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Abstract

Scheduling problems with processing set restrictions have been studied extensively

by computer scientists and operations researchers under different names. These in-

clude “scheduling typed task systems,” “multi-purpose machine scheduling,” “schedul-

ing with eligibility constraints,” “scheduling with processing set restrictions,” and “semi-

matchings for bipartite graphs.” In this paper we survey the state of the art of these

problems. Our survey covers offline and online problems, as well as nonpreemptive

and preemptive scheduling environments. Our emphasis is on polynomial-time algo-

rithms, complexity issues, and approximation schemes. While our main focus is on the

makespan objective, other performance criteria are also discussed.

Keywords: Scheduling; parallel machines; processing set restrictions; computational

complexity; worst-case analysis



1 Introduction

Scheduling problems with processing set restrictions have been studied extensively by computer

scientists and operations researchers under different names. These include “scheduling typed task

systems” (Jaffe 1980, Jansen 1994), “multi-purpose machine scheduling” (Brucker 2004, Brucker et

al. 1997, Vairaktarakis and Cai 2003), “scheduling with eligibility constraints” (Hwang et al. 2004a,b,

Lee et al. 2008, Li 2006, Lin and Li 2004, Park et al. 2006), “scheduling with processing set re-

strictions” (Glass and Kellerer 2007, Glass and Mills 2006, Huo et al. 2008, Li and Wang 2008,

Ou et al. 2008), and “semi-matchings for bipartite graphs” (Harvey et al. 2006). The problem can

be stated as follows: We are given a set of n jobs J = {J1, J2, . . . , Jn} and a set of m parallel

machines M = {M1, M2, . . . , Mm}. Each job Jj has a processing time pj and a set of machines

Mj ⊆ M to which it can be assigned. Our goal is to find a schedule such that each job Jj is

assigned to one of the machines in Mj and such that the makespan Cmax is minimized. Using the

3-field notation of Graham et al. (1979), we denote this problem P |Mj|Cmax if the machines are

identical, Q|Mj|Cmax if the machines are uniform, and R|Mj|Cmax if the machines are unrelated.

We denote these three problems as Pm|Mj|Cmax, Qm|Mj|Cmax, and Rm|Mj|Cmax if the number

of machines, m, is fixed.

The classical problems P | |Cmax, Q| |Cmax, and R| |Cmax are clearly special cases of the problems

P |Mj|Cmax, Q|Mj|Cmax, and R|Mj|Cmax, respectively. In the classical problems, Mj = M for

j = 1, 2, . . . , n. On the other hand, R|Mj|Cmax is a special case of the classical problem R| |Cmax,

since we can set the processing time of job Jj on machine Mi to +∞ if machine Mi is not in Mj.

Thus, R|Mj|Cmax is equivalent to R| |Cmax. Hence, we have the following hierarchy: P |Mj|Cmax is

a special case of Q|Mj|Cmax, which in turn is a special case of R| |Cmax. An algorithm that solves

R| |Cmax also solves P |Mj|Cmax and Q|Mj|Cmax.

In the most general case of processing set restrictions, each Mj can be an arbitrary subset

of M. This corresponds to the situation where jobs have special characteristics and can only be

assigned to certain machines. Vairaktarakis and Cai (2003) study such a scheduling problem, which

is motivated by the throughput management of hospital operating rooms. A typical operating room
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is usually equipped with high tech equipment which costs millions of dollars. Depending on the

equipment available, each room may be available for use by a subset of patients. Minimizing the

makespan is a good proxy for the room utilization objective. Azar et al. (1995) study the online

version of such a scheduling problem, which has applications in wireless communication networks,

where each arriving customer must be assigned a base station, from those within range, to service

it. Yang (2000) also studies a class of scheduling problems encountered in steel production which

has such job processing restrictions.

There are two important special cases that have received considerable attention in the literature:

The nested processing set and the inclusive processing set restrictions. The nested processing set

restrictions have the property that for each pair Mj and Mk, either Mj and Mk are disjoint,

Mj ⊆ Mk, or Mk ⊆ Mj. Inclusive processing set is a special case of nested processing set

in that for every pair Mj and Mk, either Mj ⊆ Mk or Mk ⊆ Mj. In both cases, we can

view the machines to be linearly ordered as M1, M2, . . . , Mm. In the case of nested processing

set restrictions, associated with each Mj are two machine indices aj and bj such that Mj =

{Maj
, Maj+1, . . . , Mbj

}. Furthermore, the intervals [a1, b1], [a2, b2], ..., [an, bn] are nested. In the

case of inclusive processing set restrictions, each Mj is associated with a single machine index aj

such that Mj = {Maj
, Maj+1, . . . , Mm}. We use P |Mj(nested)|Cmax and Q|Mj(nested)|Cmax to

denote the parallel and uniform machine minimum makespan problems with nested processing set

restrictions, and P |Mj(inclusive)|Cmax and Q|Mj(inclusive)|Cmax to denote the corresponding

problems with inclusive processing set restrictions.

An application of scheduling problems with nested processing set restrictions in a food processing

plant is provided by Glass and Mills (2006). Inclusive processing set restrictions also occur quite

often in practice. Hwang et al. (2006) discuss applications in the service industry in which a

service provider has customers categorized as platinum, gold, silver, and regular members, where

those “special members” are entitled to premium services. In those applications, servers (i.e.,

machines) and customers (i.e., jobs) are labeled with grade of service (GoS) levels, and a customer

is allowed to be served by a server only when the GoS level of the customer is no less than the

GoS level of the server. Glass and Kellerer (2007) describe the following scenario where inclusive
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processing set restrictions occur: Consider the assignment of computer programs to one of several

computer processors with identical speed but different memory capacities. Each job has a memory

requirement and can only be assigned to the processor with as much memory capacity as the job’s

memory requirement (see also Kafura and Shen 1977). Ou et al. (2008) describe the following

application in loading and unloading cargoes of a vessel: There are multiple loading/unloading

cranes with different weight capacity limits working in parallel. Each piece of cargo can be handled

by any crane with a weight capacity limit no less than the weight of the cargo. Hence, if we view

each piece of cargo as a job and each crane as a machine, then the problem is to schedule the jobs

on the parallel machines, and each job has its inclusive processing set of machines.

Classical multi-machine scheduling has been studied extensively. Several surveys have been

written about this subject; see, for example, Chen et al. (1998). By contrast, there is no survey

of scheduling problems with processing set restrictions. In this survey paper we concentrate on

the processing set restriction aspect. While our main focus is on scheduling problems with the

makespan objective, other performance criteria will also be discussed.

The rest of this paper is organized as follows: In the next section we survey nonpreemptive

scheduling algorithms, and in Section 3 we survey preemptive scheduling algorithms. In Section 4

we discuss other performance criteria, and in Section 5 we survey other scheduling models. Finally,

we draw some concluding remarks in Section 6 and suggest future directions of research.

