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Unification of Transactions and Replication in  
Three-Tier Architectures Based on CORBA  

Wenbing Zhao, Member, IEEE, Louise E. Moser, Member, IEEE, and 
P. Michael Melliar-Smith, Member, IEEE 

Abstract—In this paper, we describe a software infrastructure that unifies transactions and replication in three-tier architectures and 
provides data consistency and high availability for enterprise applications. The infrastructure uses transactions based on the CORBA 
Object Transaction Service to protect the application data in databases on stable storage, using a roll-backward recovery strategy, and 
replication based on the Fault Tolerant CORBA standard to protect the middle-tier servers, using a roll-forward recovery strategy. The 
infrastructure replicates the middle-tier servers to protect the application business logic processing. In addition, it replicates the 
transaction coordinator, which renders the two-phase commit protocol nonblocking and, thus, avoids potentially long service 
disruptions caused by failure of the coordinator. The infrastructure handles the interactions between the replicated middle-tier servers 
and the database servers through replicated gateways that prevent duplicate requests from reaching the database servers. It 
implements automatic client-side failover mechanisms, which guarantee that clients know the outcome of the requests that they have 
made, and retries aborted transactions automatically on behalf of the clients. 

Index Terms—Fault tolerance, transaction processing, replication, CORBA, three-tier architectures.

 

1 INTRODUCTION 

ENTERPRISE applications are typically implemented as high availability by replicating the application objects and, 
three-tier architectures that consist of clients in the thus, protects the application objects against faults. If one of 

front tier, servers that perform the application business the replicas fails, the surviving replicas continue the 
logic processing in the middle tier, and databases that store business logic processing and provide continuous service 
the application data in the back-end tier. An example of to the clients. 
such an enterprise application is an online banking 

1.1 Problems with Existing Three-Tier Architectures application, where a customer accesses his bank accounts 
over the Internet through a Web browser, the client. After First, we consider some of the key problems that must be 
appropriate authentication, the customer is authorized to solved to provide both data consistency and high avail-
view the balances in his bank accounts and transfers ability for enterprise applications, using the above online 
money from one account to another (say, from a checking banking application as an example. 
account to a savings account), using the middle-tier Traditional transaction processing based on the two-
servers. The two accounts are managed by two different phase commit (2PC) protocol provides data consistency for 
database servers, and the fund transfer is executed as a enterprise applications, but lacks the strong protection 
distributed transaction. mechanisms that many current and future distributed 

In such architectures, the Common Object  Request  enterprise applications will require. 
Broker Architecture (CORBA) is often used as the middle- If the transaction coordinator becomes faulty and all of 
ware bus. Indeed, the Enterprise Java Beans/Java 2 the participants (i.e., the XA resources representing the 
Enterprise Edition (EJB/J2EE) standard derives from the different accounts) in a transaction have voted to commit 
CORBA standard and mandates the use of CORBA’s but have not received a commit message from the 
Internet Inter-ORB Protocol (IIOP). The CORBA Object coordinator, the 2PC protocol requires the participants to 
Transaction Service (OTS) [26] provides data consistency wait for the coordinator to recover, which might take quite a 
through atomic commitment of distributed transactions long time. By the time the coordinator recovers, the Web 

browser might have timed out the server and the customer and, thus, protects the application data against faults. The 
would see a “page-not-available” page instead of the Fault Tolerant CORBA (FT CORBA) standard [25] provides 
expected “transfer-succeeded” page. The problems created 
by failure of the coordinator are three-fold: 1) The customer 
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transfer request had been executed successfully. 3) Because 
resources are locked by the transaction, other transactions 
that need to access those resources would also be delayed. 
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Although practical implementations of the 2PC protocol 
allow a participant to make heuristic decisions regarding 
the outcome of a transaction, continued processing without 
waiting for the coordinator to recover can compromise the 
consistency of the data. Even though such inconsistencies 
can be addressed by the applications, in principle, the 
solutions are usually provided in ad hoc manners and are 
expensive to design, implement, and maintain. A three-
phase commit (3PC) protocol [33] can reduce the probability 
of a hiatus but with substantial cost in overhead; thus, such 
a protocol is seldom used in practical systems. However, if 
a small subset of the participants implement the function­
ality of a replicated transaction coordinator, the cost of the 
traditional 3PC protocol can be reduced [13]. 

