119 research outputs found

    Design and Performance Analysis of Functional Split in Virtualized Access Networks

    Get PDF
    abstract: Emerging modular cable network architectures distribute some cable headend functions to remote nodes that are located close to the broadcast cable links reaching the cable modems (CMs) in the subscriber homes and businesses. In the Remote- PHY (R-PHY) architecture, a Remote PHY Device (RPD) conducts the physical layer processing for the analog cable transmissions, while the headend runs the DOCSIS medium access control (MAC) for the upstream transmissions of the distributed CMs over the shared cable link. In contrast, in the Remote MACPHY (R-MACPHY) ar- chitecture, a Remote MACPHY Device (RMD) conducts both the physical and MAC layer processing. The dissertation objective is to conduct a comprehensive perfor- mance comparison of the R-PHY and R-MACPHY architectures. Also, development of analytical delay models for the polling-based MAC with Gated bandwidth alloca- tion of Poisson traffic in the R-PHY and R-MACPHY architectures and conducting extensive simulations to assess the accuracy of the analytical model and to evaluate the delay-throughput performance of the R-PHY and R-MACPHY architectures for a wide range of deployment and operating scenarios. Performance evaluations ex- tend to the use of Ethernet Passive Optical Network (EPON) as transport network between remote nodes and headend. The results show that for long CIN distances above 100 miles, the R-MACPHY architecture achieves significantly shorter mean up- stream packet delays than the R-PHY architecture, especially for bursty traffic. The extensive comparative R-PHY and R-MACPHY comparative evaluation can serve as a basis for the planning of modular broadcast cable based access networks.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    DOWNSTREAM RESOURCE ALLOCATION IN DOCSIS 3.0 CHANNEL BONDED NETWORKS

    Get PDF
    Modern broadband internet access cable systems follow the Data Over Cable System Interface Specification (DOCSIS) for data transfer between the individual cable modem (CM) and the Internet. The newest version of DOCSIS, version 3.0, provides an abstraction referred to as bonding groups to help manage bandwidth and to increase bandwidth to each user beyond that available within a single 6MHz. television channel. Channel bonding allows more than one channel to be used by a CM to provide a virtual channel of much greater bandwidth. This combining of channels into bonding groups, especially when channels overlap between more than one bonding group, complicates the resource allocation problem within these networks. The goal of resource allocation in this research is twofold, to provide for fairness among users while at the same time making maximum possible utilization of the available system bandwidth. The problem of resource allocation in computer networks has been widely studied by the academic community. Past work has studied resource allocation in many network types, however application in a DOCSIS channel bonded network has not been explored. This research begins by first developing a definition of fairness in a channel bonded system. After providing a theoretical definition of fairness we implement simulations of different scheduling disciplines and evaluate their performance against this theoretical ideal. The complexity caused by overlapped channels requires even the simplest scheduling algorithms to be modified to work correctly. We then develop an algorithm to maximize the use of the available system bandwidth. The approach involves using competitive analysis techniques and an online algorithm to dynamically reassign flows among the available channels. Bandwidth usage and demand requests are monitored for bandwidth that is underutilized, and demand that is unsatisfied, and real time changes are made to the flow-to-channel mappings to improve the utilization of the total available bandwidth. The contribution of this research is to provide a working definition of fairness in a channel bonded environment, the implementation of several scheduling disciplines and evaluation of their adherence to that definition, and development of an algorithm to improve overall bandwidth utilization of the system

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Downstream Bandwidth Management for Emerging DOCSIS-based Networks

