

and a computing system are usually modeled in terms of a task flow graph and a

system graph. The problem, then, is how to map efficiently the task flow graph

to the system graph. A task flow graph is a directed acyclic graph (DAG) that

consists of a set of vertices and a set of directed edges. A vertex denotes a task

module decomposed from the given task. Each vertex is associated with a weight that

denotes the computation amount within the corresponding task module. A directed

edge joining two task modules denotes that data communication and dependency

exist between the two task modules. The weight of an edge represents the amount

of data communication. While a task flow graph is usually directed, the system

graph is usually an undirected graph. A set of vertices in a system graph denote

processors and a set of undirected edges indicate physical communication links for

62

63

processor pairs. The weight, of a vertex (edge) represents the speed (bandwidth) of

the corresponding processor (communication link). We define a graph as nonuniform

if and only if the weights of all vertices or the weights of all edges are not the same;

otherwise it is uniform.

In recent years, trends in heterogeneous computing (HC) have drawn researchers’

attention to the problem of mapping tasks onto a suite of heterogeneous computers

[71, 16, 38, 40, 56, 17, 20]. In HC, the task and system graphs can be nonuniform.

Therefore, the mapping problem in HC can be viewed as mapping of an arbitrary

nonuniform task graph onto an arbitrary nonuniform system graph. This chapter first,

presents an overview of a number of existing heterogeneous mapping techniques and

then illustrates a suboptimal Cluster-M-based heterogeneous mapping algorithm.

An essential part of mapping is a way to “cluster” nonuniform task and system

graphs. These algorithms are the augmented versions of the clustering algorithms

presented in the previous chapter, so that the vertices of the graphs are clustered

if and only if they are of the same computational type. For example, all the single

instruction, multiple data (SIMD) nodes in a task (system) graph are grouped

together. The clustering algorithms are done only once for each task (system) graph,

independent of any system (task) graphs, and need not be repeated for every pair of

system-task graphs to be mapped.

The Cluster-M mapping algorithm presented in Chapter 2 maps arbitrary

clustered task graphs with nonuniform nodes1 and edges onto arbitrary clustered

system graphs with nonuniform nodes and edges. The mapping process of this

algorithm is then performed in a recursive fashion by a greedy algorithm matching the

clusters of the task graphs (Spec clusters) to the clusters of the system graphs (Rep

clusters). In this chapter, we use an extended version of the algorithm which incor­

porates the type heterogeneity [i.e., SIMD and multiple instruction, multiple data

'In this chapter, “vertex” and “node” are used interchangeable.

64

(MIMD)] of tasks and systems in HC. The augmented mapping algorithm presented

first maps Spec clusters to Rep clusters of similar computational type and then

proceeds with an enhanced fine-grain mapping technique. Since the expected number

of clusters at every level of the fine-grain mapping is constant, we propose to use

an optimal matching strategy to enhance the algorithm. Therefore, we formulate

and solve each step of the fine-grain cluster mapping by using an integer linear

programming (ILP) model. We then compare the mapping results of our algorithm

with those of some other heterogeneous mapping techniques.

The remainder of this chapter is organized as follows. We first review a number

of heterogeneous mapping techniques in Section 3.2. We then present augmented

Cluster-M clustering and mapping algorithms in Section 3.3. A comparison study is

also included in this section. The conclusion is presented in Section 3.4.

3.2 A Survey o f H eterogeneous M appings

In this section, we present an overview of a number of recently proposed hetero­

geneous mapping algorithms[27, 28, 65]. We categorize these algorithms into two

groups: static and semi-dynamic algorithms. In static mapping, the structure of

both task and system are known prior to execution and do not change throughout

the computation. In semi-dynamic mapping, the structure of the task is not known

prior to execution, but the structure of the system is known, and it is assumed not

to change. The rest of this section is organized as follows. The static algorithms

are presented in two groups. The first group is a set of nondeterministic mapping

algorithms presented in Section 3.2.1. The second group, presented in Section 3.2.2,

is a set of graph-based algorithms. Semi-dynamic algorithms are explained in Section

3 .2 .3

65

3.2.1 N ondeterm inistic Algorithm s

Tao et al. [38] proposed three static heuristic mapping algorithms based on simulated

annealing, tabu search, and stochastic probe approaches. Three types of costs are

taken into account: computation, communication, and interference costs.

The computation cost of a processor is the sum of the computation time of

tasks on the processor. Communication cost is the time consumed by communi­

cation over the interconnection network between two interacting tasks located on

two different processors. Interference cost is the time incurred when two tasks

compete for the resources available on one processor where the two tasks are assigned.

The execution time of a processor under a mapping is estimated as the sum of

its computation, communication, and interference costs. The completion cost of a

mapping is defined as the maximum execution time of all processors. The objective

function of the mapping problem is to find a mapping so tha t the completion cost

is minimized. These algorithms are nondeterministic, hence their time complexities

cannot be known in advance. Another disadvantage of these algorithms is tha t data

dependency is not considered. This implies the assumption that there is no interde­

pendent relation between any two tasks. This assumption does not hold, however,

in most application tasks.

• Simulated Annealing

Simulated annealing utilizes occasional uphill moves to avoid entrapment in

poor local optimums. To achieve this, a random-number generator and a

control parameter called temperature are used. A typical implementation of

simulated annealing usually has two nested loops and two other parameters,

a cooling ratio r and a temperature length L. The following shows a typical

simulated annealing heuristic.

66

Got a random initial solution 7r

Get an initial temperature T > 0

While stop criterion not met do:

Perform the following loop L times:

Let 7r' be a random neighbor of n

Let A = cost(7r) - cost(7r')

If A > 0 (downhill move)

set 7T = 7r'

If A < 0 (uphill move)

set 7r = i t 1 with probability eA/r

Set T = rT (reduce temperature)

Return the best 7r visited

In the implementation of Tao et al., temperature length, L, is set to be nx

SIZEFACTOR, where n is the number of task modules and SIZEFACTOR is a

parameter tha t must be tuned. The initial temperature T is chosen so that the

initial acceptance rate is around another parameter, which needs to be tuned,

called INITPROB. The stop criterion of their implementation is that: (1)

for five temperatures, the acceptance rates are all lower than MINPERCENT

which is the third parameter that needs to be tuned, and (2) the best visited

solution is not improved during this period of time. All three parameters are

tuned for each problem instance. This is not an easy task and it is often

obtained by trial and error. It has been determined that for most problem

instances, the following values are appropriate, r = 0.95, SIZEFACTOR —

16, INITPROB = 0.4 and MINPERCENT = 0.02.

• Tabu Search

In typical tabu search, listed below, t is the length of the tabu list. During

67

each iteration, the algorithm makes an exhaustive search of the solutions in

the neighborhood of the current solution that have not been traversed in the

last t iterations. The current solution is replaced by the neighboring solution

that has the best cost. A circular list is used to implement the tabu list and

to maintain the vertices moved in the last t iterations.

Get a random initial solution 7T

While stop criterion not met do:

Let 7r' be a neighbor of 7r maximizing A=cost(7r)-cost(7r') and not

visited in the last t iteration

Set 7T = tt'

Return the best t t visited

• Stochastic Probe Approach

The stochastic probe algorithm is a combination of the stochastic search process

in simulated annealing and the aggressive search process in the tabu search.

In the algorithm, S(tt ,v) denotes the subset of moves in S(tt) that redefines

n(v), where S(ir) represents the set of moves applicable to solution tt and tt(v)

indicates the processor that v is assigned to under solution 7r. Given any integer

p > 0, random(— p) denotes a random integer such that — p < randoin(—p) < 0.

The value of /3 is set to between 10% to 15% depending on problem instance.

The stochastic probe algorithm is detailed as follows.

Get a random initial solution i t

Let L be a circular list of the vertices in V

Set v to any of the vertices in V (the current vertex)

While stop criterion not met do:

While there is any A > 0 in the last k iterations of this loop do:

68

Let v be the next vertex down the list L

Let s £ S (7r, v) and t t ' — s (t t) such that A = cost,(7r) - cost,(7r') is maximized

If A > random(— p) , set t t = n ' , p = p 0

Perturb randomly the value of ir(u) for (3% of the vertices u in V

Return the best t t visited

The algorithm consists of a sequence of probes and each probe searches for a

local optimum. The last solution of a probe will be modified randomly to be

used as the initial solution of the next probe. In experimental studies, the cost-

performance of the stochastic probe heuristic is superior to heuristics based on

simulated annealing and tabu search.

3.2.2 G raph-Based Algorithm s

The mapping problem can be formulated in a graph theoretic manner. One of

the most famous graph-based approaches is Stone’s work [63]. Stone transfers the

mapping problem into a network flow model and solves this problem using a Max

Flow/Min Cut algorithm. Stone’s model provides an optimal solution only for the

two-processor problem. Lo [44] extended Stone’s work to find a suboptimal solution

of the mapping problem for general distributed (heterogeneous) systems. Lo’s

algorithm, called Algorithm A, is a heuristic that combines recursive invocation of

Max-Flow/Min-Cut algorithms with a greedy-type algorithm. Algorithm A consists

of the following three parts:

1. Grab. For a given processor p,, the n-processor system graph is converted

into a two-processor system with pt and a supernode pi, which represents the

other n — 1 processors. Apply a Max Flow/Min Cut algorithm to the two-

processor system to find those tasks that would be assigned to p These steps

are repeated for each processor to yield a partial mapping.

69

2. Lump. For those tasks that remain unmapped in Grab, map all of them to one

processor.

3. Greedy. For those tasks that remain unmapped in Lump, identify clusters of

tasks between which communication costs are large. Merge such clusters of

tasks, and map all tasks in the same cluster to the processor which could finish

executing these tasks earliest.

The major flaw of this algorithm is its high time complexity, which is equal to

0 (M 4N log M), where M and N are the number of tasks and processors, respectively.

Another problem is that it does not take into account data dependencies between

tasks.

Another graph-based algorithm is Shen and Tsai’s graph-matching approach

[60]. The mapping problem is transformed into a graph-matching model based on the

weak homomorphism from task graph to system graph. A graph G\{V\, E\) is weakly

homomorphic to a graph G2 {V2, £ 2) if there exists a mapping M : V1 —» V2 such that

if edge (a, b) € £ j, then edge (M (o), M{b)) € E2. They consider a cost function tha t

represents the total execution and communication time for completing the given task,

and a minimax criterion for the minimization of the cost function. The search of

optimal weak homomorphism corresponding to optimal mapping is next formulated

as a state-space search problem. The problem is then solved using the well-known A*

algorithm in artificial intelligence [73]. In a state-space search problem, each state is

denoted by a node. Node expansion is an operation for generating successors of nodes.

A solution path is a path defined by a sequence of node expansions that leads a start

node to one of the goal nodes. A* algorithm is a heuristic that combines branch-and-

bound and dynamic programming approaches. In an A* algorithm, an evaluation

function is used to decide the order of nodes for examination. It is guaranteed to

find a solution path optimal in term of minimized path cost. An evaluation function

70

is defined as f (n) = g(n) + h(n), where g(n) is the minimum path cost from the start

node to node n in the state space and h(n) is an estimate of the minimum path cost

from node n to a goal node. The problem with the A*-type algorithms is that if the

estimate of h.(n) is chosen inappropriately, then the optimal solution path may not

be easily found.

Tan et al. [67] propose a minimum spanning tree based algorithm for finding

minima] scheduling time of sequentially executed subtasks. Two types of data distri­

butions are considered, namely data reuse and multiple data copies. D ata reuse

occurs when two subtasks located at one processor need the same data item from a

subtask at another processor. Multiple data copies arise when two subtasks need

the same data item from another subtask and all three subtasks are located at

different processors. They assume that atomic input operations of two subtasks

can be executed in an interleaved fashion. This assumption makes it possible to

reduce communication delay among interacting subtasks. This algorithm involves

the following two steps.

1. Constructing a graph with respect to the given information including subtask

flow graph, the representation of the heterogeneous computing system, and an

arbitrary matching scheme.

2. Using a modified version of Prim ’s minimum spanning tree algorithm [4] to

find a minimum spanning tree in the graph generated from step 1. The

order of the vertices added to the minimum spanning tree corresponds to the

executing order of the corresponding atomic input operation, hence the minimal

scheduling.

The time complexity of this algorithm is 0 (E + V log V) where E and V are

the number of edges and the number of vertices in the graph obtained from step 1.

71

The main drawback of this technique is that subtasks are assumed to be executed in

sequential order.

Lcangsuksun and Potter [41] propose a set of heterogeneous mapping algorithms.

The first algorithm, HP greedy, is the simplest and is used as an initial phase in

other algorithms. The HP greedy algorithm is performed as follows.

1. Partition the input task graph into independent subgraphs.

2. For each subgraph (starting from the top to the bottom), sort tasks in the

subgraph by their weights.

3. Starting from the heavier node, map each task to the processor leading to the

best expected execution time.

4. Remove the chosen processor from the processor list. If the processor list

becomes empty, it is reset to include all processors.

Another algorithm, called one level reach-out greedy (OLROG), is similar to

HP greedy except that it uses the simple processor list assignment policy and it takes

waiting time into account in the processor selection decision. Waiting time includes

the previous scheduled task completion time, communication time, and delay time

of the current task. The empirical results show that algorithm OLROG performs

better but has larger complexity. The main drawback of these techniques is that the

communication bandwidth of the links are not taken into account. Therefore, the

accurate data communication time cannot be well captured.