2 Nonpreemptive Scheduling Discipline

In this section we discuss algorithms for nonpreemptive scheduling models with processing set

restrictions. In Section 2.1 we survey offline algorithms, and in Section 2.2 we survey online algo-

rithms.

2.1 Offline Algorithms

Since P | |Cmax is NP-hard in the strong sense (Garey and Johnson 1979), problems

P |Mj(inclusive)|Cmax, P |Mj(nested)|Cmax, and P |Mj|Cmax are strongly NP-hard as well. By the
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theory of strong NP-hardness (Garey and Johnson 1979), one can rule out the possibility of a fully

polynomial time approximation scheme (FPTAS) for P |Mj(inclusive)|Cmax, P |Mj(nested)|Cmax,

and P |Mj|Cmax unless P = NP . To develop polynomial-time effective algorithms for these prob-

lems, the best one can hope for is a polynomial time approximation scheme (PTAS). At the present

time, there is no known PTAS for P |Mj|Cmax and P |Mj(nested)|Cmax. However, as we shall see

later, there are PTASs for P |Mj(inclusive)|Cmax (Ou et al. 2008, Li and Wang 2008).

Because of the strong NP-hardness of the problem, researchers have designed approximation

algorithms for P |Mj|Cmax, P |Mj(nested)|Cmax, and P |Mj(inclusive)|Cmax, with increasingly

better worst-case ratios. Lenstra et al. (1990) have developed a polynomial-time algorithm for

R| |Cmax with a worst-case performance ratio of 2 (i.e., solution value is guaranteed to be no

more than twice the optimum). Later, Shchepin and Vakhania (2005) developed a polynomial-time

algorithm for R| |Cmax with an improved worst-case bound of 2−1/m. Since P |Mj|Cmax is a special

case of R| |Cmax, the algorithm of Shchepin and Vakhania also serves as a (2−1/m)-approximation

algorithm for P |Mj|Cmax. We note that the algorithm of Shchepin and Vakhania makes use of

a linear programming method whose computational complexity has not yet been proven to be

strongly polynomial.

Theorem 1 (Shchepin and Vakhania 2005) There exists a polynomial-time algorithm for R|Mj|Cmax

and P |Mj|Cmax with a worst-case ratio of 2 − 1/m.

Vairaktarakis and Cai (2003) develop a branch-and-bound algorithm to solve P |Mj|Cmax op-

timally. They report that the algorithm can solve problem instances for up to 50 jobs. They also

develop several heuristic algorithms and compared their performances empirically. Finally, they

study the amount of flexibility of the machines on the performance when compared with a set

of identical machines. They show that very small amounts of flexibility appropriately distributed

across the machines provide almost the same performance as a system of identical machines.

If the processing set restriction is more structured, such as nested and inclusive processing

set restrictions, then there are algorithms with strongly polynomial running time and worst-case

bounds of 2− 1/m or better. Consider the case of nested processing sets. Let us label the machine
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intervals Mj in increasing order of their levels. That is, machine intervals at the innermost level

(i.e., machine intervals that do not include any other machine intervals) are labeled first, followed by

machine intervals at the next level, etc., and finally followed by machine intervals at the outermost

level. Jobs at the same level can be ordered in an arbitrary manner. Suppose jobs are labeled in

this manner and then scheduled in increasing order of their labels. The next job, say Jj, is always

scheduled on the machine Mi ∈ Mj with the least load. Glass and Kellerer (2007) show that this

simple algorithm has a worst-case ratio of 2 − 1/m.

Theorem 2 (Glass and Kellerer 2007) There exists a strongly polynomial-time algorithm for

P |Mj(nested)|Cmax with a worst-case ratio of 2 − 1/m.

For P |Mj(inclusive)|Cmax, there are several efficient algorithms with worst-case bounds better

than 2 − 1/m. The earliest such algorithms were introduced by Kafura and Shen (1977). They

present a “largest-memory-time-first” (LMTF) algorithm which can be described as follows: Recall

that for P |Mj(inclusive)|Cmax, each job Jj is associated with a machine index aj and Mj =

{Maj
, Maj+1, . . . , Mm}. The LMTF algorithm initially sorts the jobs in the order J1, J2, . . . , Jn,

such that either (i) aj > aj+1 or (ii) aj = aj+1 and pj ≥ pj+1. With this ordering of jobs, the

algorithm assigns the next job Jj to a machine Mi ∈ Mj with the least load. They show that the

worst-case ratio is 5/4 for m = 2 and 2−1/(m−1) for m ≥ 3. They also present an “incremental”

(INC) method, which has a performance ratio of 2 − 2/(m + 1).

Spyropoulos and Evans (1985a) develop data-dependent worst-case bounds on some of Kafura

and Shen’s algorithms. Hwang et al. (2004b) study a “lowest grade-longest processing time” (LG-

LPT) algorithm, which is the same as the LMTF algorithm. They obtain the same worst-case

result as Kafura and Shen, namely a worst-case ratio of 5/4 for m = 2 and 2−1/(m−1) for m ≥ 3.

Glass and Kellerer (2007) present a polynomial-time algorithm with an improved worst-case

ratio. Their algorithm works as follows: Assume that the jobs have been sorted in nonincreasing

order of processing times. Furthermore, assume that there are at least m+1 jobs; otherwise, we can

eliminate some machines to obtain another instance with more jobs than machines. The algorithm

calls a subroutine B(`) for ` = 0, 1, . . . , m (i.e., it calls the subroutine a total of m + 1 times). For
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each ` = 0, 1, . . . , m, subroutine B(`) attempts to assign the largest ` jobs (i.e., J1, J2, . . . , J`) to `

different machines, where it always assigns the next job to the eligible machine with the smallest

index. If it fails to assign the largest ` jobs to ` different machines, then the `th iteration will not

be considered further. Otherwise, B(`) calculates a bound C(`), and the remaining jobs (i.e., jobs

J`+1, J`+2, . . . , Jn) are scheduled in an arbitrary order. Each of these jobs is assigned to the eligible

machine with the lowest index such that the makespan of the resulting schedule will not exceed

3C(`)/2. If it is not possible to obtain such a schedule, then subroutine B(`) will not be considered

any further. Otherwise, B(`) generates a feasible solution. The algorithm outputs the best of all

the feasible solutions (i.e., the one with the smallest makespan) generated by the m + 1 iterations.

Glass and Kellerer (2007) show that this algorithm has a worst-case ratio of 3/2.