    Get PDF
    In this dissertation, we consider the downstream bandwidth management in the context of emerging DOCSIS-based cable networks. The latest DOCSIS 3.1 standard for cable access networks represents a significant change to cable networks. For downstream, the current 6 MHz channel size is replaced by a much larger 192 MHz channel which potentially can provide data rates up to 10 Gbps. Further, the current standard requires equipment to support a relatively new form of active queue management (AQM) referred to as delay-based AQM. Given that more than 50 million households (and climbing) use cable for Internet access, a clear understanding of the impacts of bandwidth management strategies used in these emerging networks is crucial. Further, given the scope of the change provided by emerging cable systems, now is the time to develop and introduce innovative new methods for managing bandwidth. With this motivation, we address research questions pertaining to next generation of cable access networks. The cable industry has had to deal with the problem of a small number of subscribers who utilize the majority of network resources. This problem will grow as access rates increase to gigabits per second. Fundamentally this is a problem on how to manage data flows in a fair manner and provide protection. A well known performance issue in the Internet, referred to as bufferbloat, has received significant attention recently. High throughput network flows need sufficiently large buffer to keep the pipe full and absorb occasional burstiness. Standard practice however has led to equipment offering very large unmanaged buffers that can result in sustained queue levels increasing packet latency. One reason why these problems continue to plague cable access networks is the desire for low complexity and easily explainable (to access network subscribers and to the Federal Communications Commission) bandwidth management. This research begins by evaluating modern delay-based AQM algorithms in downstream DOCSIS 3.0 environments with a focus on fairness and application performance capabilities of single queue AQMs. We are especially interested in delay-based AQM schemes that have been proposed to combat the bufferbloat problem. Our evaluation involves a variety of scenarios that include tiered services and application workloads. Based on our results, we show that in scenarios involving realistic workloads, modern delay-based AQMs can effectively mitigate bufferbloat. However they do not address the other problem related to managing the fairness. To address the combined problem of fairness and bufferbloat, we propose a novel approach to bandwidth management that provides a compromise among the conflicting requirements. We introduce a flow quantization method referred to as adaptive bandwidth binning where flows that are observed to consume similar levels of bandwidth are grouped together with the system managed through a hierarchical scheduler designed to approximate weighted fairness while addressing bufferbloat. Based on a simulation study that considers many system experimental parameters including workloads and network configurations, we provide evidence of the efficacy of the idea. Our results suggest that the scheme is able to provide long term fairness and low delay with a performance close to that of a reference approach based on fair queueing. A further contribution is our idea for replacing `tiered\u27 levels of service based on service rates with tiering based on weights. The application of our bandwidth binning scheme offers a timely and innovative alternative to broadband service that leverages the potential offered by emerging DOCSIS-based cable systems

    Topics in access, storage, and sensor networks

    Get PDF
    In the first part of this dissertation, Data Over Cable Service Interface Specification (DOCSIS) and IEEE 802.3ah Ethernet Passive Optical Network (ETON), two access networking standards, are studied. We study the impact of two parameters of the DOCSIS protocol and derive the probability of message collision in the 802.3ah device discovery scheme. We survey existing bandwidth allocation schemes for EPONs, derive the average grant size in one such scheme, and study the performance of the shortest-job-first heuristic. In the second part of this dissertation, we study networks of mobile sensors. We make progress towards an architecture for disconnected collections of mobile sensors. We propose a new design abstraction called tours which facilitates the combination of mobility and communication into a single design primitive and enables the system of sensors to reorganize into desirable topologies alter failures. We also initiate a study of computation in mobile sensor networks. We study the relationship between two distributed computational models of mobile sensor networks: population protocols and self-similar functions. We define the notion of a self-similar predicate and show when it is computable by a population protocol. Transition graphs of population protocols lead its to the consideration of graph powers. We consider the direct product of graphs and its new variant which we call the lexicographic direct product (or the clique product). We show that invariants concerning transposable walks in direct graph powers and transposable independent sets in graph families generated by the lexicographic direct product are uncomputable. The last part of this dissertation makes contributions to the area of storage systems. We propose a sequential access detect ion and prefetching scheme and a dynamic cache sizing scheme for large storage systems. We evaluate the cache sizing scheme theoretically and through simulations. We compute the expected hit ratio of our and competing schemes and bound the expected size of our dynamic cache sufficient to obtain an optimal hit ratio. We also develop a stand-alone simulator for studying our proposed scheme and integrate it with an empirically validated disk simulator