If the middle-tier server that performs the business logic 
processing becomes faulty, the transaction in which the 
server is involved might have to be aborted. In the online 
banking application, the customer would then see a 
“transfer-failed” page and he would have to make a new 
fund-transfer request. This situation is not as bad as the 
previous one, but still is unpleasant for the customer. Such a 
fault would result in lost processing for the server and 
wasted time for the customer. 

1.2	 Benefits of Unifying Transactions and 
Replication 

By employing both transactions and replication in a three-
tier architecture, it is possible to achieve stronger fault 
tolerance for enterprise applications [8], [10], [11], [20], [29], 
[36]. In particular, by replicating the transaction coordina­
tor, the 2PC protocol can be rendered nonblocking [15] and 
exactly once semantics can be provided for the clients’ 
invocations. Moreover, by replicating the middle-tier 
servers and using transparent transaction retry, roll-
forward recovery can be provided. Consequently, a higher 
degree of abstraction and transparency can be achieved, so 
that the unpleasant scenarios mentioned above can be 
avoided, with lower cost and in an application-independent 
manner. 

Existing commercial transaction processing systems do 
not provide replication of the application logic, and existing 
replication infrastructures do not support three-tier transac­
tion processing. Work has been done on replication of 
databases [1], [16], the third tier in three-tier architectures, 
but that is not the focus of this paper. 

There are several ways to unify transactions and 
replication. For example, to provide the exactly once 
guarantee, the e-transactions approach [11] introduces a 
set of protocols that explicitly combine replication with 
distributed transaction commitment and recovery. In 
principle, such protocols can be implemented in the 
middleware layer and can operate transparently to the 
applications. However, replacement of, or extensive 
modification to, existing transaction monitoring middle-

ware might be required. We favor a more transparent 
approach, so that minimal changes to the application 
programs are required and commercial off-the-shelf soft­
ware can be used. 

The unified infrastructure that we have developed uses 
the transaction processing of the CORBA OTS to protect the 
application data and the replication and recovery of FT 
CORBA to protect the business logic processing. The 
infrastructure provides strong replica consistency transpar­
ently to the applications and, thus, simplifies the program­
ming of the applications. No modifications of the 
applications (other than those mandated by the CORBA 
OTS and FT CORBA standards) are required. To the best of 
our knowledge, our unified infrastructure is the first such 
infrastructure to combine the two standards seamlessly 
and, thus, render three-tier applications fault tolerant by 
providing both data consistency and high availability. 

1.3	 Challenges in Unifying Transactions and 
Replication 

Next we discuss some of the challenges that one must face 
in designing and implementing an infrastructure that 
provides fault tolerance for enterprise applications by 
unifying transactions and replication. 

The infrastructure must enable as much application 
concurrency as possible. Serializing all incoming requests is 
not a practical solution for enterprise applications that 
involve multiple clients and multiple connections. 

For roll-forward recovery, the infrastructure must know 
the relationships between the clients’ invocations for the 
purpose of logging and replay. The infrastructure must be 
aware of the status of each middle-tier server (including the 
transaction coordinator) to take a checkpoint, introduce a 
new replica, and restore the replica from the checkpoint. To 
retry a failed transaction transparently, the infrastructure 
must properly reset the state of each middle-tier server 
involved in a transaction to the state it had immediately 
before the start of the transaction and it must properly 
coordinate the replay of messages. 

Even though the state of the CORBA objects in the 
middle-tier servers can be obtained through standard 
interfaces, there exists a state associated with a process in 
other forms that tends to be hidden and overlooked. When 
restarting a failed replica or adding a new replica, the state 
of the new or restarted replica cannot be fully restored if 
only the states of the application objects are checkpointed. 
Examples of hidden state include the state of the middle-
ware and the state of the third-party libraries. It is difficult 
to identify, capture, and restore such hidden state. 

Appropriate inbound and outbound gateway mechan­
isms must be designed and implemented, so that the 
replicated middle-tier servers can interact with nonrepli­
cated clients and database servers. Failure of the gateways 
between the middle-tier servers and the database servers 
might cause the abort and retry of transactions, both 
because the TCP connections are lost and because the 
progress of communication with the database is uncertain. 