Ou et al. (2008) develop a polynomial-time algorithm that has a worst-case ratio of 4/3, as well

as a strongly polynomial-time algorithm with a worst-case ratio of 4/3 + ε, where ε is a positive

constant which can be set arbitrarily close to zero. Their algorithm first determines an upper bound

on the optimal solution value by the LG-LPT algorithm of Hwang et al. (2004b). Let the makespan

of this schedule be CU , and let CL = CU/2. Then, we know that the optimal makespan C∗ lies

within the interval [CL, CU ]. Their algorithm applies binary search to search for a desirable value

C(u) ∈ [CL, CU ] (the strongly polynomial-time algorithm uses a slightly different binary search). In

each iteration of the binary search, the algorithm attempts to assign all n jobs to the m machines via

a Modified First Fit Decreasing procedure with a makespan no greater than 4C(u)/3. The Modified

First Fit Decreasing procedure schedules jobs on the machines in the order of M1, M2, . . . , Mm. Let

S1 = {Jj | aj = 1}. The jobs in S1 are scheduled on M1 in nonincreasing order of processing times.

Let S ′
1 be the set of jobs in S1 that cannot be scheduled on M1, and let S2 = S ′

1 ∪ {Jj | aj = 2}.

The jobs in S2 are scheduled on M2 in nonincreasing order of processing times. If some jobs in S2

cannot be scheduled on M2, they will be considered for M3, and so on. This process is repeated

until Mm has been considered. Ou et al. (2008) show that the binary search algorithm will return

a feasible schedule with a makespan of at most 4
3C∗ (or ( 4

3 + ε)C∗ if the strongly polynomial-time

binary search method is applied).

We note that Zhou et al. (2007) have considered a special case of P |Mj(inclusive)|Cmax, where
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{a1, a2, . . . , an} = {1, k} for some 1 < k ≤ m. They present an algorithm with a worst-case ratio

of 4/3 + 1/2r, where r is the number of iterations used in the algorithm.

As stated earlier, there is no known PTAS for P |Mj|Cmax and P |Mj(nested)|Cmax. However,

Ou et al. (2008) have developed a PTAS for P |Mj(inclusive)|Cmax. Li and Wang (2008) study an

extension of P |Mj(inclusive)|Cmax with job release times (denoted as P |Mj(inclusive), rj|Cmax),

and they present a PTAS for it. Clearly, their PTAS can be applied to P |Mj(inclusive)|Cmax as

well.

We now outline the PTAS developed by Li and Wang (2008). First, we obtain a lower bound

LB on the optimal solution value C∗ such that rmax+1 ≤ LB and pmax ≤ LB, where rmax is the

largest release time and pmax is the largest processing time. Next, we divide each release time and

processing time by LB, so that we have C∗ ≥ 1. We consider an arbitrary small positive value ε.

Select ε̄ > 0 such that (1 + 2ε̄)2(1 + ε̄) ≤ 1 + ε and that 1/ε̄ is integral. Those jobs with processing

time less than ε̄2 are called “small jobs,” and the other jobs are called “big jobs.” Then, we perform

the following steps:

1. Round every release time down to the nearest multiple of ε̄. Let r(1), r(2), . . . , r(h) be the

rounded release times. Partition the job set into subsets S
(1)
1 , S

(2)
1 , . . . , S

(h)
1 , S

(1)
2 , S

(2)
2 , . . . , S

(h)
2 ,

. . . , S
(1)
m , S

(2)
m , . . . , S

(h)
m such that S

(k)
i contains jobs with machine index i and release time r(k).

2. For each subset S
(k)
i , repeatedly select any two small jobs in S

(k)
i and merge them to form a

composed job. At the end of the merging process, the processing time of every composed job

is less than 2ε̄2, and there is at most one small job in S
(k)
i .

3. For each big job Jj, the processing time of Jj is in [ε̄2(1+ε̄)y, ε̄2(1+ε̄)y+1) for some nonnegative

integer y. Round the processing time of Jj down to ε̄2(1 + ε̄)y.

4. Ignore the small jobs and obtain an optimal solution to the problem, which can be done via

dynamic programming. This gives us an assignment of big jobs to machines.

5. Assign each small job Jj to machine Maj
.
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6. Restore the big jobs’ original processing times, and replace the composed jobs by their original

small jobs.

7. On each machine, sequence the jobs in nondecreasing order of release times, and schedule

each job to start as soon as the job has been released and the machine has completed the

previous job.

Li and Wang (2008) have shown that the solution generated by this procedure has a makespan no

greater than (1 + ε)C∗. After the rounding of the release times and processing times in step 3, we

categorize the big jobs in such a way that two jobs belong to the same category if they have the

same release time and the same processing time. Note that the number of job categories is bounded

by a function of ε̄ (and the function is independent of m and n). Using this property, a dynamic

program can be developed for step 4 with a polynomial running time when ε̄ is fixed. Thus, the

entire solution procedure has a polynomial running time when ε is fixed. The following theorem

summarizes the result.

Theorem 3 (Ou et al. 2008, Li and Wang 2008) There exist PTASs for P |Mj(inclusive)|Cmax

and P |Mj(inclusive), rj|Cmax.

When m is fixed, Pm| |Cmax is NP-hard in the ordinary sense, which implies that Pm|Mj|Cmax

and Rm|Mj|Cmax are also NP-hard. Even though no FPTAS exists for R|Mj|Cmax (unless P =

NP ), there is an FPTAS for Rm|Mj|Cmax for each fixed m. Horowitz and Sahni (1976), Jansen

and Porkolab (2001), and Efraimidis and Spirakis (2006) present different FPTASs for Rm| |Cmax

(which is equivalent to Rm|Mj|Cmax). Ji and Cheng (2008) also present an FPTAS for the special

case Pm|Mj(inclusive)|Cmax.

2.1.1 Equal Processing Times

In this subsection we consider the scheduling of equal-processing-time jobs. Lin and Li (2004)

and Harvey et al. (2006) independently develop polynomial-time algorithms for the problem

P |Mj, pj = 1|Cmax (i.e., P |Mj|Cmax with unit-length jobs). Their algorithms have running time
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of O(n3 logn) and O(n2m), respectively. Lin and Li’s algorithm can be generalized to solve

Q|Mj, pj = 1|Cmax. Low (2002) also develops an algorithm for problem P |Mj, pj = 1|Cmax and

shows that his algorithm has a running time of O(n2 + mn) when the number of eligible machines

for each job is bounded by a constant.

Li (2006) makes the following generalization of Lin and Li’s results: Each job Jj has a penalty

function fj which is a nondecreasing function of the completion time of Jj . The objective is to

minimize maxj=1,...,n{fj} or to minimize
∑n

j=1 fj; that is, minimize the maximum penalty or the

sum of the penalties. We note that the cost functions maxj=1,...,n{fj} and
∑n

j=1 fj encompass

many of the standard objective functions in scheduling theory such as maximum lateness, weighted

number of tardy jobs, total weighted tardiness, etc. Thus, we have the following theorem:

Theorem 4 (Li 2006) Problems P |Mj, pj = 1|max{fj}, P |Mj, pj = 1|∑ fj, Q|Mj, pj = 1|max{fj},

and Q|Mj, pj = 1|
∑

fj can be solved in polynomial time.