Cluster-M mapping, presented in the last chapter, can map arbitrary structured

nonuniform task graphs with M task modules onto arbitrary structured nonuniform

system graphs with N processors in O(MP) time, where P = max(M, N). In

Cluster-M, a clustered task (system) graph is a multilayered partitioned graph

such that every level contains a number of clusters, each representing a partition

72

subgraphs[15, 25, 17]. This simplifies the mapping process since at every level

independent subgraphs of the task graph are mapped onto the subgraphs of the

system graph. An extended version of the Cluster-M clustering and mapping

algorithms is presented in the next section. These augmented algorithms are more

suitable for HC.

3.2.3 Sem i-D ynam ic A lgorithm s

Leangsuksun et, al. [42] developed two semidynamic mapping schemes, centralized

and distributed, that differ in the extent of system knowledge and location(s) of

the task allocator(s). It is assumed that task execution and communication times

are not known until execution and that the system condition is invariant. In

the distributed mapping algorithm, called K nearest-neighboring algorithm, each

computing node has a local mapper that allocates tasks in its local task queue

to the most suitable node among itself and its K highest communication capacity

neighbors. The algorithm consists of the following steps.

1. I< nearest neighbor grouping; for each processor, group K highest communi­

cation capacity neighboring nodes for its local mapper.

2. Premapping; each mapper gets the same number of tasks in its local queue.

3. Local queue length equalizing (LQE); each mapper determines the best node

among the group of nodes in step 1 to execute tasks.

The complexity of the K nearest-neighboring algorithm is (D(KN/M), where

N and M are the total number of tasks and processors.

In the centralized mapping algorithm, the global queue equalizer (GQE)

algorithm, there is only one global mapper located in a master host. The host node

collects global system information and determines task assignment. The algorithm

consists of the following two procedures.

73

1. Master host selection; selecting a master node as the centralized mapper.

2. GQE-OLROG module; for each task in the global queue, the algorithm

determines task allocation by choosing a node which has the most communi­

cation bandwidth.

The master host selection module in the GQE algorithm can be carried out

prior to execution time, and therefore its complexity can be disregarded. Within

the GQE-OLROG module, there are M choices for the best task-machine selection.

Considering communication time in order to obtain a better performance, there

are, a t most, M — 1 possible machines executing parent nodes of a current task.

Therefore, the total complexity of the GQE algorithm is 0 (N M 2). Although these

two algorithms are proposed to handle dynamic cases, they are not fully dynamic

since task rescheduling and migration are not considered.

3.3 An A ugm ented Cluster-M M apping

Our proposed technique is based on the Cluster-M paradigm [15, 25, 17] which

facilitates the design and mapping of portable parallel programs. A Spec (Rep)

graph may be obtained by clustering a given task (system) graph. A graph is called

nonunform if the weights of all the nodes are not the same and the weights of the

edges also difTer. The weight of a node in a task graph (system graph) represents

the number of instructions (speed) in that code block (processor). In Chapter 2,

two algorithms were proposed for clustering arbitrary nonuniform task graphs and

arbitrary nonuniform system graphs. In this section, we extend those algorithms

by incorporating the heterogeneity of tasks and systems in HC. The extended task

graph clustering takes into account the type of parallelism present in each portion

of the task by clustering each code segment independently. The modification to

the system graph clustering takes into account the presence of different machines in

74

the system, which provides a spectrum of computational modes. Furthermore, the

mapping algorithm presented in this chapter is an augmented version of the original

one presented in Chapter 2. The mapping algorithm uses integer linear programming

instead of the greedy algorithm in every step of mapping.

3.3.1 Task C lustering

As defined by the input format of HOST explained in Chapter 1, a task is composed

of a number of subtasks. Each of the subtasks contains a number of heterogeneous

code segments. Each code segment is further decomposed into several homogeneous

code blocks. These correspond to the input format of HOST presented in Chapter

1. The Clustering Nonuniform Directed task Graph (CNDG) algorithm, presented

in Chapter 2, clusters the task graph without distinguishing between different, layers

(i.e., subtask, code segment and code block). We present the Augmented Task

Clustering (ATC) algorithm to cluster a subtask graph having such a hierarchical

structure. The ATC algorithm first clusters code blocks inside each code segment

concurrently; it then clusters code segments at the subtask level.

A lgorithm ATC(G)
Input: Subtask graph G consists of code segments G;, 1 < i < n
O utput: Spec graph S
begin

for each Gj, 1 < i < n do in parallel
begin

G- = CNDG(Gj)
end
G' = U"=1G'
S = CNDG(G')

end

Figure 3.1 The Augmented Task Clustering (ATC) algorithm.

75

The input to the algorithm is a subtask graph G tha t contains n subgraphs

(code segments) Gj, 1 < i < n, and the output is a Spec graph. These code segments

are clustered in parallel by calling the CNDG subroutine. Notice that by clustering

each code segment independently, we are clustering only code blocks having the same

computational type. The returned Spec clusters from these subroutines then form a

new subtask graph in which each node (code segment) is a Spec cluster. The new

graph is further clustered using CNDG subroutine.

As discussed in Chapter 2, the time complexity of the CNDG algorithm is

0 (M 2), where M is the number of nodes on the input graph. To analyze the time

complexity of the ATC algorithm, we assume that the number of nodes in the subtask

graph is M. Then the number of code segments, n, will be in the range, 1 < n < M.

When n = 1, that is, there is only one code segment, the code segment is exactly

the same as the subtask and the time complexity is bound by 0 (M 2). If n = M,

(i.e., each code segment has only one node), it implies that the new subtask graph

is the same as the original subtask graph, then the time complexity is still 0 (M 2).

Therefore the time complexity of the ATC algorithm is also 0 (M 2).

To illustrate this algorithm, consider the heterogeneous subtask flow graph,

which consists of one MIMD code segment and one SIMD code segment, as shown

in Figure 3.2. Each vertex is labeled with its computation amount, and each edge is

labeled with its data communication amount. Using the CNDG algorithm, a single

Spec graph would have been obtained in which the two code segments were not

distinguishable. However using the ATC algorithm, the obtained Spec graph will

consist of two subgraphs: one contains MIMD-type clusters and the other contains

SIMD-type clusters. The MIMD-type Spec subgraph is illustrated in Figure 3.3. The

Spec graph is constructed by merging the clusters when they have communication

needs. In our illustration, embedding operations are represented by perforated lines

and merging operations are represented by dotted and rounded rectangles.

76

8

6

MIMD type SIMD type

F ig u re 3.2 A heterogeneous subtask consists of MIMD and SIMD code segments.

3.3.2 S y stem C lu s te rin g

An IIC system contains a number of autonomous and heterogeneous parallel

machines. Each one of these parallel machines can be modeled as an undirected

graph in which nodes depict processors and edges represent the interconnection

topology of the machine. These graphs further constitute an undirected graph that

can represent the HC system. Therefore, two levels of undirected graphs are used to

model the HC system: a machine-level graph and a system-level graph. The CNUG

algorithm, presented in Chapter 2, clusters a system graph without distinguishing

between machine and system level. Therefore, it may cluster a node from one

machine to another before all the nodes in one machine are clustered first. In this

section, the augmented system clustering (ASC) algorithm is presented to cluster an

IIC system graph having two levels. The system level graph is clustered after the

clustering of all machine level graphs are done. The algorithm utilizes the CNUG

algorithm [17] as a subroutine to cluster both levels of undirected graphs. The

subroutine takes a system graph as its input and outputs a Rep graph.

77

(1,4.0.0.1) <4.12.3.1

Ml.4,0.0,1) t

: (1.8,0,0,1 1.8.0.0.I X8

6

step 1 step 2

i .11:
r î,8.o.o.i t

\0 ^B.0.ai5yi ' 2/(K8.0.0.1 j
0 . 8 . 0 , 2/ f l . 8. a0. i ;

la,6.o.(u}s
(i . i a o . a i) ^ 7 i £ A < m >

step 3 step 4

Figure 3.3 Clustering the MIMD code segment.

A lgorithm ASC(G)
Input: System graph G consists of machine level graphs G;, 1 < i leqn
O utput: Rep graph R
begin

for each Gf, 1 < i < n do in parallel
begin

G' = CNUG(Gj)
end
G' = U-LjG-
I? = CNUG(G')

end

Figure 3.4 The Augmented System Clustering (ASC) algorithm.

78

The ASC algorithm is shown in Figure 3.4. The analysis of the time complexity

is similar to that in the previous section. The time complexity of the algorithm is

equal to the running time of the CNUG subroutine, which is 0 (N (E \ o g E -f N 2)),

where E is the number of edges and N is the number of processors in the system

graph. In the worst case, the time complexity of this algorithm will be G (N 3 log N 2),

where the system graph is completely connected so that E — 0 (N 2).

Consider the heterogeneous computing system shown in Figure 3.5, which

consists of one MIMD machine and one SIMD machine. The MIMD machine has

three processors, P I, P2, and P3. The SIMD machine has two processors, P4 and

P5. Each node denotes a processor and is associated with a computation speed;

each edge is associated with a communication bandwidth. The clustering of the Rep

graph is also illustrated in Figure 3.5.

(3,4/3,5,5/3,1)

(1,2 ,0 ,0, 1)

'(1,3,0,0,0) (1,2,0,0,0).(1,1,0,0,1
P4

MIMD marhinp SIMD machine

Figure 3.5 The system graph and its clustering of a heterogeneous suite.

3.3.3 A ugm ented C luster-M M apping

This section presents an augmented suboptimal Cluster-M-based mapping algorithm

for mapping the Spec graph onto the Rep graph, generated using the ATC and

ASC algorithms, respectively. The mapping algorithm presented here is a modified

version of the Cluster-M nonuniform mapping algorithm presented in Chapter 2.

The Cluster-M nonuniform mapping algorithm is proposed to map arbitrary clustered

task graphs with nonuniform nodes and edges onto arbitrary clustered system graphs

79

with nonuniform nodes and edges. In the mapping algorithm, the mapping process

is performed in a recursive fashion by a greedy algorithm matching the Spec clusters

to the Rep clusters. In contrast to this technique, the algorithm presented here

first maps code segments onto machines with the same computation type. It then

proceeds with an enhanced recursive fine-grain mapping so that at every level an

optimal assignment of Spec clusters to Rep clusters is found. We formulate and

solve each step of the fine-grain cluster mapping using an ILP model. ILP solvers

with polynomial time complexity are now available in software packages such as

Mathemalica, so we will treat these tools as a ‘black box’ and not go into the details

of how ILP programs are solved.

We assume that the expected number of clusters at every level of mapping

is a constant. This is based on the observation that most parallel architectures

have bounded-degree nodes (every processor is connected to a constant number

of other processors). Examples of such systems are mesh, binary tree, ring, and

torus. Similarly, a large set of computational tasks can be expressed in the form of

bounded-degree task graphs. Examples of such tasks are algorithms using a divide-

and-conquer technique, which are very common in image processing.

In the original Cluster-M nonuniform mapping, five parameters are used to

evaluate an optimization function at every level of clustering. Therefore it allows,

for example, an SIMD node in the task graph to be mapped onto an MIMD node

in the system graph (if the tradeoffs are substantial) by evaluating the execution

time estimation function for various options. The solution obtained a t every level of

mapping is suboptimal since it does not evaluate the function for all the possibilities.

The augmented Cluster-M mapping algorithm is different in two ways. First, in

this algorithm we restrict mapping so that, for example, an MIMD node in the task

graph can only be mapped onto an MIMD node in the system graph. Second, for

every level of mapping we obtain an optimal solution by considering all possible task

80

graph-system graph-node pairs, with the restriction that they are of the same type.

To map a code segment onto a machine of the same type, the following is done to

obtain the fine-grain mapping.

We first begin by calculating the reduction factor /(«,«) and the estimated

execution time of each Spec-Rep cluster pair. Then starting from the Spec clusters

at the top level, assignment of these Spec clusters onto a set of suitable Rep clusters

must be obtained. To do this, we model the assignment process using an ILP model,

described as follows. A binary variable //(5“, 72”) is defined to indicate whether a

Spec cluster 5 ” is mapped onto a Rep cluster 72”, that is, when p(5",72”) = 1, 5 ”

is mapped to 72”, otherwise, ^ (5 “ , 72") = 0. Each Spec cluster can be mapped to

only one Rep cluster; this is represented by £ f>7-/t(5“, 72”) = 1. The accumulated

estimated execution time on Rep cluster 72” is denoted by r (7 2 ”), and we have

r(72”) = Y,i,j 72”) r (S “, 72”). We denote the overall estimated execution time

by Tm such tha t for all j , T m > r(7 2 ”). Our objective is to minimize the overall

estimated execution time; therefore, the objective function of our ILP model can be

expressed as follows:

minimize Tm, while Tm > F(72”) for all j

Once the minimum Tm is found, matching Spec clusters and Rep clusters can be

determined by using binary variables n(S?, 72”). After the Spec clusters are mapped

onto the Rep clusters, the procedure is repeated, mapping the subclusters of every

Spec-Rep cluster pair.

A detailed description of our mapping algorithm is presented in Figure 3.6.

The time complexity of this algorithm can be analyzed as follows. We assume that

the degrees of the given task graph and system graph are bounded by two constants,

c and k , respectively. Furthermore, it is assumed that at a certain level of mapping

the hierarchical Spec graph has c Spec clusters and the hierarchical Rep graph has k

R,ep clusters. Then the total numbers of iterations for the second outer for loop and

81

the most inner for loop are c and k. Therefore, the total number of iterations for

these for loops is bound by 0 (c x k). Consider the portion of ILP; it examines all

instances of (5 “, /?") pairs for all i and all j . Therefore, the running time of the ILP

portion is equal to 0 (k c). Therefore, the overall time complexity of the mapping

algorithm is 0 (c x k) + 0 (kc) = 0 (kc).