2 BACKGROUND 

We provide here a brief synopsis of the CORBA Object 
Transaction Service (OTS) [26] and the Fault Tolerant (FT) 
CORBA [25] standards on which our fault tolerance 
infrastructure is based. 



2.1 CORBA OTS 
The CORBA OTS provides interfaces and services for atomic 
execution of transactions that span one or more objects in a 
distributed environment. A distributed transaction consists 
of CORBA remote method invocations of middle-tier objects 
and communications with database servers. For each 
distributed transaction, the OTS generates a unique transac­
tion identifier, which we refer to as the XID. The OTS uses 
the two-phase commit (2PC) protocol to commit a dis­
tributed transaction. 

The OTS supports a flexible programming model for 
transaction context management and propagation. The 
transaction context is managed either directly by manip­
ulating the Control object (and the other OTS service 
objects associated with the transaction), or indirectly by 
using the Current object, provided by the OTS. The 
transaction context is associated implicitly with the 
request messages sent by the client involved in the 
transaction and is propagated in those messages to 
remote objects without the client’s intervention. In the 
OTS, indirect context management and implicit propaga­
tion are referred to as the implicit programming model for 
transaction processing. 

2.2 FT CORBA 
The FT CORBA standard defines interfaces, policies, and 
services that provide robust support for applications 
requiring high availability and fault tolerance through 
object replication. The standard provides fault tolerance 
for object, process, and host crash faults, but not Byzantine 
or network partitioning faults. 

FT CORBA addresses three aspects of fault tolerance: 
replication management, fault management, and recovery 
management. In FT CORBA, replicated objects are managed 
through the object group abstraction. To maintain strong 
replica consistency, FT CORBA requires objects that are 
replicated to be deterministic, or rendered deterministic by 
the fault tolerance infrastructure, i.e., for the same input 
(request) all replicas of an object must produce the same 
output (reply). FT CORBA introduces the notion of fault 
tolerance domain, which consists of multiple hosts, a single 
replication manager object group, and many application 
object groups. 

The FT CORBA standard defines how clients, both 
replicated and unreplicated, interact with replicated server 
objects, so that a client is not disrupted by failover from 
one server replica to another. In particular, each client 
request message contains a unique identifier. If a delay or 
hiatus occurs, a client can retransmit its request message, 
and the server object recognizes the retransmitted message 
as a duplicate of a request that it has already processed, 
discards it, and retransmits the reply corresponding to the 
original request. Similarly, clients recognize and discard 
duplicate replies. 

The FT CORBA standard allows the applications to 
choose either application-controlled or infrastructure-con­
trolled consistency and membership styles. If application-
controlled consistency is chosen, the application is respon­
sible for checkpointing, logging, activation and recovery, 
and for maintaining whatever kind of consistency is 

appropriate for the application. If infrastructure-controlled 
consistency is used, the fault tolerance infrastructure 
provides the aforementioned services and maintains strong 
replica consistency. If infrastructure-controlled membership 
is used, the infrastructure automatically chooses an appro­
priate host to launch a new replica when the number of 
replicas falls below the specified minimum number of 
replicas and ensures that the new replica is synchronized 
with the existing replicas. 

The FT CORBA standard provides a state transfer 
mechanism and the corresponding interfaces to facilitate 
adding a new or recovered replica to a group. To make its 
state available for the infrastructure to retrieve and 
restore, an object must implement the get_state() 
and set_state() methods specified in the FT::Check­
pointable interface. 

Neither the Fault Tolerant CORBA standard nor the XA 
database standard define how replicated middle-tier ser­
vers and database servers interact in the presence of 
replication and failover. 

3 THE MODEL 

We now present the model within which our fault tolerance 
infrastructure operates, including the distributed system 
model, fault model, and programming model. We also 
discuss the services provided by the infrastructure. 

3.1 Distributed System Model 
To circumvent the impossibility results related to reaching 
agreement (e.g., group membership, totally ordered multi­
cast) in asynchronous distributed systems where processes 
may crash, we assume an asynchronous system augmented 
with (unreliable) failure detectors [5]. We assume that the 
network does not partition. 