If the processing set restrictions are more structured, then there are even more efficient al-

gorithms to solve the problem. Pinedo (2002, p. 103) shows that the Least Flexible Job (LFJ)

algorithm solves the problem P |Mj(nested), pj = 1|Cmax optimally. The LFJ algorithm initially

sorts the jobs in nondecreasing order of the cardinality of the processing sets of the jobs. The jobs

are then scheduled in the order of the list, and the next job is always assigned to a machine in the

processing set with the least load. Pinedo shows the following:

Theorem 5 (Pinedo 2002) The LFJ algorithm solves P |Mj(nested), pj = 1|Cmax.

Lee et al. (2008) study the problem of scheduling equal-processing-time jobs; that is, pj = p for

all j. They show that even the problem P |Mj, pj = p, rj|Cmax (i.e., problem P |Mj|Cmax with job

release times and equal processing times) can be solved in polynomial time. The key idea of their

algorithm is the fact that there is an optimal schedule with makespan equal to rj + kp for some

j, k ∈ {1, 2, . . . , n}. Using this fact, the problem is then transformed into a matching problem.

Thus, we have the following theorem.

Theorem 6 (Lee et al. 2008) P |Mj, pj = p, rj|Cmax can be solved in polynomial time.
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Table 1 summarizes the major worst-case analysis results for nonpreemptive offline models.

2.2 Online Algorithms

Online algorithms are much more difficult to design, since we have no knowledge of the future

arrival of jobs. The performance of an online algorithm is usually compared with an optimal offline

algorithm. An online algorithm A is said to have a competitive ratio c if CA ≤ c·C∗ for all instances,

where CA is the makespan of the schedule generated by A, and C∗ is the makespan of the solution

of an optimal offline algorithm that knows the job arrivals in advance. An online algorithm is said

to be optimal if it has a competitive ratio equal to a lower bound of the competitive ratio of the

related problem. Thus, if an online algorithm has a competitive ratio of 1, or equivalently, it is

1-competitive, then it is optimal trivially. In general, online algorithms have higher competitive

ratios than offline algorithms, since online algorithms have to operate without knowledge of the

future arrival of jobs. In this section we survey known results of online algorithms.

There are two models of online scheduling problems studied in the literature. The first model

assumes that all jobs arrive at time 0, but that the jobs are given to the scheduler one at a

time. The scheduler has to make scheduling decisions before the next job is given to him, and the

scheduling decisions may not be revoked. The second model assumes that jobs arrive over time,

and the scheduler has to make scheduling decisions when new jobs arrive. However, the scheduler

may revoke its earlier scheduling decision if the job has not been processed yet. In the case of

preemptive scheduling discipline, the scheduler can preempt a job which has been assigned earlier

and continue the processing at a later time. Both models have been studied in the literature. To

differentiate between the two models, we will attach the symbol “rj” to the 3-field notation for the

second model, while there is no such symbol in the first model.

Azar et al. (1995) consider an online algorithm which assigns a job, when it arrives, to the

machine with the least load among all the machines in its eligible set. They show that this algorithm

achieves a competitive ratio of dlog2 me + 1. Furthermore, they prove that any online algorithm

has a competitive ratio of at least dlog2(m + 1)e. Thus, we have the following theorem:
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Theorem 7 (Azar et al. 1995) There is an online algorithm for P |Mj|Cmax with a competitive

ratio of dlog2 me + 1. Furthermore, any online algorithm must have a competitive ratio of at least

dlog2(m + 1)e.

We note that the above theorem is also applicable to the case of unit-length jobs; that is, the

problem P |Mj, pj = 1|Cmax. Hwang et al. (2004a) extend Azar et al.’s analysis and obtain a

posterior (i.e., data-dependent) competitive ratio of log2(4m/λ)− 1/λ for P |Mj|Cmax, where λ is

the number of machines eligible for processing the job with the latest completion time.

Note that the online algorithm of Azar et al. does not yield a constant competitive ratio.

Unfortunately, a data-dependent competitive ratio is the best one can hope for. The situation

improves greatly when we consider inclusive processing sets. Bar-Noy et al. (2001) give an online

algorithm with a constant competitive ratio, as stated in the next theorem:

Theorem 8 (Bar-Noy et al. 2001) There is an online algorithm for P |Mj(inclusive)|Cmax with

a competitive ratio of e + 1 ≈ 3.718. The same algorithm gives a competitive ratio of e ≈ 2.718 if

all jobs have unit lengths.

Jiang (2008) considers a special case of P |Mj(inclusive)|Cmax in which {a1, a2, . . . , an} = {1, k}

for some 1 < k < m, and he shows that any online algorithm must have a competitive ratio of

at least 2. Furthermore, he shows that the algorithm of Azar et al. (1995), when applied to this

special case, has a competitive ratio of 4 − 1/m, and this bound is tight. Finally, he presents an

improved algorithm with a competitive ratio of (12 + 4
√

2)/7.

Jiang et al. (2006) and Park et al. (2006) independently present online algorithms for

P2|Mj(inclusive)|Cmax with competitive ratio 5/3. They also show that any online algorithm

must have a competitive ratio of at least 5/3.

Park et al. (2006) consider a “semi-online” variant of P2|Mj(inclusive)|Cmax in which the total

processing time of all the jobs is known before any job is scheduled. They develop a semi-online

algorithm for this problem with a competitive ratio of 3/2. They also show that any semi-online

algorithm must have a competitive ratio of at least 3/2.
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Centeno and Armacost (2004) propose several heuristic algorithms for the online version of

P |Mj, rj|Cmax. They show, empirically, that scheduling jobs by the Largest Processing Time

(LPT) rule outperforms scheduling jobs by the Least Flexible Job (LFJ) rule.

For nested processing set restrictions, the LFJ algorithm of Pinedo (2002) is optimal for unit-

length jobs (i.e., problem P |Mj(nested), pj = 1, rj|Cmax). If pj = p for all j, then we can use the

Delayed LFJ algorithm which delays the scheduling of a job until the next integer multiple of p.

Lee et al. (2008) show that the Delayed LFJ algorithm has an absolute error of p. Thus, we have

the following theorem:

Theorem 9 (Lee et al. 2008) The LFJ algorithm is 1-competitive for P |Mj(nested), pj = 1, rj|Cmax.

The Delayed LFJ algorithm has an absolute error of p for P |Mj(nested), pj = p, rj|Cmax.

Lee et al. (2008) also consider online scheduling of two machines with equal-processing-time jobs.

They show that any online algorithm for P2|Mj, pj = p, rj|Cmax must have a competitive ratio of

at least (1 +
√

5)/2, and any online algorithm for P2|Mj(inclusive), pj = p, rj|Cmax must have a

competitive ratio of at least
√

2. Moreover, they provide two online algorithms with competitive

ratios equal to the lower bounds. Table 2 summarizes the major results for nonpreemptive online

models.

3 Preemptive Scheduling Discipline

In this section we consider preemptive schedules. We first consider the offline scheduling environ-

ment and then the online scheduling environment.