Augmented Cluster-M Mapping Algorithm(5, R)
Input: A Spec graph S and a Rep graph R
begin

for each computational type
begin

TI &nv.
calculate reduction factor f(u,v) = L
for each Spec cluster S }1

begin
for each Rep cluster /?"

calculate the estimated execution time r(5“, Rj)
end
Start Integer Linear Programming
Set the following constraints

X itii*(sr, iy) = i
r(R?) = Z ijr t s? ,R ' j)T (s? ,]q)
Tm > r (/ ? p

Specify the following objective function
Minimize Tm

end
end

F ig u re 3.6 Augmented Cluster-M mapping algorithm.

Consider mapping the task graph illustrated in Figure 3.2 to the system

graph shown in Figure 3.5. The mapping is done for each type of Spec and Rep

cluster, respectively. The mapping of the MIMD Spec subgraph onto the MIMD

Rep subgraph is done below. At the top level, the mapping is trivial since there

is only one Spec cluster 50(4, 20,6,1,1) and one Rep cluster R q(3, f, 5, | , 1). At

the next level, four Spec clusters {iSi(l, 12,0,0,1), 52(1,14,0,0,1), 5.3(1,10,0,0,1),

82

5 4 (1, 20,0,0,1)} are mapped to three Rep clusters {/?i(l, 2 ,0 ,0 , 1), /22 (1 ,1 ,0 ,0 ,1),

/?3 (1 ,1 ,0 ,0 ,1)}. Using our mapping algorithm, S3 and S 4 are mapped onto /? |;

S 2 and Si are mapped to R 2 and R3, respectively. This implies that task modules

{d, e, g, h, i} are mapped to processor P I, {b, f} are mapped to P2, and {a, c}

are assigned to P3. The mapping of the SIMD Spec subgraph onto the SIMD Rep

subgraph can be done in a similar way. The overall mapping result is shown in

Figure 3.7.

0 4.5 8.5 12j 13 j 16.5 19.5 225 25.67
PI
P2
P3

P4

P5

F ig u re 3.7 The Gantt chart of obtained schedule.

3.3.4 C o m p ariso n S tu d y

In the following, we compare our algorithm with three other graph-based mapping

algorithms, including the original Cluster-M mapping algorithm, Lo’s Algorithm A,

as well as Shen and Tsai’s A* algorithm. For the rest of the chapter, we will use

Max Flow/Min Cut to refer to the Algorithm A of Lo’s algorithm. Since all of these

algorithms do not incorporate heterogeneity in computation and machine types in

their mapping, it is only possible to compare the results of mapping each type of

task module onto the same type of processor.

Consider the example we discussed in the previous section for mapping the task

flow graph of Figure 3.2 to the system of Figure 3.5. The scheduling G antt chart,

using our algorithm on the assignment of the MIMD code segment onto the MIMD

subsystem, is shown in Figure 3.7. The SIMD code segment shown in Figure 3.2

represents the forward elimination part of a Gaussian elimination kernel. Suppose

that, using a baseline computer, it takes one clock cycle to perform an addition or

83

subtraction and that it takes two clock cycles to do a multiplication or division of

two real numbers. Also, assume the communication amount on an edge to be the

number of real numbers that need to be sent. The mapping results of the MIMD-type

task modules onto the MIMD-type processors by using our suboptimal mapping, the

original CIuster-M mapping algorithm, Lo’s Max-Flow/Min-Cut, as well as Shen and

Tsai’s A* are shown in Figure 3.8. Their total execution times are 22.5, 24.5, 24,

and 28, respectively. Our suboptimal mapping algorithm produces the best result.

0 4.5 8.5 12.5 13.5 16.5 19.5 22.5

M mapping algorithm
0 2 6 9 21.5 24.5

PI
P2
P3

(b) The Cluster-M nonuniform mapping algorithm
0 2 6 10 14 18 21 24

PI
P2
P3

(c) Lo’s Max-Flow/Min-Cut algorithm
0 5 9 13 17 19 25 28

PI
P2
P3

(d) Shen and Tsai’s A* searching algorithm

F ig u re 3.8 The mapping results by using different algorithms.

The mapping results of the SIMD-type task modules onto the SIMD-type

processors are shown in Figure 3.9. The total execution time by the four different

mapping algorithms are 25.67, 30.17, 38, and 33.83, respectively. Evidently the

augmented Cluster-M mapping algorithm produces the best mapping, yet the original

nonuniform Cluster-M algorithm (from Chapter 2) also produces a very good results.

m

m z E

PI I d I e Is I h i f
P2 b f [

(a) The Augmented Cluster-

84

0 2.67 6 67 1067 1267 15 67 18.67 20 22 22.67 24.67 25 67

PI
P 2

(a) The Augmented Cluster-M mapping algorithm
0 2.67 6.67 10.67 12.67 15.67 17 19 19.67 29.17 30.17

algorithm
0 2.67 6.67 10.67 14.67 1867 20.67 23.67 26.67 29.67 31 33 35 37 38

P I

P2

35.5 36.5

(c) Lo’s Max-Flow/Min-Cut algorithm
0 6 10 14 18 20 23 26 27.33 29.33 33.83

P I

P2

(d) Shen and Tsai’s A* searching algorithm

F ig u re 3-9 The mapping results of Gaussian elimination by using different,
algorithms.

3.4 Conclusion

This chapter presents a brief overview of a number of existing heterogeneous mapping

techniques. It also contains a study of the problem of assigning and mapping a given

task onto a heterogeneous suite of computers. An optimal solution to this problem is

one tha t leads to the minimum execution time subject to certain constraints. Finding

the optimal solution is known to be computationally difficult. Therefore, this chapter

presented a suboptimal solution. Two algorithms for clustering task flow graphs and

system graphs were studied. A suboptimal heterogeneous mapping algorithm using

the ILP model was presented. Both the clustering and mapping algorithms are

extensions to the original Cluster-M mapping methodology [15, 25, 17] so that they

are more suitable for heterogeneous computing. The scheduling results obtained for

the presented examples, compared with other heterogeneous mapping techniques,

t J T 2 1 2
2

t 4
3

t 3 T 3‘ 4

t] t J T s

4 10 21.5 26 28.33 31.33 32.33

T! t 1 1 2 tJ T 22 tJ T? T? r 5

tJ T S T? t 52
4.67 10.67 16.67 21.17 25.67 28.67

(b) The Cluster-M nonuniform mapping

t] T j t J T 2 1 2 T 2 1 4 T ?
3

t 4
4

T 4
4

t 5

1
t 3 ^ 5 t !

4.67 10.67 16.67 21.17 24.17

85

are better in terms of total execution time and the running time for obtaining such

solutions.

C H A PT E R 4

H A R D W A R E ESTIM A TIO N OF H ETER O G EN EO U S C O M P U T IN G

In HC, code profiling is the process of determining what types of codes are found

in a given heterogeneous task. Once this information is available, it is desirable to

know how many processors are needed for each of the code types. In this chapter,

we propose two methods for estimating the minimum number of processors needed

for each of the code types identified in a given heterogeneous task. The first method

involves making use of task compatibility graphs. We show that a task compat­

ibility graph can be generated by analyzing certain compatible relations between

task module pairs of a given task flow graph. We define the resource (processor)

minimization problem to be equivalent to finding the minimal number of cliques that

cover the task compatibility graph or to finding the minimal number of colors that

color the vertices of its complement graph, called the task conflict graph. We solve

this problem using a greedy approach in 0(\V\ log |V| -I- |E |) time, where |V\ and \E\

are the number of vertices and edges of the task compatibility graph. We show that

for certain types of task compatibility graphs optimal solutions can be obtained in

polynomial time. The second method studied in this chapter utilizes the Cluster-M

clustering methodology presented in Chapter 2 for estimating the minimum number

of processors. Examples are shown to compare the estimated results obtained using

different, techniques.

The rest of this chapter is organized as follows. In Section 4.1, we show how

to generate a task compatibility graph and a task conflict graph from the task flow

graph of a given task. Our greedy algorithm for finding a minimal set of cliques for

a task compatibility graph is presented in Section 4.2. We include a discussion on

the special structures of task compatibility graphs in Section 4.3. We discuss the

Cluster-M estimating technique in Section 4.4. Examples are presented in Section

86

87

4.5 to illustrate and compare the efficiency of the estimates obtained. The concluding

remarks of this chapter are presented in Section 4.6.

4.1 Task C om patibility and Task Conflict Graphs

An application task can be represented by a task flow graph in which a set of vertices

denote task modules and a set of directed edges indicate the dependency relations

between the task modules. We assume that the code type of each task module is

identified by a code-type profiler and is incorporated into the vertex set of the task

flow graph. If the code types of two task modules are identical and these two task

modules cannot be executed in parallel, then they are said to be compatible and

should be assigned to the same processor. Then the processor (resource) is said to

be shared by the two task modules. By analyzing a task flow graph, the number

of groups of compatible task modules determines the number of processors. The

idea of resource sharing is not new, it has been extensively studied in high-level

synthesis of digital systems [49, 50, 55]. The use of clique partitioning for resource

minimization in high-level synthesis was first discovered by Tseng [68]. The two

primary advantages of sharing resources are (1) improving the productivity of the

whole heterogeneous suite, and (2) decreasing the size of system graphs so th a t it

simplifies the mapping process and reduces the communication overhead.

A task flow graph G(V,E) consists of a set of vertices, V = {u^l < i < n},

which denotes the task modules to be executed, and a set of directed edges, E =

{(nj,Uj)|l < i < n, 1 < j < n}, which denotes a data communication existing from

module V{ to Vj and tha t must be completed before Vj starts. Each task module

Vi is associated with an amount of computation A,, i.e. the number of clock cycles

required to execute all the instructions of vi on a baseline machine. Each edge (n,, Vj)

is associated with Diy , the amount of data required to be transm itted from module

to module u7-, where Diy > 1. A task flow graph is called nonuniform if the weights

88

of all the nodes are not, the same or if the weights of the edges differ. The code

type of a task module is represented by T(vi). Task modules Vi and Vj are said

to be compatible if there exists any precedence relation between them (i.e. there

is a path from vt to Vj, or vice versa) and T(vi) = T(vj) . A task compatibility

graph Gp(Vp,Ep) can be derived from the task flow graph G(V,E) . The vertex

set Vp is in one-to-one correspondence with the vertex set V, and the undirected

edge set Ep denotes the compatible task module pairs. A group of compatible task

modules corresponds to a subset of vertices tha t are all connected by edges with each

other. Such a subset of vertices forms a clique in the task compatibility graph. A

maximal set of compatible task modules is identical to a maximal clique in the task

compatibility graph. Minimizing the number of processors is therefore equivalent to

finding the minimum number of cliques that cover the task compatibility graph. An

example of a task flow graph is shown in Figure 4.1. Within each vertex, the label

and the computation time of its corresponding task module are indicated by the top

and bottom half portions, respectively. A computation time is assumed to be the

time units consumed to execute a task module on a processor which matches its code

type. Different code types are represented by different node shapes, as shown in the

figure. The corresponding task compatibility graph of Figure 4.1 is shown in Figure

4.2.

Type 1

Type 2

F ig u re 4.1 A task flow graph G.

89

F ig u re 4.2 The task compatibility graph of G.

The resource sharing problem can be examined alternatively by considering

the conflict between task module pairs. Two task modules are said to be conflicting

if they are not compatible. A task conflict graph G f (V / , E f) consists of a vertex

set Vf , which denotes task modules, and an edge set Ef, which denotes conflicting

task module pairs. Note that the task conflict graph is the complement of the

task compatibility graph as shown in Figure 4.3. Coloring the vertices of a task

conflict graph provides a solution to the resource minimizing problem by assigning

each color to a resource instance (processor type). Therefore, finding the minimum

number of processors is equivalent to finding the minimum number of colors for

coloring the vertices of a task conflict graph. Both the clique cover and vertex

coloring problems have been proven to be NP-complete. In the next section, we

show a greedy algorithm with polynomial time complexity for finding a suboptimal

solution to the clique covering problem. For some special types of graphs, shown

in Section 4.3, both the clique covering and the vertex coloring problems can be

solved optimally in polynomial time. We will examine these special graphs and their

utilization in minimizing the resource estimations.

Figure 4.3 The task conflict graph of G.

90

4.2 T h e G reedy A lg o rith m

In this section, we present a suboptimal solution for finding cliques in polynomial

time. The input to the algorithm is the task compatibility graph derived from a task

flow graph as described in the previous section. We assume that the input graph G

is represented by adjacency lists. The task compatibility graph may consist of one

or more components. Vertices belonging to the same component have an identical

code type. For example, the task compatibility graph shown in Figure 4.2 has two

components which have code type one and two, respectively. S is a set of nodes

forming a clique found in each iteration of the w hile loop, and C denotes a set of all

cliques found by the entire algorithm. A priority queue Q is maintained to contain

all the vertices in V — S, keyed by their degree values. The EXTRACT-MAX(<5)

procedure in the algorithm is used to extract the element with the maximal key

value from the priority queue Q. The algorithm first sorts vertices according to the

decreasing order of their degrees. Starting from the vertex with maximal degree,

which is a clique by itself, the algorithm tends to expand the size of the clique as

large as possible. It then searches among the adjacent nodes of the vertex to include

one of them at a time to the clique, if the clique plus the adjacent node with their

edges still form a clique. This is repeated until it is not possible to include any more

new adjacent nodes to the clique. The algorithm stops when all vertices of the input

graph G are covered by a set of cliques. It is a greedy algorithm because it always

tries to find a clique starting from the vertex with the largest value of degree. A high

level description of our greedy algorithm is depicted in Figure 4.4.

