2,421 research outputs found

    Model-Based Proactive Read-Validation in Transaction Processing Systems

    Get PDF
    Concurrency control protocols based on read-validation schemes allow transactions which are doomed to abort to still run until a subsequent validation check reveals them as invalid. These late aborts do not favor the reduction of wasted computation and can penalize performance. To counteract this problem, we present an analytical model that predicts the abort probability of transactions handled via read-validation schemes. Our goal is to determine what are the suited points-along a transaction lifetime-to carry out a validation check. This may lead to early aborting doomed transactions, thus saving CPU time. We show how to exploit the abort probability predictions returned by the model in combination with a threshold-based scheme to trigger read-validations. We also show how this approach can definitely improve performance-leading up to 14 % better turnaround-as demonstrated by some experiments carried out with a port of the TPC-C benchmark to Software Transactional Memory

    Analytical/ML Mixed Approach for Concurrency Regulation in Software Transactional Memory

    Get PDF
    In this article we exploit a combination of analytical and Machine Learning (ML) techniques in order to build a performance model allowing to dynamically tune the level of concurrency of applications based on Software Transactional Memory (STM). Our mixed approach has the advantage of reducing the training time of pure machine learning methods, and avoiding approximation errors typically affecting pure analytical approaches. Hence it allows very fast construction of highly reliable performance models, which can be promptly and effectively exploited for optimizing actual application runs. We also present a real implementation of a concurrency regulation architecture, based on the mixed modeling approach, which has been integrated with the open source Tiny STM package, together with experimental data related to runs of applications taken from the STAMP benchmark suite demonstrating the effectiveness of our proposal. © 2014 IEEE

    RepComp - replicated software components for improved performance

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia InformáticaThe current trend of evolution in CPU architectures favours increasing the number of processing cores in lieu of improving the clock speed of an individual core. While improving clock rates automatically benefits any software executing on that processor, the same is not valid for adding new cores. To take advantage of an increased number of cores, software must include explicit support for parallel execution. This work explores a solution based on diverse replication which allows applications to transparently explore parallel processing power: macro-components. Applications typically make use of components with well-defined interfaces that have a number of possible underlying implementations with different characteristic. A macro-component is a component which encloses several of these implementations while offering the same interface as a regular implementation. Inside the macro-component,the implementations are used as replicas, and used to process any incoming operations. Using the best replica for each incoming operation, the macro-component is able to improve global performance. This dissertation provides an initial research on the use of these macro-components,detailing the technical challenges faced and proposing a design for the macro-component support system. Additionally, an implementation and subsequent validation of the proposed system are presented. These examples show that macro-components can achieve improved performance versus simple component implementations

    HeTM: Transactional Memory for Heterogeneous Systems

    Full text link
    Modern heterogeneous computing architectures, which couple multi-core CPUs with discrete many-core GPUs (or other specialized hardware accelerators), enable unprecedented peak performance and energy efficiency levels. Unfortunately, though, developing applications that can take full advantage of the potential of heterogeneous systems is a notoriously hard task. This work takes a step towards reducing the complexity of programming heterogeneous systems by introducing the abstraction of Heterogeneous Transactional Memory (HeTM). HeTM provides programmers with the illusion of a single memory region, shared among the CPUs and the (discrete) GPU(s) of a heterogeneous system, with support for atomic transactions. Besides introducing the abstract semantics and programming model of HeTM, we present the design and evaluation of a concrete implementation of the proposed abstraction, which we named Speculative HeTM (SHeTM). SHeTM makes use of a novel design that leverages on speculative techniques and aims at hiding the inherently large communication latency between CPUs and discrete GPUs and at minimizing inter-device synchronization overhead. SHeTM is based on a modular and extensible design that allows for easily integrating alternative TM implementations on the CPU's and GPU's sides, which allows the flexibility to adopt, on either side, the TM implementation (e.g., in hardware or software) that best fits the applications' workload and the architectural characteristics of the processing unit. We demonstrate the efficiency of the SHeTM via an extensive quantitative study based both on synthetic benchmarks and on a porting of a popular object caching system.Comment: The current work was accepted in the 28th International Conference on Parallel Architectures and Compilation Techniques (PACT'19

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Unification of Transactions and Replication in Three-Tier Architectures Based on CORBA

    Get PDF
    In this paper, we describe a software infrastructure that unifies transactions and replication in three-tier architectures and provides data consistency and high availability for enterprise applications. The infrastructure uses transactions based on the CORBA object transaction service to protect the application data in databases on stable storage, using a roll-backward recovery strategy, and replication based on the fault tolerant CORBA standard to protect the middle-tier servers, using a roll-forward recovery strategy. The infrastructure replicates the middle-tier servers to protect the application business logic processing. In addition, it replicates the transaction coordinator, which renders the two-phase commit protocol nonblocking and, thus, avoids potentially long service disruptions caused by failure of the coordinator. The infrastructure handles the interactions between the replicated middle-tier servers and the database servers through replicated gateways that prevent duplicate requests from reaching the database servers. It implements automatic client-side failover mechanisms, which guarantee that clients know the outcome of the requests that they have made, and retries aborted transactions automatically on behalf of the clients
    • …
    corecore