3.1 Offline Algorithms

As stated in Section 1, R|Mj|Cmax is equivalent to R| |Cmax. When job preemption is permit-

ted, R|Mj, pmtn|Cmax is equivalent to R|pmtn|Cmax. Thus, an algorithm for R|pmtn|Cmax will

also solve R|Mj, pmtn|Cmax. Lawler and Labetoulle (1978) have developed an algorithm to solve

R|pmtn|Cmax. The idea of their algorithm is as follows: Let pij denote the processing time of job Jj
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on machine Mi; that is, pij is the time required by job Jj if it is worked on exclusively by machine

Mi. For a given schedule, let tij denote the time that machine Mi works on job Jj. Then, it is

necessary that
∑m

i=1 tij/pij = 1 in order for job Jj to be completed. It is clear that the optimal

makespan C∗ and the values of tij constitute a feasible solution to the following linear program:

minimize C∗

subject to

m
∑

i=1

tij
pij

= 1 (j = 1, 2, . . . , n)

m
∑

i=1

tij ≤ C∗ (j = 1, 2, . . . , n)

n
∑

j=1

tij ≤ C∗ (i = 1, 2, . . . , m)

tij ≥ 0 (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

Lawler and Labetoulle have shown that one can construct a schedule from a solution of this linear

program. Hence, we have the following theorem:

Theorem 10 (Lawler and Labetoulle 1978) R|Mj, pmtn|Cmax can be solved in polynomial time.

Lawler and Labetoulle’s algorithm can be extended to solve R|pmtn, rj|Cmax; see Section 4

for a discussion. Their algorithm, of course, can be used to solve R|Mj, pmtn, rj|Cmax and

P |Mj, pmtn, rj|Cmax.

Huo et al. (2008) develop another algorithm for P |Mj, pmtn, rj|Cmax, which can be described

as follows: Let r[0] < r[1] < · · · < r[k−1] be the k distinct release times, where r[0] = 0. The optimal

makespan C∗ lies in the interval [L, U ], where L = r[k−1] and U = L +
∑n

j=1 pj. Their algorithm

conducts a binary search in the interval [L, U ] to search for C∗. For each value C obtained in

the binary search, the algorithm determines if there is a schedule with makespan at most C. The

testing is done by solving the following network flow problem.

We divide the time span into k segments: TS0 = [r[0], r[1]], TS1 = [r[1], r[2]], ..., TSk−1 =

[r[k−1], C]. We use `q to denote the length of segment TSq (0 ≤ q ≤ k − 1). A network is then

constructed as follows:
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1. For each machine Mi and each time segment TSq, we create a node Mi,q, called a machine-

segment node.

2. For each job Jj with release time r[q], we create nodes Jj,q, Jj,q+1, . . . , Jj,k−1, called the job-

segment nodes.

3. For each job Jj , we create a job node Jj . Finally, we add a source node s and a sink node t.

4. For each job node Jj , we add an arc from s to Jj with capacity pj.

5. For each job node Jj and each q = 0, 1, . . . , k−1, we add an arc from Jj to Jj,q with capacity

`q if r[q] ≥ rj.

6. For each job-segment node Jj,q and each i = 1, 2, . . . , m, we add an arc from Jj,q to Mi,q with

capacity `q if Mi ∈ Mj.

7. For each machine-segment node Mi,q, we add an arc from Mi,q to the sink t with capacity `q.

It is not difficult to check that there is a feasible schedule with makespan at most C if and only if

the maximum flow is
∑n

j=1 pj. Using the max-flow algorithm of Goldberg and Tarjan (1988), the

running time of the algorithm is O(mn2k2 logn logP ) (assuming that m ≤ n), where P =
∑n

j=1 pj

and k is the number of distinct release times.

Theorem 11 (Huo et al. 2008) P |Mj, pmtn, rj|Cmax can be solved in O(mn2k2 log n logP ) time,

where P =
∑n

j=1 pj and k is the number of distinct release times.

Kafura and Shen (1977) present an algorithm to solve P |Mj(inclusive), pmtn|Cmax with an

O(n logn) running time. Martel (1983) gives an O(n logm) implementation of Kafura and Shen’s

algorithm. Huo et al. (2008) give an algorithm for P |Mj(nested), pmtn|Cmax with an O(n logn)

running time. Since the algorithm of Huo et al. also solves P |Mj(inclusive), pmtn|Cmax, we give an

outline of their algorithm. Let MI = {MI1, MI2, . . . , MIλ} denote the set of all distinct machine

intervals; that is, for each j ∈ {1, 2, . . . , n}, there is an index k ∈ {1, 2, . . . , λ} such that Mj = MIk.

The average load of MIk, denoted by ∆(MIk), is defined as

∆(MIk) =

∑

Mj⊆MIk
pj

|MIk|
,
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where |MIk| is the number of machines in MIk. We define ρ(MIk) as

ρ(MIk) = max
{

max
MIk′⊆MIk

{

∆(MIk′)
}

, max
Mj⊆MIk

{

pj

}

}

.

Clearly, ρ(MIk) is a lower bound on the makespan of all the jobs in the machine interval MIk. A

lower bound on the optimal makespan C∗ is given by

ρ = max
{

ρ(MI1), ρ(MI2), . . . , ρ(MIλ)
}

.

Huo et al. provide an algorithm to find a schedule with makespan exactly ρ (see Huo et al. 2008 for

details). Since ρ is a lower bound of the optimal makespan, the algorithm of Huo et al. is optimal.

The running time of their algorithm is O(n logn).

Theorem 12 (Huo et al. 2008) P |Mj(nested), pmtn|Cmax can be solved in O(n logn) time.

Martel (1983, 1985) provides an algorithm to solve Q|Mj(inclusive), pmtn|Cmax. His algorithm

runs in O(mn log2 m) time. Table 3 summarizes the major offline algorithms for preemptive models.

3.2 Online Algorithms

There are very few results for online preemptive scheduling with processing set restrictions. Huo

et al. (2008) prove the following theorem. This is in sharp contrast to P |pmtn, rj|Cmax, which has

a 1-competitive algorithm; see Hong and Leung (1992).

Theorem 13 (Huo et al. 2008) P |Mj(inclusive), pmtn, rj|Cmax cannot be solved by a 1-competitive

algorithm.

Lai and Sahni (1983) consider “nearly online” algorithms for Q|Mj(inclusive), pmtn, rj|Cmax.

An algorithm is said to be nearly online if it always knows the next release time. That is, when

jobs are released at time rj, the algorithm will know the next release time, rj+1. Lai and Sahni

(1983) study this problem in the context of assigning jobs with memory requirements to uniform

machines with memory capacity. They show that there is no 1-competitive nearly online algorithm

if there is at least one machine with memory size smaller than the memory size of at least two other
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machines. They then give a 1-competitive nearly online algorithm for the case where the machines

do not satisfy such condition.