To analyze the complexity of this algorithm, we denote the size of the vertex

and edge sets of an input graph G(V,E) by |F | and |£ j, respectively. If the graph

is sparse, it is practical to implement the priority queue Q with a binary heap. For

line 2, it takes (9(|Vj log|V |) time to sort |V| vertices. For each EXTRACT-MAX

operation at line 7, it takes 0(\og |Vj) time, and the total worst case time complexity

91

Greedy-Clique-Cover-Algorithm(G)
1. begin
2. sort the vertices of V[G] by descending order of degree
3. C *— 0
4. Q i— V[G]
5. while Q ^ 0 do
6. begin
7. u <— EXTRACT-MAX(Q)
8. S <— {u}
9. for each vertex v G Adjacent[u] do

10. begin
11. if S U {u} forms a clique then
12. begin
13. S < - 5 u { t > }
14. Q i— Q - {v}
15. end
16. end
17. C i— CU S
18. end
19. end

F ig u re 4.4 Greedy-Clique-Cover-Algorithm

is C?(|T/|log|V|). Note that edges (u, v) are examined exactly once at line 9, and

edges (v,w), where w € 5, are also examined exactly once at line 11. Because u is

extracted from Q at line 7 and all elements of S are removed from Q at line 14, no

m atter if S U {u} forms a clique or not, edges (it, v) and (u, w) will not be examined

again in next loop. Therefore, the running time in the for loop of lines 9-16 is 0(\E\) .

Thus the total running time of the entire algorithm is 0(\V\ log | + |i?|).

4.3 Special Task C onflict an d C o m p a tib ility G ra p h s

The algorithm presented in the last section gives a suboptimal solution for finding

a minimal set of cliques in polynomial time. In this section, we show that if the

input task graphs have special structures, then the clique covering or the vertex

92

coloring problems can be solved optimally in polynomial time. The applications of

special conflict and compatibility graphs in high-level synthesis have been thorough

investigated in [62]. In this section we discuss how these special graphs applying to

minimizing the resource estimation for HC tasks. The special types of task conflict

graphs may be interval or chordal graphs, while the task compatibility graphs may be

comparability graphs. These specific graphs are detailed in the following subsections.

4.3.1 Interval Graphs

We define the lifetime of a task module to be the duration from the beginning to

the end of its estimated execution based on the task flow graph. Two task modules

whose lifetimes overlap and whose computational types are the same can not be

assigned to the same processor. Overlapping lifetimes can be represented by the

intersection between a set of continuous intervals. An intersection graph is obtained

by representing each interval by a vertex and connecting two vertices by an edge if

and only if their corresponding intervals overlap [46]. The intersection graph of a

set of intervals along the real line is called an interval graph. Figure 4.5 illustrates

an example of interval graph and its interval representation. Interval graphs can be

recognized in 0(\V\ + |J51]) time and colored in 0{\V\ log |F |) time, where |F | is the

number of vertices and IEI is the number of edges in G(V, E) [62].

Figure 4.5 An interval graph and its interval representation [62].

93

4.3.2 C h o rd a l G ra p h s

We explained the structure of interval graphs which are a special type of task conflict

graphs. The other special type of conflict graph called chordal graph is discussed

here. A graph is a chordal graph if and only if it is the intersection graph of a

family of subtrees of a tree [46]. Each vertex of chordal graphs corresponds to a

subtree and two vertices are connected by an edge if and only if their corresponding

subtrees are intersected. Figure 4.6 [46] shows an example of chordal graph and its

corresponding subtree representation. Chordal graphs are useful because they can be

recognized and colored both in polynomial time. Rose et al. [57] used a lexicographic

breadth-first, search to recognize chordal graphs in 0 (|F | + |jE|) time and Golumbic

[46] presented a fast algorithm for coloring chordal graphs also in 0{\V\ + IEI) time.

F ig u re 4.6 A chordal graph and its subtree representation [62].

4.3.3 C o m p arab ility G rap h s

We have discussed two special types of task conflict graphs and now we turn our

attention to the special type of task compatibility graphs called comparability graphs.

Before presenting what a comparability graph is, we need to introduce the transitive

orientation property. The transitive orientation property states that each edge of

an undirected graph G can be assigned a one-way direction in such a way that the

resulting oriented graph G' is closed under transitivity [46]. A comparability graph

is an undirected graph which is transitively orientable. Transitive orientation of a

94

comparability graph and recognition of comparability graphs can be performed in

0{\V \\E \) time and 0 (\V \ + |i?|) space [46]. If the vertices of the graph, however,

are linearly ordered in advance, a transitive orientation can be constructed in 0{\E \)

time. The following propositions hold for comparability graphs.

Theorem 1 (Gilmore and Hoffman [46]) An undirected graph G is an interval graph

i f and only i f G is a chordal graph and its complement G~l is a comparability graph.

T heorem 2 (Lekkerkerker and Boland [46]) An undirected graph G is an interval

graph if and only i f the following two conditions are satisfied:

1. G is a chordal graph, and
2. any three vertices of G can be ordered in such a way that every path
from the first, vertex to the third vertex passes through a neighbor of the
second vertex.

The set of three vertices which fail to satisfy the second condition of Theorem

2, is called an astroidal triple. Springer and Thomas [62] identifies two kinds of

astroidal triples, branch and skip astroidal triples, which may result from branching

of overlapping lifetime intervals. A set of intervals are called branch intervals if they

consist of a branch. Branch astroidal triple arises when more than two branches

include an interval tha t does not overlap the branch interval. A branch is called short

branch if it overlaps all intervals in the branch, otherwise it is called long branch.

Skip astroidal triples can be generated if a branch interval connects two long branches

but does not overlap one of the short branches. Figure 4.7(a) and 4.7(b) [62] depicts

examples of branch and skip astroidal triples, respectively. In Figure 4.7(a), interval

C is a branch interval and vertices (A,E,G) is a branch astroidal triple; vertices

(A,F,E) in Figure 4.7(b) is a skip astroidal triple. Therefore conflict graphs th a t arc

interval graphs, and the compatibility graphs which are comparability graphs, can

95

D

F

(a) Branch astroidal triples.

E

(b) Skip astroidal triples.

F ig u re 4.7 Two kinds of astroidal triples [62].

be obtained if the lifetimes of task modules generate no branch and skip astroidal

triples.

We have studied the special cases of compatibility graph and conflict graph,

called interval graph, chordal graph and comparability graph. The clique covering

problem or vertex coloring problem can be solved optimally in polynomial time in

these graphs. Therefore, we can estimate the resource requirements in polynomial

time for heterogeneous tasks that can be represented by these special graphs.

4.4 E s tim a tin g U sing C lu ste rin g T echnique

Our proposed technique is based on the Cluster-M clustering methodology presented

in Chapter 2. The algorithm presented in this section is an extension of the CNDG

algorithm and can be used for estimating the resource requirements of a given hetero­

geneous task. We use clustering here to find out what are the number of processors

needed if some of the subtasks are to be mapped onto the same processor. The

clustering algorithm will identify the minimum number of processors required for

exploring the maximum parallelism in the given task graph. The clustering of join-

96

node and fork-node is similar to the CNDG algorithm except that the parent (child)

node chosen to be embedded must have the same computation type as the join-nodc

(fork-node).

The proposed clustering algorithm is shown in detail in Figure 4.8. The time

complexity of this algorithm is the same with the CNDG algorith, which is 0 (\ E t\).

In practice, the time complexity of this algorithm is O(M) if the number of edges is

proportional to the number of nodes. To illustrate this algorithm, consider the task

graph of seven modules and its Spec graph as shown in Figure 4.9. Each module

is labeled with its computation amount and each edge is labeled with the amount

of data communication. Since the nodes embedded together are to be assigned to

the same processor, we can estimate the number of processors to be the number of

clusters that consists of no subclusters. For example, in Figure 4.9, three type-one

processors are estimated since clusters (A, C, H), (F) and (G) are three nonseparable

type-one clusters. Similarly, there are two nonseparable type-two clusters, (B, E) and

(I, J), therefore two type-two processors are required to execute the two clusters.

4.5 Com parison R esu lts

In this section we present a number of examples comparing our estimated results

to the optimal minimum number of processors needed. For every example we show

the number of processors of each type estimated by our algorithm, followed by the

efficiency obtained in using these many processors using an optimal schedule. We

then compare this with the efficiency obtained using optimal number of processors

required, with the optimal schedule. To concentrate only on the goodness of our

resource estimation technique, we assume the architecture is a virtual system in which

processors are completedly connected, and that an unlimited number of each type

of processor is available. We further assume that the bandwidth of communication

links in the architecture is large enough, such that data transportation between two

97

Clustering Algorithm
begin

divide the directed graph into a number of layers
for each node at layer 1 do

make it into a cluster and calculate its parameters
for each of the other layers do
begin

for all edges (Vi,Vj) do
begin

if Vi is a fork-node then
begin

select a child node which has the largest edge weight and
the same computation type as Vi
embed the child node to Vi
if the child nodes of Vi are not in a cluster then
begin

merge them with vt into a cluster
calculate the parameters of the new cluster

end
end
if Vj is a join-node then
begin

select a parent node which has the largest edge weight and
the same computation type as Vj
embed Vj to the parent node
if the parent nodes of Vj are not in a cluster then
begin

merge them with Vj into a cluster
calculate the parameters of the new cluster

end
end

end
end

end

F ig u re 4.8 Clustering algorithm.

98

Spec graph f/v)

Layer 1

Spec graph [[(T c) (0) ©] © (g)]

Layer 3

Spec graph [(X c) (b) @)

Layer 2

f"
©Spec graph

Layer 4

Spec graph (U)

Layer 5

Figure 4.9 A task graph and steps for obtaining the Spec graph.

99

processors can be completed in one unit of time. Also, data conversion overheads

between two dilTerent type of processors are ignored here. We denote the number of

processor used by N and the efficiency by r).

Consider Example 1, its task flow graph and task compatibility graph are

demonstrated in Figure 4.10 and 4.11 respectively. By analyzing the task compati­

bility graph and using our algorithm, we identified a number of cliques as shown in

Figure 4.12. For the code type one, four cliques are found: {A, D, P}, {G}, {J },

{M}. There are three cliques for code type two: {N, E, K}, {B}, {H}, and also three

cliques for code type three: {0, F, L}, {C}, {I}. This implied th a t we estimate

four processors of type one, three processors of type two and three processors of type

three are to be necessary for executing the task graph. In the optimal case, only two

processors of each type are required to complete this task. The G antt charts and

efficiencies of the optimal schedule for using both the estimated number of processors

and the optimal number of processors, are depicted in Figure 4.13. Both of them

take 12 units of time to complete, therefore in (a) r) = and (b) r) —

T y p e 1

T ype 2 | |

T ype 3

F ig u re 4.10 Task flow graph of Example 1.

Consider Example 2 which is more complicated than Example 1. Its task flow

graph, task compatibility graph, and identified cliques are illustrated in Figure 4.14,

4.15, and 4.16, respectively. The estimated number of processor are also four type-

one, three type-two and three type-three by our algorithm. Compared to the optimal

100

F ig u re 4.11 Task compatibility graph of Example 1.

F ig u re 4.12 Identified cliques of Figure 4.11.

case, one type-one and one type-two processors are redundant. The G antt charts of

them are depicted in Figure 4.17 where total running time is 13 time units, therefore

in (a) v = & and (b) tj = $.

Table 4.1 shows the time complexities of the different techniques and the

estimated number of processors required for the heterogeneous task given in

Figure 4.18. The first technique is the greedy algorithm presented for estimating

minimal number of cliques in general compatibility graphs, as shown in Figure 4.19.

Methods two and three are efficient solutions by exploiting a number of special

O000QB0Q00 O00000
0 r ■ I | ■ I — i-----------1 ■ I 0 i .

A

D

O
B 11 C I

E F

J M
K

L

N O

P

a) N = 10, ti = i i b) N = 6, r\ = ^

F ig u re 4.13 G antt charts of Example 1, using a) estimated number of processors
obtained by the task compatibility graph approach and b) optimal
minimum number of processors.

101

T ype I

Type 2

T ype 3

F ig u re 4.14 Task flow graph of Example 2.

J

F ig u re 4.15 Task compatibility graph of Example 2.

F ig u re 4.16 Identified cliques of Figure 10.

a) N = 10, fj = b) N — 8, r] =

F ig u re 4.17 G antt charts of Example 2, using a) estimated number of processors
obtained by the task compatibility graph approach and b) optimal
minimum number of processors.

102

structures of compatibility and conflict graphs in polynomial time. This is shown

in Figure 4.20. The last one is the Cluster-M clustering technique shown in Figure

4.21.

Method Technique Time Complexity Processors estimated
Type 1 Type 2

1 Greedy Algorithm 0(\V \\og\V \ + \E\) 3 3
2 Interval Graph 0 (|V |lo g |V |) 3 2
3 Chordal Graph 0(\V \ + \E\) 3 2
4 Cluster-M o (|VT) 3 2

T ab le 4.1 Comparison of different resource estimating techniques.

Type 1

Type 2

O□
F ig u re 4.18 The task flow graph used for Table 4.1.

F ig u re 4.19 The estimated result obtaining from method 1.

4.6 C onclud ing R em ark s

In this chapter, we presented two techniques for estimating the resource requirements

for heterogeneous tasks. Using the first method, we showed that the resource

103

F ig u re 4-20 The estimated result obtaining from method 2 and method 3.

p
»
(' D

1 >/ / 2

I / t F
1 t \ 1

F ig u re 4.21 The estimated result obtaining from method 4.

minimization problem for a given task flow graph is equivalent to the minimal

clique cover problem for its corresponding task compatibility graph, or the minimal

coloring problem for its corresponding task conflict graph. We presented a greedy

algorithm for estimating the minimum number of processors needed for each of the

code types identified in a given heterogeneous task. We showed that for certain

structures of task compatibility graphs, the optimal solution can be obtained in

polynomial time. The second method involved using the Cluster-M nonuniform

clustering methodology. A number of examples were illustrated to compare our

estimations to the optimal number of processors.