    Performance Enhancement in Copper Twisted Pair Cable Communications

    Get PDF
    The thesis focuses on the area of copper twisted pair based wireline communications. As one of the most widely deployed communication media, the copper twisted pair cable plays an important role in the communication network cabling infrastructure. This thesis looks to exploit diversity to improve twisted pair channels for data communications in two common application areas, namely Ethernet over Twisted Paris and digital subscriber line over twisted pair based telephone network. The first part of the thesis addresses new approaches to next generation Ethernet over twisted pair cable. The coming challenge for Ethernet over twisted pair cable is to realise a higher data rate beyond the 25/40GBASE-T standard, in relatively short reach scenarios. The straight-forward approaches, such as improving cable quality and extending frequency bandwidth, are unlikely to provide significant improvement in terms of data rate. However, other system diversities, such as spectrum utilization are yet to be fully exploited, so as to meet the desired data rate performance. The current balanced transmission over the structured twisted pair cable and its parallel single-in-single-out channel model is revisited and formulated as a full-duplex multiple-in-multiple-out (MIMO) channel model. With a common ground (provided by the cable shield), the balanced transmission is converted into unbalanced transmission, by replacing the differential-mode excitation with single-ended excitation. In this way, MIMO adoption may offer spectrum utilization advantages due to the doubled number of the channels. The S-parameters of the proposed MIMO channel model is obtained through the full wave electromagnetic simulation of a short CAT7A cable. The channel models are constructed from the resulting S-parameters, also the corresponding theoretical capacity is evaluated by exploiting different diversity scenarios. With higher spectrum efficiency, the orthogonal-frequency-division-multiplexing (OFDM) modulation can significantly improve the theoretical capacity compared with single-carrier modulation, where the channel frequency selectivity is aided. The MIMO can further enhance the capacity by minimising the impact of the crosstalk. When the crosstalk is properly handled under the unbalanced transmission, this thesis shows that the theoretical capacity of the EoTP cable can reach nearly 200GBit/s. In order to further extend the bandwidth capability of twisted pair cables, Phantom Mode transmission is studied, aiming at creating more channels under balanced transmission operation. The second part of the thesis focuses on the research of advanced scheduling algorithms for VDSL2 QoS enhancement. For VDSL2 broadband access networks, multi-user optimisation techniques have been developed, so as to improve the basic data rate performance. Spectrum balancing improves the network performance by optimising users transmit power spectra as the resource allocation, to mitigate the impact from the crosstalk. Aiming at enhancing the performance for the upstream VDSL2 service, where the users QoS demand is not known by all other users, a set of autonomous spectrum balancing algorithms is proposed. These optimise users transmit power spectra locally with only direct channel state information. To prevent selfish behaviour, the concept of a virtual user is introduced to represent the impact on both crosstalk interference and queueing status of other users. Moreover, novel algorithms are developed to determine the parameters and the weight of the virtual user. Another type of resource allocation in the VDSL2 network is crosstalk cancellation by centralised signal coordination. The history of the data queue is considered as a time series, on which different smooth filter characteristics are investigated in order to investigate further performance improvement. The use of filter techniques accounts for both the instantaneous queue length and also the previous data to determine the most efficient dynamic resource allocation. With the help of this smoothed dynamic resource allocation, the network will benefit from both reduced signalling communication and improved delay performance.The proposed algorithms are verified by numerical experiments

    Study of IEEE802.16e standards to improve QoS throughput and delay analysis of PMP MAC Scheduling algorithms

    Get PDF
    WiMAX has two modes of operation: Point to Multi Point (PMP) mode and Mesh mode. PMP mode consists of one BS and multiple SS.The Wi-MAX is IEEE 802.16 Wireless network standard which recently used for Broadband Wireless communication. Now days to satisfy the highest demand of broadband wireless access by using various resource of bandwidth is a biggest challenge for Researchers, in this time WiMAX (Worldwide Interoperability for Microwave Access) emerged as a better solution to fulfil that demand. To provide authentic services for voice, data and videos WiMAX define the various QoS parameters at Media Access Control (MAC) layer. WiMAX structure is based on IEEE 802.16 OSI standard and defines the PMP (Point to Multipoint) and Mesh modes for transmission of information. In this study, cross-layer scheduling algorithm for Wimax networks has been proposed
    • …
    corecore