Jiang et al. (2006) consider online scheduling on two identical machines where idle

time between jobs is not allowed on either machine. They show that any online algorithm for

P2|Mj(inclusive), pmtn, no idle time|Cmax must have a competitive ratio of at least

3/2. Moreover, they provide an algorithm with competitive ratio of exactly 3/2. Thus, their

algorithm is optimal.

Dosa and Epstein (2008) develop online algorithms for Q2|Mj(inclusive), pmtn|Cmax

and P3|Mj(inclusive), pmtn|Cmax, when idle time is allowed on the machines. For

Q2|Mj(inclusive), pmtn|Cmax, let the faster machine have speed s and the slower machine have

speed 1. They give an online algorithm when M2 is the faster machine with a competitive ratio

of
s(s+1)2

s3+s2+1
. Moroever, they show that this is also a lower bound. When M1 is the faster machine,

they give an online algorithm with a competitive ratio of (s+1)2

s2+s+1
, and they show that this is also

a lower bound. For P3|Mj(inclusive), pmtn|Cmax, they give an online algorithm with competitive

ratio of 3/2, and they show that any online algorithm must have a competitive ratio of at least 3/2.

Thus, their algorithms are optimal. In addition, they give optimal linear-time offline algorithms

for these three cases.

4 Other Performance Criteria

In this section we discuss performance criteria other than Cmax. We first consider the Lmax objec-

tive. Since P |Mj|Cmax is NP-hard in the strong sense, so is problem P |Mj, dj|Lmax. There is very

little research being done on nonpreemptive scheduling problems with processing set restrictions

and the Lmax objective. As far as we know, the only paper that deals with this topic is the one by

Centeno and Armacost (1997), who develop a heuristic algorithm for P |Mj, rj, dj|Lmax under the

assumption that the due date of each job is equal to its release date plus a constant. They eval-

uate the heuristic algorithm using real data from an operational environment of a semiconductor

manufacturing firm.
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We now turn our attention to preemptive schedules. As it turns out, the problem becomes

easier when preemptions are allowed. Lawler and Labetoulle (1978) give a linear programming

method to solve R|pmtn, dj|Lmax (which is equivalent to R|Mj, pmtn, dj|Lmax). We describe their

solution method below.

Let the jobs be sorted in ascending order of their due dates; that is, d1 ≤ d2 ≤ · · · ≤ dn. Let pij

denote the total processing time required to complete job Jj if job Jj is worked on exclusively by

machine Mi. Let t
(1)
ij denote the total amount of time that machine Mi works on job Jj in the time

interval [0, d1+Lmax]. For k = 2, 3, . . . , n, let t
(k)
ij denote the total amount of time that machine Mi

works on job Jj in the time interval [dk−1+Lmax, dk+Lmax]. Consider the following linear program:

minimize Lmax

subject to

m
∑

i=1

j
∑

k=1

t
(k)
ij

pij
= 1 (j = 1, 2, . . . , n)

m
∑

i=1

t
(1)
ij ≤ d1 + Lmax (j = 1, 2, . . . , n)

m
∑

i=1

t
(k)
ij ≤ dk − dk−1 (j = k, k + 1, . . . , n; k = 2, 3, . . . , n)

n
∑

j=1

t
(1)
ij ≤ d1 + Lmax (i = 1, 2, . . . , m)

n
∑

j=k

t
(k)
ij ≤ dk − dk−1 (i = 1, 2, . . . , m; k = 2, 3, . . . , n)

t
(k)
ij ≥ 0 (i = 1, 2, . . . , m; j = 1, 2, . . . , n; k = 1, 2, . . . , n).

Lawler and Labetoulle have shown that one can construct an optimal schedule from an optimal

solution of this linear program. Thus, we have the following theorem:

Theorem 14 (Lawler and Labetoulle 1978) R|Mj, pmtn, dj|Lmax can be solved in polynomial time.

Note that using the same approach, we can develop a polynomial-time linear programming

method for problem R|Mj, pmtn, rj|Cmax. Lai and Sahni (1984) give a more efficient algorithm

for P |Mj(inclusive), pmtn, dj|Lmax which has a running time of O(k2n + n logn) (assuming that

m ≤ n), where k is the number of distinct due dates.
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We next consider the total completion time objective. The problem R|Mj|
∑

Cj (which is

equivalent to the problem R| |∑Cj) can be formulated as a weighted matching problem in a

bipartite graph; see Horn (1973). Unfortunately, its preemptive version (i.e., R|Mj, pmtn|∑Cj)

has been shown to be NP-hard in the strong sense by Sitters (2001). This is one of the rare cases in

scheduling theory where the preemptive version is harder to solve than the nonpreemptive version.

Theorem 15 (Horn 1973, Sitters 2001) R|Mj|
∑

Cj can be solved in polynomial time, whereas

R|Mj, pmtn|∑Cj is NP-hard in the strong sense.

Spyropoulos and Evans (1985b) give a faster algorithm for P |Mj(inclusive)|
∑

Cj . Their al-

gorithm does not involve solving a matching problem, and its running time is just O(n2).

Su (2008) considers the problem of minimizing the total completion time when each job has

a deadline; that is, P |Mj, d̄j|
∑

Cj , where d̄j is the deadline of Jj. He notes that the problem is

NP-hard in the strong sense, since P |d̄j|
∑

Cj is. He gives a branch-and-bound algorithm and a

heuristic algorithm. The heuristic algorithm is evaluated empirically.

Logendran and Subur (2004) consider an unrelated machine scheduling model with a total

weighted tardiness objective, processing set restrictions, job release times, due dates, and an ad-

ditional constraint (i.e., R|Mj, rj, dj|
∑

wjTj with an additional constraint). In their model some

jobs are “split jobs.” Job splitting is not part of the scheduling decision (i.e., it is determined

before scheduling). However, the additional constraint specifies a maximum permissible difference

between the completion time of the split portions of every original job. They develop tabu-search-

based heuristic algorithms and evaluate their performances empirically.

We now consider jobs with equal processing times. We will be concentrating on an environment

with uniform machines. Clearly, the algorithms will also work on an environment with identical

machines. Let the processing requirement of each job be p time units on machine Mi if the job is

eligible on Mi; otherwise, the processing requirement is +∞. Let si be the speed of Mi. The total

weighted number of tardy job problem (i.e., Q|Mj, pj = p, dj|
∑

wjUj) can be solved as a minimum

cost matching problem of the following bipartite graph G = (V1 ∪ V2, A) (see Brucker et al. 1997),

where
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1. V1 = {J1, J2, . . . , Jn} is the set of n jobs.

2. V2 is the set of all ordered pairs (i, t), where i represents machine Mi, and t represents the

time period
[ (t−1)p

si
, tp

si

]

, for i = 1, 2, . . . , m and t = 1, 2, . . . , n.

3. There is an arc from Jj to (i, t) for t = 1, 2, . . . , n if Mi ∈ Mj.

4. The cost associated with the arc from Jj to (i, t) is given by wj if tp
si

> dj, and zero otherwise.