C H A PT E R 5

SO FTW AR E R EQ U IR EM EN TS OF H ETER O G EN EO U S
C O M PU T IN G

A programming paradigm suitable for HC must allow the design and efficient

execution of portable software so that it may be shared and/or distributed among

various computers in a heterogeneous suite. Furthermore, it must support machine

independent programming which does not include any architecture specific details.

To meet these requirements, a programming paradigm must be both portable and

scalable. Cluster-M, presented in Chapter 2, is such a paradigm which provides

an environment for porting various tasks onto the machines in a heterogeneous

suite such th a t resource utilization is maximized and the overall execution time

is minimized. As described in Chapter 2, Cluster-M Specifications are high-level

machine-independent programs represented in the form of Spec graph. Given a task

graph, how to obtain the Spec graph was also presented. However, the Cluster-M

Specification module does not have to receive a task graph as an input, rather a high-

level parallel specification can be written using the Cluster-M constructs presented

in this chapter. In this chapter, we first formally define scalability of heterogeneous

programming paradigms. We then present a set of Cluster-M constructs which

is essential for writing portable Cluster-M Specifications. Also, presented in this

chapter is another portable and scalable programming paradigm, called Hetero­

geneous Associative Computing (HAsC) [54]. HAsC models a heterogeneous network

as a coarse-grained associative computer and is designed to optimize the execution

of problems where the size of the program is small compared to the amount of data

processed. It uses broadcasting to avoid the mapping problem. Ease of programming

and execution speed, not the utilization of idle resources are the primary goals of

HAsC. We show that both paradigms are scalable. We then illustrate how these two

104

105

paradigms can be used together to provide an efficient medium for heterogeneous

programming.

The rest of this chapter is organized as follows. The definitions of scalability

for hardware, tasks and software in HC are presented in Section 5.1. We define the

Cluster-M constructs and present an implementation of them in Section 5.2. HAsC

is introduced in Section 5.3. The concurrent use of HAsC and Cluster-M is presented

in Section 5.4.

5.1 S calab ility

Scalability is one of the basic issues related to and addressed by both HAsC

and Cluster-M, as well as many HPC (High Performance Computing) and MPP

(Massively Parallel Processing) schemes. Scalability is often understood differently

by different authors. For our purposes we will consider scalability to refer to

hardware, tasks and software in roughly analogous fashion. In addition, scalability

may refer to both homogeneous or heterogeneous architectures.

5.1.1 H om ogeneous S calab ility

The homogeneous case refers to multiple machines which are of the same basic

architectural type, typically various-sized versions of the same vendor product. For

example, an eight processor CRAY is a hardware example of a “scaled-up” version

of a two-processor CRAY.

D efin itio n 1 We define the hardware scalability function, y(a,6), between two

homogeneous architectures, a (the larger) and b (the smaller), to be the rational­

valued function giving the size multiple of a over b. In the example above, the

eight-processor Cray has a scalability factor of 4 (x = over the two-processor.

Task scalability is more complex. Typically implied is the ability to take a

task (algorithm plus data) executing on a small machine and execute the “same”

106

task on a “scaled-up” machine, utilizing additional resources of the larger machine,

with performance “scaled-up” reasonably close to y. One ambiguity in this concept is

what we mean by the “same” task. If it means only executing the same program, but

with possibly different, (i.e. larger) data, then tasks in a homogeneous environment

often “scale,” particularly if the scaling factor of the data size is equal to

D efin ition 2 We define a type 1 task scalability function, T(a,b) for a given program

applied to two different data set sizes, a (the larger) and b (the smaller) to be the

rational valued function giving the size multiple of a over b. For example, i f the size

of a is 16K items and b is 2K items, then T=8. This means that a program is type

1 scalable if it processes data set b eight times faster than data set a, using the same

hardware configuration.

However, if we apply the above definitions to the case where both the data

and the algorithm are fixed, then tasks often do not scale, not even on scaled up

homogeneous hardware. To give a simple example, suppose we are computing a

pixel-based imagery problem on a SIMD machine in which both the number of pixels

and the number of processors is IK. If we scaled-up to a 16K processor (y = 16),

typically this task would not scale, i.e., it would not be able to exploit the additional

15K processors and we would get no increased performance. However if our original

task had started with a 16K pixel problem, we would typically be able to achieve a

scale up in performance, on the 16K machine over the IK machine.

D efin itio n 3 We define type 2 task scalability, between two homogeneous archi­

tectures, a (the larger) and b (the smaller), to be the potential to exploit the inherent

hardware scalability between them on some task of a size that fills a.

Software scalability refers to the ability to exploit task and hardware scalability

with little or no changes, other than parameters.

107

D efin itio n 4 We define the software scalability function, a(a,b), for the case of two

homogeneous architectures, a (the larger) and b (the smaller), to be the real-valued

function giving the increase in performance of a over b. Typically we expect some

increase in performance but we do not generally (at least in the homogeneous case)

expect “super-linear” performance, i.e., 1 < a(a, b) < y(a, b). In most cases we expect

a to be a simple multiple of x, *-e., a(a,b) = Ax x (a >b), where 1 /y (a ,6) < A < 1.0.

If X is close to 1.0, i.e., A = 1 — e, we usually feel we have scaled up well.

Many examples exist of scaling up in this homogeneous sense though, since

it depends on a problem data size large enough to “fill” the large machine, it thus

sometimes depends on an unrealistically large data set size. In particular it appears

to us tha t some of the most recent HPC machines are “scalable” only in the sense

tha t they could run matrix or other similar scientific problems of a size that, thus

far, is not performed.

5.1.2 H e tero g en eo u s S ca lab ility

Heterogeneous scalability is clearly more complicated than homogeneous scalability,

though it is also the case in which we can aspire the ultimate in heterogeneous

computing potential, i.e, to achieve er’s significantly greater than x • This is what

we mean by super-linear performance. In the heterogeneous case, there may be

no commonality between two different architectures, so “scaling” is based on the

performance potential. This means, we will have two different scalability standards,

namely peak MFLOPS (in either fixed 64 or 32 bit mode) or GBS (“gibbs”), billions

of bits per second (processed). Using this, we can extend the x function to the hetero­

geneous case. For example if we had a large vector machine, a, capable of processing

8.7 billion bits per second or 8.7 GBS, and a small SIMD machine, b, of 1.3 GBS,

then y(a, b) = 8.7/1.3 = 6.69. Having extended the hardware concept of scalability

to the heterogeneous case, the task and software scalability follow immediately.

108

Functional Find a datum

Non-Sih SIMD

Approach Sort, then search Associative Search
(not sort), i.e., 0 (1)i.e., >= 0(log n)

Algorithm Various Sorts (Quicksort, Bubblesort, etc.)

Code Various encodings fo r any
specific algorithm

Single Associative command,

e.g., find datum

F ig u re 5.1 Hierarchical breakdown of a task

To understand this theorem, we need to look a t Figure 5.1. We consider there

to be at least, four levels by which a task is defined. One is at the overall functional

level, here considered to be the problem “Find a datum .” Approach is the next level.

By “approach” we mean something at a higher level than algorithm, perhaps a meta­

algorithm. In any case, for this problem, there is a radical difference in the approach

for a SIMD machine used associatively (see [54]) and non-SIMD machines. In the

former case, we can use simple associative search, which is 0 (1); in the latter case we

would typically use a sort, then search operation, i.e., the asymptotic performance is

bounded by f2(logn). For the associative search on a suitable SIMD machine, there

is really only one instruction “find datum ”, so that there is no room for differing

algorithmic or code variations. However in the non-SIMD case, there are many

possible variations. For example, depending on the data, parameters, architecture,

etc., we could use a number of different search techniques. Similarly we could use a

number of different coding schemes for each algorithm.

In this context, most researchers, when describing “scalability” , do not mean

that the specific code is heterogeneously scalable and generally do not mean tha t

109

the algorithm is heterogeneously scalable. For example, a matrix times a vector

operation might best be done with a SAXPY style algorithm on one machine and

an SDOT on another. At the same time, the term “scalability” almost never applies

to the functional level in a homogeneous environment since this is far too general

to have any real meaning (in the usual context of scalability). W hat is almost

always intended is that the term “scalability” apply to the approach level. However

the example above shows that this is inadequate to support efficient M PP/HPC

performance. That is, a “scalable” approach to finding data would almost certainly

be based on the non-SIMD, non-associative approach of “sort, then search”. This

might get maximal performance on non-SIMD machines and might also work on

SIMDs, but never optimally. That is, the scalable approach is S7(logn), whereas the

non-scalable SIMD version is 0(1). This example illustrates two things:

a. It is possible to have a case where a non-scalable (at the approach level)

implementation is inherently more effective than a scalable approach implemented

on the same machine, and

b. It is possible to have hardware scalability one way and task/software scala­

bility the other. Suppose the non-SIMD machine has a hardware scalability factor of

k over the SIMD, i.e., y(non-SIMD,SIMD) = k . However if n (the data size) is large

enough, i.e., n > 2K, then the SIMD machine would have a task scalability OVER

the non-SIMD, i.e, cr(SIMD,non-SIMD) > 0 (logn //t). In other words the scalable

metric is inherently defective in this case. Thus we conclude:

T h eo rem 3 Issues of hardware, algorithmic and software scalability at the approach,

algorithm and code levels are inherently incapable of measuring the potential of IIPC

in heterogeneous parallel environments.

The only kind of scalability applicable to a heterogeneous network is type 1

task scalability at the functional level. In essence h e terogeneous sca lab ility refers

110

to the property that a given software scalable program will execute efficiently on any

size data set on any heterogeneous network configuration without any modification.

While functional level scalability may be trivial on a homogeneous network, it is

fundamental to establish a common unified programming environment for hetero­

geneous networks.

5.2 C lu ste r-M C o n s tru c ts

The basic operations on the Spec clusters and their contained elements are performed

by a set of constructs which form an integral part of the Cluster-M model. The

following is a list and description of the constructs essential for writing Cluster-M

Specifications.

• CMAKE(LVL, ELEMENTS, x)

This construct creates a cluster x at level LVL which contains ELEMENTS as

its initial elements. ELEMENTS is an ordered tuple of the form ELEMENTS

— [ei,e2 , •••,£„] where n is the total number of components of ELEMENTS.

The components of ELEMENTS could be scalar, vector, mixed-type, or any

type of data structure required by the problem.

• CELEMENT(x, j, e)

This construct yields the j-th element of cluster x , and returns this element as

e. If j is replaced by then CELEMENT yields all the elements of cluster x.

If x is replaced by then CELEMENT yields all the elements of all clusters.

• CSIZE(x, e)

Returns e as the number of elements of cluster x.

• CMERGE(x, y, ELEMENTS, z)

This construct merges clusters x, y of level LVL into cluster z, rnina:,?/ of

I l l

level LVL + 1. The elements of the new cluster are given by ELEMENTS. If

ELEMENTS in CMERGE is replaced by the elements of the new cluster

are the elements of x concatenated to the elements of y.

« CUN (op, n, x, i, e)

This construct applies unary operation op to the i-th element of cluster x, and

returns the result by e. If op is left or right shift operation, the number of shifts

is specified by n.

• CBI(op, x, i, y, j, e)

This construct applies binary operation op to the «-th element of cluster x and

the j- th element of cluster y, and returns the result by e. If i, j are replaced

by then the binary operation is applied to all elements of x, y.

• CSPLIT(E, k, El, E2)

This construct splits cluster E of level LVL at k-th element into two clusters

El and E l .

5.2.1 Im p le m e n ta tio n o f th e C lu ste r-M C o n s tru c ts

In this section, we first give a brief introduction to Program Composition Notation

(PCN), a parallel programming language selected as the implementation medium

for the various components of Cluster-M. We then discuss the Cluster-M constructs

implemented in PCN.

5.2.1.1 P ro g ra m C o m position N o ta tio n (P C N) Program Composition

Notation is a system for developing and executing parallel programs [14, 34].

It comprises of a high-level programming language with C-like syntax, tools for

developing and debugging programs in this language, and interfaces to Fortran and

C allowing the reuse of existing code in multilingual parallel programs. Programs

112

developed using PCN are portable across many different, workstations, networks,

parallel computers. The code portability aspect of PCN makes it suitable as an

implementation medium for Cluster-M.

PCN focuses on the notion of program composition and emphasizes the

techniques of using combining forms to put individual components (blocks, procedures,

modules) together. This encourages the reuse of parallel code since a single combining

form can be used to develop many different parallel programs. In addition, this facil­

itates the reuse of sequential code and simplifies development, debugging and

optimization by exposing the basic structure of parallel programs. PCN provides a

set of three core primitive composition operators: parallel, sequential, and choice

composition, represented by ” ||” , and ”?” respectively. More sophisticated

combining forms can be implemented as user-defined extensions to this core notation.

Such extensions are referred to as templates or user-defined composition operators.

Program development, both with the core notation and the templates is supported

by a portable toolkit. The three main components of the PCN system are illustrated

in Figure 5.2.