The distributed system supports three-tier enterprise 
applications that comprise clients, middle-tier servers, and 
database servers. The front tier acts as an interface for the 
clients, the middle-tier servers perform the application 
business logic processing, and the database servers manage 
data and transactional operations in the back-end tier. A 
middle-tier server comprises one or more CORBA objects that 
invoke methods of each other, either locally or remotely via 
messages sent over a network in typical Remote Procedure 
Call (RPC) fashion. 

Because of our focus on unifying transactions and 
replication, we refer to a CORBA object that is involved in 
a transaction as a transactional object. Sometimes it is 
necessary to consider processes, rather than objects, and 
we refer to a process that is involved in a transaction as a 
transactional process. 

The multicast group communication system that we 
employ operates over a local-area network; however, 
nothing else in the architecture or its implementation 
requires that the processors are located on the same local-
area network. The multicast group communication system 
provides a reliable totally ordered multicast with agreed 
and safe delivery [22]. For efficiency reasons, we choose to 
use agreed delivery. 



3.2 Fault Model 
We assume a crash fault model in which objects, processes, 
and processors perform correctly prior to becoming faulty 
and perform no operations thereafter. We assume that 
commission faults and network partitioning faults do not 
occur. Faults in distinct processors are assumed to be 
independent. A fault can affect one or more objects in a 
process or all of the objects hosted by a processor. Multiple 
faults can occur, and additional faults can occur during 
recovery. Our replication and recovery mechanisms require 
that at least one replica in each group is operational, i.e., 
catastrophic faults do not occur. However, if a catastrophic 
fault occurs, traditional transactional rollback recovery from 
data in stable storage is employed. 

3.3 Programming Model 
We assume that the middle-tier servers use a distributed 
transaction processing programming model. When a mid­
dle-tier server receives a client’s request, it initiates one or 
more distributed transactions. When it finishes processing 
the request, the middle-tier server commits the transaction, 
stores the resulting state in the back-end database, and 
returns the result to the client. The OTS transaction 
coordinators handle all transactions started by the middle-
tier servers; no transaction is started by an external 
transaction manager. The middle-tier servers use the 
implicit programming model provided by the OTS. They 
use flat transactions [12] with only one layer of application 
control, rather than multiple nested layers within a 
hierarchy. The transactions involve one or more database 
servers at the back-end through the XA distributed 
transaction processing interface [34]. 

A pool of threads is dedicated for communication 
between a transactional process and a database server. 
The threads are created during initialization of the transac­
tional process. Each thread manages a single connection to 
the database server and is associated with one transaction at 
a time. Using the connection, the thread performs a number 
of remote procedure calls with the database server, but it 
has at most one request outstanding at a time (i.e., it makes 
a synchronous request on which it blocks waiting for the 
reply from the database server before it makes another 
request). 

The concurrency control algorithm of the database server 
determines the serialization of concurrent requests, and our 
fault tolerance infrastructure respects that ordering. If either 
the database server or the infrastructure cannot complete a 
transaction, whether because of concurrency control or 
because of a fault, the transaction is aborted. 

3.4 Services Provided 
Our fault tolerance infrastructure enables the middle-tier 
server applications to provide a highly available service to 
the clients, a service that continues without disrupting the 
clients, even when a replica of a middle-tier server fails. The 
clients can invoke the methods of a middle-tier server 
substantially as they would invoke the methods of a 
nonfault-tolerant middle-tier server. The clients are una­
ware of the three-tier architecture and the database and of 
faults in the middle-tier servers and the gateways. 

The infrastructure protects the business logic processing 
in the middle-tier servers, using the replication and 
recovery defined by FT CORBA with the infrastructure-
controlled consistency and membership styles. It supports 
the standard distributed transaction processing model used 
by the CORBA OTS and protects the application data in 
databases on stable storage to guard against catastrophic 
faults. In addition, it renders the two-phase commit 
protocol nonblocking by replicating the transaction coordi­
nator and, thus, avoids potentially long service disruptions 
caused by failure of the coordinator. 

The infrastructure guarantees that clients know the 
outcome of the requests that they have made. It handles 
the interactions between the replicated middle-tier servers 
and the database servers through replicated gateways that 
prevent duplicate requests from reaching the database 
system. It automatically retries aborted transactions on 
behalf of the clients unless the application itself does so. 