A minimum cost matching in this graph can be obtained in O(mn2(n + logm)) time.

The total weighted tardiness problem (i.e., Q|Mj, pj = p, dj|
∑

wjTj) can also be solved by

this method. In the bipartite graph constructed above, we replace the cost associated with the

arc from Jj to (i, t) by wj ·max{0, tp
si

− dj}. The total weighted completion time problem (i.e.,

Q|Mj, pj = p
∑

wjCj) is a special case of the total weighted tardiness problem and hence it can

also be solved by the above method.

Theorem 16 (Brucker et al. 1997) Problems Q|Mj, pj = p, dj|
∑

wjUj , Q|Mj, pj = p, dj|
∑

wjTj,

and Q|Mj, pj = p|∑wjCj can all be solved in polynomial time.

The maximum lateness problem (i.e., Q|Mj, pj = p, dj|Lmax) can be solved by the following

method: Assume we know a lower bound LB and an upper bound UB of Lmax. We conduct a

binary search in the interval [LB, UB] for the optimal value of Lmax. For each value z obtained

in the binary search, we modify the due date of each job by setting d′j = dj + z, where d′j is the

modified due date. We then construct the bipartite graph as above, using the modified due date

instead of the original due date. If the minimum cost matching obtained has a value zero, then

the optimal value of Lmax is less than or equal to z (and hence we can search the lower half of the

range). Otherwise, the optimal value of Lmax is larger than z (and hence we can search the upper

half of the range).

Theorem 17 Q|Mj, pj = p, dj|Lmax can be solved in polynomial time.

For the problem P |Mj, pmtn|∑Cj , Brucker et al. (1997) have shown that any preemptive

schedule can be transformed into a nonpreemptive schedule without increasing the cost function
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(i.e.,
∑

Cj). Therefore, problem P |Mj, pmtn|∑Cj is equivalent to problem P |Mj|
∑

Cj and

therefore can be solved in polynomial time (since P |Mj|
∑

Cj is a special case of R|Mj|
∑

Cj).

Theorem 18 (Brucker et al. 1997) P |Mj, pmtn|∑Cj can be solved in polynomial time.

5 Other Models

In this section we survey models that do not fit into the framework of the previous sections.

Nonetheless, they are still very much related to job scheduling with processing set restrictions.

5.1 Typed Task Systems

One of the earliest studies of job scheduling with processing set restrictions is the scheduling of

“typed task systems” (Liu and Liu 1978, Jaffe 1980, Jansen 1994). In this model the m machines are

partitioned into r different types. Machines of the same type are functionally identical, although

they may have different speeds. Machines of different types are functionally different. Let mi

denote the number of machines of type i (1 ≤ i ≤ r). Thus, m =
∑r

i=1 mi. Each job can be

processed by one and only one type of machines, say type i (we say that the job is a type i job).

Furthermore, the jobs have precedence relations defined on them. The goal is to minimize the

makespan. We denote this class of problems as P |Mj(typed), prec|Cmax for identical machines and

Q|Mj(typed), prec|Cmax for uniform machines.

Liu and Liu (1978) study list scheduling of P |Mj(typed), prec|Cmax. For an arbitrary list L,

let Cmax(L) denote the makespan of the list schedule using list L. Let C∗
max denote the optimal

makespan. They prove that

Cmax(L)

C∗
max

≤ 1 + r − min
j

{ 1

mj

}

.

Moreover, they show that this bound is the best possible. They also consider another model where

machines of the same type are further classified according to their memory capacities. A type i job

can only be assigned to a type i machine whose memory capacity is greater than or equal to the

memory requirement of the job. We can denote this model as P |Mj(typed, inclusive), prec|Cmax.
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Similar bounds have been obtained for an arbitrary list schedule for this model. Further details

can be found in Liu and Liu (1978).

Jaffe (1980) considers uniform machines, that is, the problem Q|Mj(typed), prec|Cmax. De-

note the speeds of the machines of type i as si1, si2, . . . , simi
. Let fi = maxk=1,...,mi

{sik}, si =

mink=1,...,mi
{sik}, and βi =

∑mi

k=1 sik. He shows that for any list L,

Cmax(L)

C∗
max

≤ r + max
i=1,...,r

{fi

si

}(

1 − min
i=1,...,r

{ si

βi

})

.

Moreover, he shows that there are examples achieving a performance ratio of r+maxi=1,...,r{fi/si−

fi/βi}.

Jansen (1994) analyzes a varieity of scheduling problems with typed task systems. He shows that

P2|Mj(typed), chains, pj = p|Cmax is NP-hard in the strong sense. He also studies the complexity

of deciding whether there is a schedule with Cmax ≤ ω, where ω is a small constant. For example, if

ω = 2, then the feasibility of P |Mj(typed), prec, pj = 1|Cmax can be determined in polynomial time.

On the other hand, if ω = 4, then determining the feasibility of P |Mj(typed), outtree, pj = 1|Cmax

and P |Mj(typed), intree, pj = 1|Cmax is NP-complete. Finally, he shows that the scheduling prob-

lem can be solved in polynomial time if the precedence relation is an interval order. We refer the

interested readers to Papadimitriou and Yannakakis (1979) for a discussion of interval orders.

5.2 Machines with Availability Constraints

Some of the scheduling problems discussed in previous sections have been studied in conjunction

with machine availability constraints. That is, some of the machines may not be available in

certain time intervals. We use “avail” in the middle field of the 3-field notation to indicate machine

availability constraints.

Sheen and Liao (2007) develop a polynomial-time algorithm for P |Mj, avail, pmtn, dj|Lmax.

Their algorithm involves a series of maximum flow problems and runs in O((3n+2x)3 log(UB−LB))

time, where UB and LB are upper and lower bounds of Lmax, respectively, and x is the total

number of available periods of all the machines. Sheen et al. (2008) present a branch-and-bound

algorithm for P |Mj, avail, dj|Lmax. Liao and Sheen (2008) present a polynomial-time algorithm
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for P |Mj, avail, pmtn, rj|Cmax. Their algorithm also involves a series of maximum flow problems

and runs in O((n + m)3(n + x)3 logH) time, where x is the total number of available periods of all

the machines and H is the length of the planning horizon.

5.3 Miscellaneous

In this subsection we discuss models that do not fit into any one of the previous categories. The

first model is exactly the model we described in Section 1, except that jobs now have precedence

constraints. Kellerer and Woeginger (1992) show that P2|Mj, prec, pj = p|Cmax is NP-hard. They

also show that the problem is polynomially solvable for some special precedence constraints. For

example, they show that P2|Mj, interval order, pj = p|Cmax can be solved in O(n2.5) time. Prob-

lem P |Mj(inclusive), interval order, pj = p|Cmax can be solved in polynomial time. If |Mj| = 1

for all j = 1, 2, . . . , n, then P |Mj, interval order, pj = p|Cmax can also be solved in polynomial

time.