Application-specific
composition operators

Portable Toolkit

Core Programming Notation

Figure 5.2 P C N System Structure

113

5.2.1.2 P C N C lu ste r-M C o n stru c ts The seven Cluster-M constructs are imple­

mented in PCN as follows:

/* 1. Makes given elements into one cluster */

C M A K E (L V L , E L E M E N T S , x)

{ || M I N J S L E M E N T (E L E M E N T S , n),

/* n is the smallest number in ELEMENTS */

x = [LVL, n, E L E M E N T S]

}

M I N - E L E M E N T (E , n)

{; sys : l i s tJength(E , len),

{? len —— 1— > n = E[0],

default — > { ? E l = [m | E l] — >

{; M I N . E L E M E N T \ { E \ , m , m i n) ,

n = min

}

}

}

M I N J E L E M E N T l (E l , m, mm)

{? E l? = [/i | E2] - >

{;

{ ? h, < m — > m l = h,

default — > m l = m

} ,

M I N - E L E M E N T l (E 2 , m l , min)

h

114

defnull — > min = m

}

/* 2. Yields an element of the cluster * /

C E L E M E N T (x , j , e)

{; C S I Z E (x , s) ,

{ ? j = = x l] - > e = x l,

j <= s, x l = [_, xl] - > C E L E M E N T l (x l , j , e)

}

}

C E L E M E N T l (x, j, e)

{ ? j > 1 - >

{ ? x? = [_|xl]— >

C E L E M E N T l (x l , j - l ,e),

},

de f ault— > e = x[0]

}

/* 3. Yields the size of the cluster */

C S I Z E (x , s)

{? x? = [_, x2] - > C S I Z E l (x 2 , 0, s),

de fau l t — > s = 0

}

C S IZ E l (x ,a c c , s)

{? x? = [_|xl] - > C S /Z E ltx l .a c c + M) ,

default — > s — acc

115

/* A. Merges cluster x and y */

C M E R G E (x , y, E L E M E N T S , z)

{? x ? = [LVLjx, ., xl], y? = [LVLjy, _, yl] - >

{; M I N J E L E M E N T (E L E M E N T S , min),

makeduple(3,T),

T[0] = L V L jc ■+ 1,

T[l] = mm,

{? E L E m e n ts -- - “ —" — >

{; sys : list-concat(x1, yl, xy),

T[2] = xy

}.

d e f a u l t - > T[2] = E L E M E N T S

},

sys : tuple JoJis t(T , Z , [])

}

}

/* 5. Does the Unary operation */

C U N {op, n, x, i , e)

{; C E L E M E N T (x , i, el),

{? op = = “ < < > l e f t s h i f t (e l , n , e) ,

op == “ > > > r igh tsh i f t {e \ ,n ,e) ,

op = = > ones-Complement{el , e) ,

op = = usqr”— > e = e l * e l ,

op = = “ — ” — > e = 0 - el

}

}

116

/* 6. Does the Binary operation */

C B I(o p ,x , i , y , j , e)

{; C E L E M E N T (x , i, e l),

C E L E M E N T (y , j , e 2),

•§ II II — > e = el + e2,

op = = 11 _ 11— > e = el — e2,

op = = - > e = el * e2,

op = = r _ > e = e l/e2 ,

op - - - > e = el%e2,

op = = - > biiwise_and{e, el,e2),

op = = T _ > bitwisejor(e, e l, e2),

op = = - > bitwisejvor(e,el,e2)

}

}

/* 7. Does the Split operation * /

C S P L I T (x ,k ,p , q)

{ || C S IZ E { x , s) ,

{? x? = [Z V L ,n ,E]- >

{ ? k = = s - >

{ || p = [L K L + l ,n ,£] ,

9 = [LFL + l,O,0],

},

k < s— >

{ || C S P L I T l (E , k , E l , E 2) ,

M I N J E L E M E N T { E \ , n l),

M I N _ E L E M E N T { E 2 , n2),

p = [LFL + 1, n l, El],

117

q = [LVL + l,n 2 , E2],

}

}

}

}

C S P L I T \ { E , k, E l , E2)

{ ? /c > 0 - >

{? E? = [/?{£] — >

{ || C S P L I T l (t , k — 1, E3, E2),

E l = [/i|E3]

}

},

default— >

{II £1 = 0,

E2 = E

}

}

5.2.2 C lu ste r-M P ro b le m Specification M acros

Several operations are frequently encountered in designing parallel algorithms.

Macros can be defined using basic Cluster-M constructs to represent such common

operations. We next present several macros, their coding in terms of Cluster-M

constructs and their PCN implementations:

5.2.2.1 A ssoc ia tive B in a ry O p e ra tio n Performing an associative binary

operation on N elements is a common operation in parallel applications. The

Cluster-M Specification graph for input size = 8 is given in Figure 5.3. The resulting

118

Specification graph is an inverted tree with input values each in a leaf cluster at level

1 and the result at the root cluster at level logn + 1. Using Cluster-M constructs,

the macro ASSOC-BIN, written in PCN, applies associative binary operation * to

the TV elements of input A and returns the resulting value as follows:

A S S O C JB IN {*, TV, A)

int TV, A[];

{ ; Ivl = 0,

m ake duple (N , cluster),

{; i over 0 .. TV — 1 ::

{ ; CMAI<E(lvl,[A[t\},c),

cluster[i\ = c

}

},

BinaryJOp{cluster, TV, op, Z)

}

B inary JOp(X, TV, op, B)

int TV, n;

{? TV > 1— > { ; n := TV/2,

makeduple(n, Y),

{ ; i over 0 .. n — 1 ::

{ ; B IM E R G E (o p , X[2 * t], X[2 * i + 1], Z),

Y[T] = Z

}

} ,

Binary-Op(Y, n, op, B)

119

} ,

d e fa u lt— > B = X

}

B I.M E R G E (o p , A 'l, Ar2, M)

int e;

{ ; C B I (o p ,X l , l ,X 2 , l , e) ,

C M E R G E (X 1, A'2, [e], M)

}

Level 1
(Input)

Level 2

Level 3 d l 8 |*a;*a3 *a4 a5*a6*»7*a8

Level 4
(Result) a j *a2*a3 *84*85 *a6*a7*a8

F ig u re 5.3 Cluster-M Specification of associative binary macro.

5.2.2.2 V ecto r D o t P ro d u c t As a representative example of vector operations

(Vecops), we consider here the dot product of two vectors. The vector dot product

of two n-element, vectors A and B is defined as d = • bf). The cluster-M

Specification graph of this operation is similar to that shown in Figure 5.3. This

macro can be written in terms of Cluster-M constructs and the above ASSOC-BIN

macro as follows:

120

/* VECTOR DOT PRODUCT*/

DOT-PRODUCTION , op, A, B, Z)

in tN ,A [] ,B [} ,C [N],e ;

{; Ivl = 0,

m akeJuple(N , A \),

m.akeJ,uple(N, B \) ,

{|| i over 0 .. N — 1 ::

{ ; C M AK E (lvl,[A [i]\,a),

C M A K E (lv l, [£[*]],&),

A\[i] — a,

B\\i] = b

}

} ,

{; j over 0 .. N — 1 ::

{ ; C B I(o p ,A l[j] ,l ,B l[j] ,l ,e) ,

C [j} := e

}

},

A SSO C .B I N (“ + ” , N, C, Z))

}

5.2.2.3 SIM D D ata Parallel O perations In this class of operations each

operation is applied to all the input elements without any communication. In this

case each operand is assigned one cluster in the problem Specification. The desired

operation is applied to all clusters. The macro DATA-PAR applies operation * to

all N elements of input A, as follows:

121

D A T /L P A R (op , n, N, A, Z)

int A[];

{; Ivl = 1,

m akeJ.uple(N , duster),

{ ; i over 0 .. N — 1 ::

{ ; CM4/rE(Mt[,4[i]],c),

cluster[i] — c

}

} ,

makeJ,uple(N, Z),

{ \ j over 0 .. N — \ ::

{ ; C U N (op, n, cluster[j], 1, e),

Z[j] = c
}

}

}

5.2 .2 .4 Broadcast O peration This is a frequently encountered operation in

parallel programs. One value is to be broadcast to all processors in the system. The

problem Specification for a macro that broadcasts one value ’a ’ from processor x to

N recipient clusters or processors, can be written in terms of Cluster-M constructs

as follows:

B R O A D C A S T (N , e, Z)

{; Ivl — 0,

m akeJuple(N , Z),

122

{|| i over 0 to N — 1 ::

{ ; CM AKE(lvl,[e},c),

Z[t\ = c

}

}

}

The Specification graph for the broadcast operation when TV = 8 is shown in

Figure 5.4.

I^evel 1

Level 2

© © o

Figure 5.4 Cluster-M Specification of broadcast macro.

5.3 H eterogeneous A ssociative C om puting(H A sC)

Heterogeneous Associative Computing (HAsC) models a heterogeneous network as

a coarse-grained associative computer. It assumes tha t the network is organized

into a relatively small number of very powerful nodes. Basically, each node is a

supercomputer architecture (vector, SIMD, MIMD, etc). Thus each node of the

network provides a unique computational capability. There may be more than one

node of a specific type in the case that special properties are present. For example,

123

ono STMD node may be specialized for associative processing, a second SIMD node

may contain a very powerful internal network configuration.

Figure 5.5 illustrates the logical similarity of an associative machine and a

heterogeneous network. In particular, a disk-computer node on a network can be

compared to an associative memory-PE cell. That is, as in an associative cell,

the node’s computer is dedicated to processing the data on the node’s disk(s).

The disk-to-machine data transfer rate is much more efficient than the node-to-

node transfer rate. Similarly, memory-to-PE transfers are much faster than PE-

to-PE transfers. Note that the associative computer and network diagrams are

quite different from shared memory MIMD models. Shared memory configurations

emphasize the concept that all data is equally accessible from all processors. This is

not the case in a heterogeneous network.

Associative Cells

PB iM emory 1

a - An Associative Computer

HAsC Nodes

b - Associative Configuration o f a Network

Figure 5.5 Associative Configuration of a Network.

124

HAsC is “layered” in that any node in the HAsC network may again be

another network. Thus a HAsC node may be a HAsC cell containing more than one

computer or it may be a port to another level of computing in the HAsC network.

For example, most nodes may contain a general purpose computer in addition to

a supercomputer to function as the node’s port to the rest of the HAsC network

and for file management and other support roles. Figure 5.6 shows a typical HAsC

network organization. Each HAsC node has access to a number of instruction stream

channels. Each channel broadcasts a different sequence of code. The HAsC node

selects the appropriate channel based on its local data and previous state. The

selected channel is saved in a channel register. A port, or transponder node, will

accept a high level command and “translate it” into the commands appropriate for

the subnetwork.

Data

Data

Data

VECTOR

MIMD

Port/
Transponder node

Figure 5.6 A Layered Heterogeneous Network

Some properties of the associative computing paradigm which make it well

suited for heterogeneous computing are: i) efficient programming and execution with

large data sets and small programs, ii) optimal data placement, iii) software scala­

bility (see Section 5.1), iv) cellular memory allocation and v) search-process-retrieve

synchronism [54].

125

5.3.1 Instruction E xecution

In conventional machines, instructions are delivered to a CPU and are then executed

without question. In HAsC, instructions are broadcast to all of the cells listening

to a channel but each individual cell must determine whether or not to execute

the instruction. This determination is performed as follows: Upon receipt of an

instruction, a node “unifies” it with its local instruction set and data files.

The unification process is borrowed from Artificial Intelligence. Several

languages such as Prolog and STRAND [33] incorporate the process. HAsC is

different, in that it uses unification only at the top level. Thus there is only one

unification operation per data file, as opposed to one per record or field. This

difference is critical in a heterogeneous network where communication of individual

data items would be prohibitively expensive.

If there is a match, the appropriate instruction is initiated. The “instruction”

may in turn issue more instructions. Thus control is distributed throughout HAsC.

That is, a “program” starts by issuing a command from a control node. If a

receiving node receives a command that is in effect a subroutine call, it may become

a transponder control node. It may first perform some local computations and then

start issuing (broadcasting) commands of its own. If the node happens to be a port

node the commands are issued to its subnet as well as to its own network. Thus it

is possible for multiple instruction streams to be broadcast simultaneously a t several

different logical network levels in a HAsC network.

In general, HAsC assumes that data is resident in a cell. As a result, data

movement is minimal. However, it is common for one cell to compute a value and

broadcast it to other cells. Thus, in general, there is a need to synchronize the

arrival of commands and data. There are basically two cases which are handled

automatically by the HAsC administrator as a part of the search-process-retrieve

protocol.

126

The normal case is for data to be resident at a cell when the HAsC command

arrives. Instruction unification and execution proceeds as described above. IIAsC

allows data transfers but protocol insists that the data transfer be complete before

any associated commands are broadcast.

The second case involves command parameters. When a command arrives and

is unified with resident data at a node, but some parameter data is missing. The

unified command is then stored in a table to wait for the parameter in a synchronism

process called a data rendezvous. When parameter data arrives, the rendezvous table

is searched for a match. If found, the associated command is executed.

5.3.2 H A sC A dm inistration

HAsC uses network administrators and execution engines to effect the paradigm.

Each HAsC network level has a system administrator and each node in a network

has its own local administrator. The local administrator monitors network traffic

capturing incoming instructions and checking for illegal commands. It is also

responsible for maintaining the local HAsC instruction set.

The administrator receives all incoming HAsC instructions from the local

network. It then verifies if each instruction is a legal HAsC instruction. If it is,

the administrator puts it in the Execution Engine queue. Otherwise, it attem pts to

identify the source and makes a report to the system administrator. Repeat offenses

cause escalating diagnostic actions as determined by the network administrator.

If a Meta HAsC instruction such as (un)install, (un)extend or (un)augment is

received, it is processed immediately. The Meta instructions will create, modify and

delete HAsC instructions from the local HAsC instruction set respectively. Meta

instructions can also modify local data structure definitions.