The infrastructure uses the standard XA interface and 
protocol over TCP/IP connections to invoke the database 
system. However, the transactions are more robust because 
the transaction coordinator is replicated. No modifications 
to the database servers are required. The infrastructure 
maintains the transactional recoverability of the middle-tier 
servers and their data in the database. In particular, it 
ensures that the persistent data created by the replicas of 
the transaction coordinator do not overwrite each other, 
which is critical for restoring the coordinator to a correct 
state after a catastrophic fault. 

4 THE FAULT TOLERANCE INFRASTRUCTURE 

Our fault tolerance infrastructure, shown in Fig. 1, consists 
of the Totem group communication system [22], the 
replication, logging and recovery mechanisms, the inbound 
and outbound gateways at the boundaries of the fault 
tolerance domain, the client-side fault tolerance mechan­

isms, and the application-level replication manager and 
fault notifier. The external clients and the middle-tier 
servers communicate through the inbound gateways, and 
the middle-tier servers and the database servers commu­

nicate through the outbound gateways. The infrastructure 
does not replicate the external clients or the database 
servers; however, such replication is not precluded. Some 
commercial database systems provide fault protection and 
recovery mechanisms internally. 

The infrastructure uses a nonintrusive approach to fault 
tolerance for CORBA by exploiting the pluggable protocols 
framework [18] provided by many CORBA Object Request 
Brokers (ORBs) and, thus, differs from the Eternal system 
[23], [24], which does not use the pluggable protocols 
framework. More importantly, unlike the Eternal system, 
the infrastructure unifies transactions and replication and, 
thus, provides both data consistency and high availability 
for three-tier enterprise applications. 

4.1 Replication of Transactional Objects 
To replicate transactional objects consistently, the fault 
tolerance infrastructure maintains the association of request 



Fig. 1. The fault tolerance infrastructure that unifies transactions and replication. 

and reply messages with ongoing transactions. Moreover, 
the infrastructure copes with the additional complexity 
introduced by the transaction processing middleware and 
application objects. Examples of such complexity are 
multithreading and input (output) from (to) disk. 

4.1.1 Association of Messages with Transactions 
The fault tolerance infrastructure monitors the status of 
each transaction by keeping track of request and reply 
messages within the transaction and by parsing all 
requests to, and responses from, the transaction coordi­
nator. For each distributed transaction, the infrastructure 
maintains a transaction identifier (XID). For both the OTS 
and the application-controlled management objects, it 
maintains a list of object keys together with their object 
group identifiers. The infrastructure recognizes invoca­
tions that are part of a transaction by comparing the 
object key in a request message with the object keys in 
the object key list. To indicate the start or end of a 
transaction, the infrastructure multicasts control messages 
to the transactional objects and updates the transaction 
tables accordingly. 

4.1.2 Replication of the Transaction Coordinator 
The fault tolerance infrastructure replicates the transaction 
coordinator of the CORBA OTS. Thus, if one replica of the 
coordinator fails, the other replicas continue processing the 
transaction without disruption to the clients. Protecting the 
transaction coordinator against faults, by replication, 
reduces the risk that a transaction becomes blocked if the 
coordinator fails. Continued operation of the transaction 
coordinator depends on data held locally by the replicas of 
the coordinator, rather than on persistent data held in stable 
storage. Note that, unlike [13], [33], the replicas of the 
transaction coordinator are distinct from the participants in 
the transaction. 

To ensure that the persistent data are not compromised 
by replication of the transaction coordinator, the disk-write 
operations carried out by the replicas of the coordinator 

must be synchronized. For each transaction, a coordinator 
replica writes the persistent data to stable storage only 
when it has received acknowledgments from all of the other 
coordinator replicas that they have received “yes” votes 
from all of the participants and the coordinator replica has 
made its decision. 

In principle, uniform totally ordered multicast [32], or 
equivalently safe delivery in the absence of network 
partitioning, should be used for replica synchronization 
and recovery when there are visible side-effects of opera­
tions resulting from message delivery, such as disk-write 
operations. However, safe delivery significantly impacts the 
latency of message delivery and, therefore, we do not use it 
in our infrastructure. Rather, we implement functionally 
similar mechanisms, such as those discussed above for 
synchronization of disk-write operations, that delay the 
side-effects until all operational replicas reach the same 
stage of the computation. A drawback of this approach is 
that it is necessary to identify the places where such 
synchronization mechanisms are needed and to design and 
implement appropriate mechanisms. 