Like the first model, the second model also involves jobs with precedence constraints. However,

in this model, when a job is assigned to a machine that was previously idle, there is a loading time

incurred. All subsequent jobs that are assigned consecutively will not incur additional loading time.

Thus, the loading time is incurred only once. The objective is to minimize the total loading time of

all the machines. Bhatia et al. (2000) show that for any constant k, no polynomial time approxima-

tion algorithm can have a worst-case ratio of logk n or better, unless NP ⊆ DTIME(nO(loglogn)),

where DTIME(nO(loglog n)) is the class of decision problems that can be solved by a deterministic

Turing machine which runs in O(nO(log logn)) time. (Note that it is still an open question of whether

NP ⊆ DTIME(nO(log logn)), although it is unlikely to be true.) Furthermore, they show that a

natural greedy algorithm must have a worst-case ratio of at least Ω(
√

n). Finally, they present an

approximation algorithm with a worst-case ratio of m.

The third model is when the machines form a hierarchical topology; that is, each machine can

be represented by a node and the nodes are connected to form a rooted tree. When a job request

is made to a certain machine, then the job can be processed by that machine and all its ancestors,

but not the other machines. (Note that this is different from the nested processing set restrictions.)

22



Bar-Noy et al. (2001) consider online scheduling of jobs in these kinds of hierarchical servers. They

give a 4-competitive online algorithm for equal processing time jobs and a 5-competitive online

algorithm for unequal processing time jobs.

The fourth model is to minimize the total setup costs of machines. Aubry et al. (2008) con-

sider the problem of scheduling a set of jobs with arbitrary processing set restrictions on uniform

machines. A setup cost is incurred before a job can be processed. (Note that there is no setup

time involved.) Job splitting is allowed; that is, a job can be processed simultaneously by several

machines. Moreover, it is desired that all machines finish processing at the same time. Aubry

et al. called this problem the “minimum-cost load-balanced configuration problem.” They show

that the problem is strongly NP-hard and that it can be solved by a mixed integer linear pro-

gram. Finally, they show that if all setup costs are identical, then the problem can be stated as a

transportation problem and solved in polynomial time.

6 Conclusions

In this paper we have surveyed parallel scheduling problems with processing set restrictions. We

have concentrated on identical, uniform, and unrelated machine environments. The performance

criteria we studied include makespan, maximum lateness, total (weighted) completion time, total

(weighted) number of tardy jobs, as well as total (weighted) tardiness. On the other hand, we have

not considered shop-type scheduling problems such as open shops, flow shops, and job shops. The

interested reader is referred to Brucker and Schlie (1990), Jurisch (1995), Brucker et al. (1997), and

Brucker (2004) for more information about the shop-type scheduling problems with processing set

restrictions.

While much work has been done on this topic, many interesting problems remain open. Below

is a list of open problems that we feel are extremely worthwhile to pursue in the future. We note

that some of these problems are currently under intensive investigation:

1. The simple binary search algorithms of Ou et al. (2008) for P |Mj(inclusive)|Cmax have

worst-case bounds of 4/3 and 4/3 + ε, yet there are examples achieving a ratio of 5/4. What
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is the exact worst-case ratio of their algorithm?

2. Are there any polynomial-time algorithms for P |Mj(nested)|Cmax and P |Mj|Cmax with

worst-case ratios better than 2−1/m? In particular, are there any PTASs for these problems?

3. Is there any polynomial-time algorithm for Q|Mj(inclusive)|Cmax with a worst-case ratio

better than 2−1/m? Are there any PTASs for Q|Mj(inclusive)|Cmax, Q|Mj(nested)|Cmax,

and Q|Mj|Cmax?

4. Are there any online algorithms with constant competitive ratios for the following prob-

lems: Q|Mj(inclusive), rj|Cmax, Q|Mj(nested), rj|Cmax, P |Mj(inclusive), rj, pmtn|Cmax,

P |Mj(nested), rj, pmtn|Cmax, Q|Mj(inclusive), rj, pmtn|Cmax, Q|Mj(nested), rj, pmtn|Cmax?

5. Is there any polynomial-time approximation algorithm for P |Mj|Lmax with a constant worst-

case ratio?

6. What are the computational complexities of Q|Mj, pmtn|∑Cj , Q|Mj(inclusive), pmtn|∑Cj ,

and Q|Mj(nested), pmtn|∑Cj? Are these problems NP-hard or solvable in polynomial time?

7. Is there any approximation algorithm for P |Mj|
∑

wjCj with a constant worst-case bound?

A possible candidate for an approximation algorithm works as follows: Whenever a machine

becomes free for assignment, assign that eligible job with the smallest pi/wi among all el-

igible jobs. Ties are broken in an arbitrary manner. What is the worst-case ratio of this

algorithm? Note that this is a natural generalization of the weighted shortest processing time

first (WSPT) rule, where Kawaguchi and Kyan (1986) have shown that the worst-case ratio

is (1 +
√

2)/2 ≈ 1.207 when it is applied to the classical scheduling problem P | |
∑

wjCj .
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Table 1. Nonpreemptive offline worst-case results

Problem Polynomial-time approximation References

R|Mj|Cmax (2 − 1/m)-approximation Shchepin and Vakhania (2005)

P |Mj(inclusive), rj|Cmax PTAS Li and Wang (2008)

Rm|Mj|Cmax FPTAS Horowitz and Sahni (1976),
Jansen and Porkolab (2001),

Efraimidis and Spirakis (2006)

Q|Mj, pj = 1|max{fj} Optimal algorithm Li (2006)

P |Mj, pj = p, rj|Cmax Optimal algorithm Lee et al. (2008)

Table 2. Nonpreemptive online worst-case results

Problem Competitive ratio References

P |Mj|Cmax dlog2 me + 1 Azar et al. (1995)

P |Mj(inclusive)|Cmax e + 1 ≈ 3.718 Bar-Noy et al. (2001)

P2|Mj(inclusive)|Cmax 5/3 Jiang et al. (2006), Park et al. (2006)

P |Mj(nested), pj = 1, rj|Cmax 1 Lee et al. (2008)

P2|Mj, pj = p, rj|Cmax (1 +
√

5)/2 Lee et al. (2008)

P2|Mj(inclusive), pj = p, rj|Cmax

√
2 Lee et al. (2008)

Table 3. Preemptive optimal offline algorithms

Problem Computational complexity References

R|Mj, pmtn, rj|Cmax Polynomial time Lawler and Labetoulle (1978)

P |Mj, pmtn, rj|Cmax O(mn2k2 log n logP ), where k is Huo et al. (2008)

the number of distinct due dates

P |Mj(inclusive), pmtn|Cmax O(n logm) Martel (1983)

P |Mj(nested), pmtn|Cmax O(n logn) Huo et al. (2008)

Q|Mj(inclusive), pmtn|Cmax O(mn log2 m) Martel (1983,1985)
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