Since the instruction set can be dynamically expanded by the users, it is

possible for two users to install the same instructions. The node administrator

127

distinguishes between the two instructions by a user id and a program id which

are broadcast with every HAsC instruction.

Instructions can be added at several different logical levels: i) system, ii)

project, iii) user. Typical systems level instructions would be data move and

formatting commands. Project commands would be project oriented. For example,

a numerical analysis project would have a matrix multiply and vector-matrix

multiply instructions, while a logic programming project might have specialized

logic instructions, such as unification. At the user level, one user might specify a

SAXPY operation while another might want a dot product. Scalable libraries may

exist at any level but most commonly at the project level.

Each node/cell has an execution engine which controls instruction execution

at tha t node. The execution engine selects the next instruction, makes the bindings

specified by instruction unification and causes the instruction to be executed. The

execution engine performs the following tasks:

Save Environment
Get Next Unified Instruction
Bind Unified Variables
Establish Environment
Execute Unified Instruction
Restore Old Environment

Instruction execution may take two basic forms. First the instruction may be a

HAsC program which is executed in the transponder mode. Second, the instruction

may be a library call written in FORTRAN, C, LISP, etc. In this case, the established

environment restrictions produces the proper interface for the appropriate language.

5.3.3 H AsC Instruction Set

This section defines the nature of the operations, the instruction format and the

instruction synchronization classes of the HAsC instruction set.

128

IIAsC is dynamic. As such, it must allow for a dynamic instruction set and

data structure modifications. Thus the HAsC install meta instruction consist of an

associative pattern and a body of code. When it is broadcast to the system, all nodes

which successfully unify with the instruction gather the body of code and install it

on the local node. The extend instruction consists of a pattern and a data definition.

Responding nodes add the data definition to the local associations. Extend may add

a named row or column to an existing association. Augment can be used to add an

entire new association.

The patterns in these instructions contain administrative data, such as job id,

project id, etc. If the node is not participating in the project or job then it does

not unify and the instruction is not installed or the data definition not extended.

Uninstall, unextend and unaugment perform the inverse operations.

Basic to the HAsC philosophy is the concept that data when initially loaded

into the system is sent to the appropriate node and never moved. While this would be

ideal, there will always be a need to move data from one node to another. Accordingly

there are a number of HAsC move commands. Move commands can be divided into

intra-association and inter-association instructions. Intra-association instructions

are very much like expressions in conventional languages and are not discussed here

due to lack of space. Inter-association instructions include file I/O as a special case.

Inter-association moves must have node identifiers and for I/O , a file server, a disk

or other peripheral is a legal node.

5.3.4 A ssociative Instruction Levels

The essence of HAsC is to model a distributed heterogeneous network as an

associative data parallel computer where processor synchronization is on an instruction

by instruction basis. Accordingly, in HAsC, the associative instructions are

synchronized. An efficient implementation of the synchronization requires an under­

129

standing of how the various associative statements are mapped onto sequences of

virtual machine commands and most importantly the degree of network communi­

cation complexity of the sequences.

Accordingly, this section describes a hierarchy of instructions - from the highest,

most global (easiest to synchronize) to the lowest, most local (hardest to synchronize).

HAsC will perform most efficiently if the programs are written using high level

commands. The lower the level of the command, the more inter-node communication

is required. Five different levels of instruction coupling are required to implement

all of the HAsC statements on a heterogeneous network.

The communication and synchronization are built into the HAsC instruction.

There is no need for the programmer to be aware of the degree of instruction commu­

nication. The five levels of instructions are presented here to more clearly delineate

the relationship between associative and heterogeneous computing.

The highest level of instruction synchronization is pure associative data paral­

lelism and involves the use of the channel registers only - i.e. there is no global

coupling. There are two types of top level instructions: i) those which execute based

on the channel register value only, such as logical and arithmetic expressions and ii)

those which set the channel register. Data parallel logical expressions (associative

searchers) can be used to set the channel registers and are “automatically” incor­

porated into many HAsC statements. Thus a data parallel IF or WHERE consists

of only an associative search, followed by a sequence of data parallel expressions. It

is a top level instruction. Top level instructions execute in real time and require no

global response or communication. Most computation is done a t the top level.

Figure 5.7 gives some examples of instruction synchronization. In Figure 5.7, $

is the parallel marker and is read as a plural. That is, A$ is read as As. Result$ is a

data parallel pronoun referring to the last performed data parallel computation. The

130

top level synchronization box shows the programming style for algebraic expressions

supported by HAsC.

add the b$ to the c$
subtract the result$ from the d$
convolve the resultS with the e$
save the resultS in the f$
compare the a$ with the b$
where the resultS are equal d o ... elsewhere do ...

Top level synchronization
Expressions and WHERE
commands

move the a$ to the b$
save the a$ in the b$
read c$

Second level synchronization
Data move and I/O
commands

any a$ greater than 5
Third level synchronization
ANY command

pick one of the responderS
any a$ greater than the b$

Fourth level synchronization
Item selection

read matrix a$
exit if EOF
convolve a$ with imageS
display results
repeat
sum the salaryS

Fifth level synchronization
Iteration

Figure 5.7 Instruction Synchronization

The second level of instruction coupling requires only global synchronism.

Prime examples are the data transfer and I/O commands. I/O is always local to

a cell’s processor, but in general the processors may be quite different, physically.

Therefore I/O times may vary dramatically requiring synchronization before the

next HAsC command is issued. Again, the programmer need not be aware of the

synchronization requirements of this class of instructions. The synchronization is

automatic. The programmer only recognizes the need for I/O or data movement.

The third level of complexity consists of simple responder commands. These

commands require the ORing of the responder results of all processors (i.e. an OR

131

reduction). On a SIMD this is a single instruction. In IIAsC, it is the simplest, form

of a HAsC reduction communication. The instructions at, this level, such as ANY,

are used to check for error conditions or determine whether special case computing

needs to be done.

The fourth level is random selection. The HAsC commands in Figure 5.7 at this

level consist of an associative search, followed by the selection of a responder by the

“first, reduction” operation. The data object, of the selected responder is broadcast

to the entire HAsC network for further processing.

The fifth level is iteration. The only use for iteration at, the top level of HAsC

is for user interaction. For example, a typical program might be one which allows

the user to interactively specify kernels to be convolved with an image and to review

the results, as shown in Figure 5.7. D ata iteration does not exist,.

HAsC is a programming paradigm designed to facilitate the utilization of

heterogeneous networks. The parallel associative programming techniques are well

suited for this purpose.

5.4 C luster-M and HAsC

As described in the previous sections, HAsC is most suitable for coarse-grained

heterogeneous parallel computing. It is intended to ease the programming effort

and maximize execution speed, at the expense of resource balancing. Cluster-M,

on the other hand, provides both coarse-grained and fine-grained mapping in a

clustered fashion. It aims at maximizing both execution speed as well as resource

utilization. Therefore, both paradigms can be combined to achieve a better overall

performance featuring ease of programming, increase execution speed and optimal

resource utilization.

132

5.4.1 Concurrent use o f C luster-M and H AsC

Cluster-M mapping can be applied to HAsC in several ways. First, Cluster-M can be

used to determine the initial data mapping before HAsC computation begins so tha t

the overall execution time is minimized. Secondly, Cluster-M mapping can be used

to decide the fine-grained mapping of HAsC nodes as shown in Figure 5.8. Thirdly,

Cluster-M can be alternated with HAsC at run time. In this approach, a Cluster-M

Specification for the task is generated first. The Cluster-M Specification preserves

computation and communication information in a multi-level cluster organization.

Clusters at the same level represent computations a t a given step which can be

executed concurrently. This cluster organizational information can be sent to the

HAsC network controller which then broadcasts the clusters of HAsC instructions

(Figure 5.9). As described in section 5.3, the local HAsC nodes determine which of

the clusters to execute based on their local configuration and data. Global results, if

any, are returned to the initiating HAsC controller which may use them to select the

next level of clusters to be broadcast. The process repeats until all cluster levels have

been processed. This approach is a network implementation of the multiple-SIMD

architecture originally described in [54].

5.4.2 Scalability o f C luster-M and H AsC

Both programming paradigms presented in this paper are machine-independent, as

explained in detail and are therefore heterogeneously scalable. In HAsC, a program

is broadcast, to the entire network and the individual nodes determine locally which

instructions to execute. The global broadcasting approach means that there is no

need to know how nodes are interconnected in the network or how data is distributed

across the nodes. This allows data files to be analyzed dynamically a t run time as

they enter the HAsC system and to be directed to the node(s) (i.e. computers)

best suited to process them. Broadcasting allows scalability. That is, the hardware

133

IIAflC

Node 1

IIAsC

Node n

Figure 5.8 Cluster-M aided HAsC computation within HAsC nodes

Clustcr-M Specification

Workstation

M1MP

Figure 5.9 Switching between Cluster-M and HAsC

can be expanded or modified and the problem size can be changed without having

to reprogram or recompile the basic HAsC program. New nodes consisting of new

machines with installed HAsC software can be added to a network at any time

and at any location. HAsC is not dependent on any physical machine or network

configuration. This is because the instruction broadcast, cell memory organization

and associative searching allows the removal of any reference to data set size and

type from the program.

Cluster-M is also scalable. When a new machine is added to the heterogeneous

network a new Cluster-M representation of the suite can be generated and a Cluster-

44
2 4

C luster

M apping

C luster

M apping

134

Cluster-M

(Clu&ter-M representation)

Machine M achineMachine MachineM achineM achine

M achine Independent Progran

Diatribution Unit Diatribution Unit
(Cluster-M Mapping Module)

Structure o f a scalable heterogeneous paradigm

Problem

Scalability in HAsC

Scalability in Cluster-M

Problem

Machine Machine*!
Cluster M
M apping

Machine!
Cluster-M
M apping

MachineM achine M adiine3
Cluster-M
M apping

M achine Independent Progran

(HAbC Instructions)
Machine Independent Program

(Multi level C luster-M Specification o f H A sC instructions)

(HAbC Controller Broadcasting)

Diatribution Unit

(H AsC Controller broadcasting)

Diatribution Unit

Scalability in concurrent use o f H A sC and C luster M

F ig u re 5.10 Scalability of HAsC and Cluster-M

M specification can be efficiently executed without any change. Also, an appropriate

new mapping function can be computed to map the Cluster-M specification to the

new Cluster-M representation. Furthermore, the two paradigms can be used concur­

rently as a hybrid scalable programming paradigm. See Figure 5.10 for an illustration

of above.

C H A PT E R 6

C O N C LU D IN G REM ARK S

In this thesis, we have discussed some theory and design issues of heterogeneous

computing. We have presented a heterogeneous model of computation which can

efficiently bridge the software/hardware gap in a heterogeneous environment. This

model allows software portability without imposing any restrictions on the hardware.

Furthermore, it allows a mechanism for predicting the performance of a given parallel

program on any heterogeneous computer or suite of computers. Our Cluster-M model

consists of two sets of parameters, one for representing a portable parallel program

and the other for specifying the organization of the underlying heterogeneous archi­

tecture/suite. In addition, the Cluster-M model consists of an evaluation function for

predicting the time performance of any two sets of parameters being considered. A

tool implementing the proposed heterogeneous model of computation called Cluster-

M was presented to support portable parallel algorithm design and programming.

The Cluster-M tool provides a mechanism such that both sets of parameters can be

extracted from any given problem and any underlying heterogeneous organization.

Furthermore, it provides an efficient technique for mapping these portable programs

onto heterogeneous systems using these two sets of parameters. The Cluster-M

mapping algorithm, presented in Chapter 2, is the first generic algorithm for mapping

nonuniform arbitrary task graphs onto nonuniform arbitrary system graphs. Given a

task graph and a system graph, we have shown efficient techniques for producing the

Spec and Rep graphs. These two graphs are then input to the mapping algorithm.

The clustering is done only once for a given task (system) graph independent of

any system (task) graphs. It is a machine-independent (application-independent)

clustering and is not distinct for different mappings.

The process of the mapping algorithm presented in Chapter 2 is performed

recursively by a greedy fashion matching the clusters of the task graphs (Spec

135

136

clusters) to the clusters of the system graphs (Rep clusters). In Chapter 3, we have

used an extended version of the algorithm to incorporate the “type heterogeneity”

(i.e., SIMD and MIMD) of tasks and systems in HC. The augmented mapping

algorithm presented first maps Spec clusters to Rep clusters of similar computation

type and then proceeds with an enhanced fine-grain mapping technique. Since the

expected number of clusters at every level of the fine-grain mapping is constant, we

have used an optimal matching strategy to enhance the algorithm. Therefore, we

have formulated and solved each step of the fine-grain cluster mapping by using an

integer linear programming model. We have compared the mapping results of our

algorithm with those of some other heterogeneous mapping techniques.

In Chapter 4, we have proposed two methods for estimating the minimum

number of processors needed for each of the code types identified in a given hetero­

geneous task. The input to the first method is a task compatibility graph. We

have shown that a task compatibility graph can be generated by analyzing certain

compatible relations between task module pairs of a given task flow graph. We have

defined the resource (processor) minimization problem to be equivalent to finding the

minimal number of cliques tha t cover the task compatibility graph, or to finding the

minimal number of colors that color the vertices of its complement graph, called the

task conflict, graph. We estimated this using a greedy approach in C?(|V| log |V| + |Z?|)

time, where | V| and \E\ are the number of vertices and edges of the task compatibility

graph. We have shown that for certain types of task compatibility graphs optimal

solutions can be obtained in polynomial time. The second method proposed was

using the Cluster-M methodology [25, 15]. We have presented examples comparing

our estimated results to the optimal number of processors needed.