4.1.3 Concurrency and Message Scheduling 
Transaction processing in the middle tier is unavoidably 
multithreaded, which is a source of replica nondetermin­
ism. One strategy for sanitizing or masking such nonde­
terminism is to employ a message scheduler that forces a 
multithreaded application into running under a single 
thread of control by serializing all incoming requests at 
each replica [24]. A forced logical single thread of control 
strategy not only decreases the performance but also can 
cause deadlock if two transactional objects send nested 
invocations to each other concurrently. 

Another message scheduling strategy for transactional 
multithreaded applications [14] uses a special-purpose 
proprietary threading library, called Transactional Drago 
[28], that controls the input message buffers and the 
creation, deletion, and scheduling of threads. When all 
threads are blocked or there are no running threads, the 



scheduler delivers a message to its handler thread. That 
strategy has the advantage that actively replicated processes 
can perform multithreaded operations without extra in­
tragroup communication to coordinate the deterministic 
processing of the replicas. However, it does not address or 
consider the problem of integrating transactions and 
replication in standard middleware or in an industrial 
system, as our infrastructure does. 

We have devised a deterministic message scheduling 
algorithm for multithreaded applications that is similar, in 
principle and in the degree of concurrent processing 
achieved, to the algorithm in [14]. It is implemented 
transparently to both the applications and the middleware 
and works with the standard threads library. Due to space 
limitations, we provide here only a brief description of the 
deterministic scheduling algorithm; more details can be 
found in [37]. 

For our deterministic message scheduling algorithm, we 
assume that invocations that belong to the same transaction 
are serialized. If all of the threads in a replica are blocked 
waiting for new requests, the replica is quiescent. If all of the 
threads in a replica are blocked waiting for either requests 
or replies, the replica is blocked. A thread can be blocked 
because it is waiting for a request or a reply after issuing a 
nested request. 

Starting from a quiescent state, the delivery of a new 
request activates a thread in the replica and the replica 
becomes unblocked. When the replica issues a nested 
request or a reply to a previous request, the replica 
becomes blocked. Because no thread is active, it is safe to 
deliver the next request to the replica as soon as the replica 
is blocked. The delivery of a new request can unblock 
another thread and, therefore, the replica can continue 
processing in a new thread while the previous thread is 
blocked waiting. 

The algorithm is complicated by the fact that a replica 
might receive a nontransactional invocation, or some 
operation might acquire a lock and not release it until the 
nested invocations have finished executing. The algorithm 
is conservative and waits to deliver a nontransactional 
request message until a quiescent point is reached. More­
over, before it delivers the next request, the algorithm waits 
until the corresponding reply for a nested invocation, made 
within a critical section, is received and delivered. To 
increase the degree of concurrency further, the messages 
and mutex operations could be scheduled as conflicting 
operations using the techniques described in [14]. 

4.2 Checkpointing and Logging 
Checkpointing and logging are needed to recover from a 
fault and to bring a new or restarted replica into the system. 
A checkpoint is taken by invoking the get_state() 
method, defined by the Fault Tolerant CORBA standard, on 
one of the operational replicas. The value returned by 
get_state() is the checkpoint, which is buffered locally 
and transmitted subsequently to the new or restarted 
replica. The operational replica cannot service other 
requests while it is executing the get_state() method; 
however, it can resume processing other requests immedi­
ately after execution of the get_state() method. 

In an ideal world, where the middleware is stateless, 
only the application objects need to be checkpointed. 
However, in practice, the middleware, including the fault 
tolerance infrastructure, that supports the application 
objects constitutes a significant amount of state. To recover 
a replica fully, the middleware-related state of the new 
replica must be made consistent with that of the existing 
replicas. 

The state related to the transport layer in the middleware 
is fully controlled by the fault tolerance infrastructure due 
to our plug-in approach. For other kinds of state that are, in 
general, difficult to access, we checkpoint a replica when it 
is transactional quiescent and such state is essentially 
nonexistent, as described below. There exist other ap­
proaches that are transparent to the applications and 
middleware, such as the user-level checkpointing library 
developed by Dieter and Lumpp [6]. The drawbacks of such 
approaches include large checkpoints and strong operating 
system dependencies. 