In Chapter 5, we have presented the collaboration of two heterogeneous

programming paradigms, Cluster-M and HAsC. HAsC models a heterogeneous

network as a coarse-grained associative computer. In HAsC a program is broadcast

137

to the entire network, the individual node then determines which instruction to

execute. Cluster-M also allows scalability since programs written using Cluster-M

are machine-independent and can be efficiently mapped and ported among different

systems. A definition of scalability suitable for heterogeneous networks has been

developed. HAsC and Cluster-M have been shown to be both heterogeneously

scalable.

R EFER EN C ES

1. G. Agha. Actors: A Model of Concurrent Computations in Distributed Systems.
The MIT Press, Cambridge, MA, 1986.

2. G. Agha, C. Ilouck, and R. Panwar. Distributed execution of Actor systems. In
Proceedings of Fourth Workshop on Languages and Compilers for Parallel
Computing, Santa Clara, CA, 1991.

3. G. Agha and R. Panwar. An Actor-based framework for heterogeneous
computing systems. In Proc. Workshop on Heterogeneous Processing,
pages 35 42, March 1992.

4. A. V. Aho, J. E. Ilopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

5. E. Arnould, F. Bitz, E. Cooper, H. T. Kung, R,. Sansom, and P. St.eenkiste. The
design of Nectar: A network backplane for heterogeneous multicomputers.
ACM, pages 205-216, 1989.

6. F. Berman. Experience with an automatic solution to the mapping problem. Tn
L. II. Jamieson, D. B. Gannon, and R,. J. Douglass, editors, The Charac­
teristics of Parallel Algorithms, pages 307- 334. MIT Press, Cambridge,
MA, 1987.

7. F. Berman and L. Snyder. On mapping parallel algorithms into parallel archi­
tectures. Journal of Parallel and Distributed Computing, pages 439 458,
April 1987.

8. F. Berman and B. Stramm. Prep-P: Evolution and overview. Technical report
cs89-158, Dept, of Computer Science, University of California at San
Diego, CA, 1987.

9. S. II. Bokhari. On the mapping problem. IEEE Transaction on Computers,
c-30(3):207-214, March 1981.

10. S. H. Bokhari. Partitioning problem in parallel, pipelined, and distributed
computing. IEEE Trans, on Computers, 37(1):48 57, January 1988.

11. L. Borrman, M. HerdieckerhofT, and A. Klein. Tuple space integrated into
Modula-2, implementation of the Linda concept on a hierarchical multi­
processor. In Proc. CONPAR, 1988.

12. B. Buckle and D. Hardin. Partitioning and allocation of logical resources in
a distributed computing environment. In Tutorial : Distributed System
Design, pages 151-1. IEEE Compu. Soc. EIIO, 1979.

138

139

13. N. Carriero, D. Gelernter, and J. Leichtcr. Distributed data structures in Linda.
In Proc. Thirteenth ACM Symposium on Principles of Programming
Languages, January 1986.

14. K. M. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones
and Bartlett Publishers, Boston, MA, 1992.

15. S. Chen and M. Eshaghian. A fast recursive mapping algorithm. Concurrency:
Practice and Experience, 7(5):391—409, August 1995.

16. S. Chen, M. Eshaghian, A. Khokhar, and M. Shaaban. A selection theory and
methodology for heterogeneous supercomputing. In Proc. Workshop on
Heterogeneous Processing, pages 15 22, April 1993.

17. S. Chen, M. M. Eshaghian, and Y. Wu. Mapping arbitrary non-uniform task
graphs onto arbitrary non-uniform system graphs. In 1995 International
Conference on Parallel Processing, volume II, pages 191-195, August
1995.

18. W. Chu, L. Holloway, M. Lan, and K. Efe. Task allocation in distributed
systems. Computer, pages 57-59, November 1980.

19. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subra-
monian, and T. von Eicken. LogP: Towards a realistic model of parallel
computation. In Proc. 4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, May 1993.

20. J. C. DeSouza-Batista, M. Eshaghian, A. C. Parker, S. Prakash, and Y. Wu. A
sub-optimal assignment of application tasks onto heterogeneous systems.
In Proc. Heterogeneous Computing Workshop, April 1994.

21. K. Efe. Heuristic models of task assignment scheduling in distributed systems.
IEEE Computer, 15(6):50-56, 1982.

22. II. El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto arbitrary
target machines. Journal of Parallel and Distributed Computing, pages
138 153, September 1990.

23. II. El-Rewini, T. G. Lewis, and II. IJ. Ali. Task Scheduling in Parallel and
Distributed Systems. Prentice Hall, Englewood Cliffs, NJ, 1994.

24. F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hypercube
by recursive mincut bipartitioning. Journal of Parallel and Distributed
Computing, pages 33- 44, October 1990.

25. M. Eshaghian and M. Shaaban. Cluster-M parallel programming paradigm.
International Journal of High Speed Computing, 6(2):287-309, June 1994.

140

26. M. M. Eshaghian. Parallel Computing with Optical Interconnects. PhD
thesis, Dept, of Electrical Engineering-Systems, University of Southern
California, Los Angeles, CA, 1988.

27. M. M. Eshaghian and R. F. Freund, editors. Proc. Workshop on Heterogeneous
Processing. IEEE Computer Society Press, Los Alamitos, CA, April 1993.

28. M. M. Eshaghian and R. F. Freund, editors. Proc. Workshop on Heterogeneous
Computing. IEEE Computer Society Press, Los Alamitos, CA, April 1994.

29. Mary M. Eshaghian. Parallel algorithms for image processing on OMC. IEEE
Transactions on Computers, 40(7):827-833, July 1991.

30. D. Fernandez-Baca. Allocating modules to processors in a distributed
systems. IEEE Transactions on Software Engineering, 15(11):1427-1436,
November 1989.

31. M. J. Flynn. Very high-speed computing systems. In Proc. IEEE, volume 54,
pages 1901-1909, 1966.

32. S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. I0lh
Annual Symposium on Theory of Computing, pages 114-118, 1978.

33. I. Foster and S. Taylor. STRAND, New Concepts in Parallel Programming.
Prentice Hall, Englewood ClifTs, NJ, 1975.

34. I. Foster and S. Tuecke. Parallel programming with PCN. Technical report,,
Argonne National Laboratory, University of Chicago, IL, January 1993.

35. R. Freund. Superconcurrent processing a dynamic approach to hetero­
geneous parallelism. In Proceedings of the Parallel/Distributed Computing
Networks Seminar, February 1990.

36. V. Gylys and J. Edwards. Optimal partitioning of workload for distributed
systems. In Tutorial : Distributed System Design, pages 151 1. IEEE
Compu. Soc. EHO, 1979.

37. T. C. IIu. Parallel sequencing and assembly line problems. Operations Research,
9(6):841-848, 1961.

38. B. Narahari L. Tao and Y. C. Zhao. Heuristics for mapping parallel compu­
tations to heterogeneous parallel architectures. In Proc. Workshop on
Heterogeneous Processing, pages 36-41, April 1993.

39. J. Lawson and M. Mariani. Distributed data processing system design - A look
at the partitioning problem. In Tutorial : Distributed System Design,
pages 151 1. IEEE Compu. Soc. EHO, 1979.

141

40. C. Leangsuksun and J. Potter. Problem representation for an automatic
mapping algorithm on heterogeneous processing environment. In Proc.
Workshop on Heterogeneous Processing, pages 48-56, April 1993.

41. C. Leangsuksun and J. Potter. Designs and experiments on heterogeneous
mapping heuristics. In Proc. Workshop on Heterogeneous Computing,
pages 17 -22, April 1994.

42. C. Leangsuksun, J. Potter, and S. Scott. Dynamic task mapping algorithms for
a distributed heterogeneous computing environment. In Proc. Workshop
on Heterogeneous Computing, pages 30-34, April 1995.

43. S. Lee and .1. K. Aggarwal. A mapping strategy for parallel processing. IEEE
Transactions on Computers, 36:433-442, April 1987.

44. V. M. Lo. Heuristic algorithms for task assignment in distributed systems. IEEE
Transactions on Computers, C -37(ll):1384-1397, November 1988.

45. V. M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. A. Mohamed, and J. A.
Telle. Oregami: Software tools for mapping parallel computations to
parallel architectures. In Proc. International Conference on Parallel
Processing, 1990.

46. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, NY, 1980.

47. J. Mahdavi, G. L. ITuntoon, and M. B. Mathis. Deployment of a IHPPI-based
distributed supercomputing environment at the Pittsburgh Supercom­
puting Center. In Proc. Workshop on Heterogeneous Processing, pages
93-96, March 1992.

48. C. McCreary and II. Gill. Automatic determination of grain size for
efficient parallel processing. Communications of ACM, 32(9):1073- 1078,
September 1989.

49. M. C. McFarland, A. C. Parker, and R. Camposano. The high-level synthesis of
digital systems. Proceedings of the IEEE, 78(2):301 - 318, February 1990.

50. G. De Micheli. High level synthesis of digital circuits. Technical Report
CSL-TR-92-551, Computer Systems Laboratory, Department of Electrical
Engineering and Computer Science, Stanford University, Stanford, CA
94305-4055, November 1992.

51. B. Narahari, A. Youssef, and H. Choi. Matching and scheduling in a generalized
optimal selection theory. In Proc. Heterogeneous Computing Workshop,
pages 3 8, April 1994.

142

52. D. Notkin, A. Black, E. Lazowska, IT. Levy, J. Sanislo, and J. Zahorjan. Intercon­
necting heterogeneous computer systems. Communications of the ACM,
31(3):258-273, 1988.

53. R. Ponnusamy, J. Salt/, R. Das, C. Koelbel, and A. Choudhary. A runtime
data mapping scheme for irregular problems. In Proc. Scalable High
Performance Computing Conference, pages 216 219, May 1992.

54. J. L. Potter. Associative Computing. Plenum Press, New York, NY, 1992.

55. S. Prakash. Synthesis of Application-Specific Multiprocessor Systems.
PhD thesis, Electrical Engineering-Systems Department, University of
Southern California, Los Angeles, CA 90089-2562, January 1993.

56. S. Prakash and A. C. Parker. A design method for optimal selection of
application-specific heterogeneous multiprocessor systems. In Proc.
Workshop on Heterogeneous Processing, pages 75 80, April 1992.

57. D. J. Rose, R. E. Tarjan, and G. S. Leuker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal of Computing, 5:266 -283, 1976.

58. A. L. Rosenberg. Needed: A theoretical basis for heterogeneous parallel
computing. Unpublished manuscript, 1994.

59. V. Sarkar. Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors. The MIT Press, Cambridge, MA, 1989.

60. C. Shen and W. Tsai. A graph matching approach to optimal task assignment
in distributed computing systems using a minrnax criterion. IEEE Trans­
actions on Computers, c-34(3):197-203, March 1985.

61. J. Sinclair. Effectient computation of optimal assignments for distributed tasks.
Journal of Parallel Distributed Compu., 4(4):342 362, 1987.

62. D. L. Springer and D. E. Thomas. Exploiting the special structure of conflict
and compatibility graphs in high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(7):843
856, July 1994.

63. IT. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.
IEEE Transactions on Software Engineering, SE-3(1):85 93, January
1977.

64. IT. S. Stone. Critical load factors in distributed systems. IEEE Transactions on
Software Engineering, SE-4:254~258, May 1978.

65. V. Sunderam and R. F. Freund, editors. Proc. Workshop on Heterogeneous
Computing. IEEE Computer Society Press, Los Alamitos, CA, April
1995.

143

66. V. S. Sinideram. PVM: A framework for parallel distributed computing.
Concurrency: Practice and Experience, 2(4):315- 339, December 1990.

67. M. Tan, J. K. Antonio, II. J. Siegel, and Y. A. Li. Scheduling and data relocation
for sequentially executed subtasks in a heterogeneous computing system.
In Proc. Workshop on Heterogeneous Computing, pages 109 120, April
1995.

68. C. Tseng and D. P. Siewiorek. Automated synthesis of data paths in digital
systems. IEEE Transactions on CAD, CAD-5(3):379- 395, July 1986.

69. L. G. Valiant. A bridging model for parallel computation. Communications of
the ACM , 33(8):103—111, August 1990.

70. R. J. Vetter, D. H. C. Du, and A. E. Klietz. Network supercomputing:
Experiment with a Cray-2 to CM-2 IIIPPI connection. In Proc. Workshop
on Heterogeneous Processing, pages 87-92, March 1992.

71. M. Wang, S. Kim, M. Nichols, R. Freund, and II. J. Siegel. Augmenting the
optimal selection theory for superconcurrency. In Proc. Workshop on
Heterogeneous Processing, pages 13-21, March 1992.

72. U. Warrier and C. Sunshine. A platform for heterogeneous interconnection
network management. IEEE Journal on Selected Areas in Communi­
cations, 8(1):119—126, January 1990.

73. P. II. Winston. Artificial intelligence. Addison-Wesley, Reading, MA, 2nd
edition, 1984.

74. M. Y. Wu and D. Gajski. Hypertool: A programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed Systems,
1 (3):101 119, 1990.

75. T. Yang and A. Gerasoulis. A parallel programming tool for scheduling
on distributed memory multiprocessors. In Proc. IEEE Scalable High
Performance Computing Conference, April 1992.

76. T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed
Systems, 5(9):951-967, September 1994.

	Theory and design of portable parallel programs for heterogeneous computing systems and networks
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (1 of 3)
	Chapter 1: Introduction
	Chapter 2: A Portable Parallel Programming Model for Heterogeneous Computing
	Chapter 3: Mapping and Scheduling for Heterogeneous Computing
	Chapter 4: Hardware Estimation of Heterogeneous Computing
	Chapter 5: Software Requirements of Heterogeneous Computing
	Chapter 6: Concluding Remarks
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