4.2.1 Service State 
In addition to the application object state, ORB/POA state, 
and fault tolerance infrastructure state identified in [24], we 
recognize a fourth kind of state, which we call service state. 

In CORBA, an application object might be supported not 
only by an ORB/POA but also by objects that implement 
Common Object Services, such as the OTS. Furthermore, an 
application object might depend on third-party libraries, 
such as the Oracle client-side library for remote SQL and 
XA operations. The service objects and third-party libraries 
are not stateless but have service state. In general, most 
service state is hidden from, and cannot be directly 
manipulated by, a transactional object in the implicit 
programming model that we support. 

4.2.2 Transactional Quiescence 
We take a full checkpoint of a replica when it reaches a 
transactional quiescent point (i.e., the replica is not involved 
in any processing or ongoing transactions) because then the 
ORB/POA state, fault tolerance infrastructure state, and 
service state are minimized. Our fault tolerance infrastruc­
ture maintains a table of ongoing transactions in which each 
replica is currently involved. A replica is transactional 
quiescent when that table becomes empty. 

Because a replica might continuously receive new 
invocations for an extended period of time, sometimes it 
is necessary to force transactional quiescence to avoid an 
excessively long log and recovery time. To force transac­
tional quiescence, our infrastructure queues requests that 
start a new transaction or that belong to a transaction 
different from the transaction in which the replica is 
currently involved. Note that forcing transactional quies­
cence reduces system throughput. 

4.2.3 Logging Mechanisms 
The logging mechanisms of our fault tolerance infrastruc­
ture store messages and checkpoints in volatile memory in 
the same address space as the replica process. This kind of 
logging is not to be confused with the logging that is used in 



Fig. 2. Sequence diagram of the recovery of a replica. 

enterprise database systems, where logs are stored in stable 
storage on disk. 

The message log contains one or more checkpoints that 
are interleaved with incoming requests and replies. When a 
transaction commits, the request and reply messages for 
that transaction are retained in the log. When a transaction 
aborts, the logged messages for the aborted transaction are 
removed from the log. 

The fault tolerance infrastructure checkpoints a replica 
periodically when the replica is transactional quiescent and 
logs subsequent incoming request and reply messages. If 
transactional quiescence does not naturally occur frequently 
enough, the infrastructure forces transactional quiescence, 
as mentioned above. 

When the infrastructure takes a new checkpoint, it 
garbage collects all previously logged messages and 
checkpoints. In addition, it checkpoints each transactional 
object on entry to a transaction. Typically, a prior 
checkpoint suffices and the infrastructure recovers the state 
on entry to the transaction by replaying the request and 
reply messages in the log after the checkpoint. 

There are other “online recovery” techniques, such as 
those described in [17], that allow checkpoints to be taken 
while a replica is processing. Such techniques require 
knowledge of the application program and strict program­
ming models. Although such techniques are feasible for a 
database system, they are less appropriate for the applica­
tion programmers that write the middle-tier application 
business logic. 

4.3 Recovery of Transactional Objects 
The fault tolerance infrastructure uses the checkpoint of an 
existing replica to initialize the state of a new or restarted 
replica. It then replays the messages in the message log at 
the new or restarted replica. The key steps of the recovery 
process are shown in Fig. 2 and are described below. 

First, the new or restarted replica is added to the 
group membership and the infrastructure at the replica 
starts to log messages. Shortly after, but not at the same 

point in time, it checkpoints an existing replica and the 
multicast group communication system orders the check­
point request message within the message sequence and 
conveys the state to the new or restarted replica. The 
infrastructure initializes the state of the new or restarted 
replica and then replays subsequent logged messages to 
ensure that the state transfer occurs at the correct point in 
the message sequence. 

To establish the synchronization point and, thus, 
ensure that the state of a new or restarted replica is 
consistent with that of the existing replicas, our infra­
structure uses a Recovery_Start protocol message. The 
Recovery_Start message is multicast and is delivered 
reliably, in a total order with respect to other messages, 
to all of the replicas in the group. 

At an existing replica, the infrastructure transfers the 
message log, starting from the most recent checkpoint of the 
replica (which was obtained by invoking the get_state() 
method), followed by the incoming request and reply 
messages for the existing replica, through the message prior 
to the Recovery_Start message. Subsequent incoming 
messages at the existing replica are logged but are not 
transferred. 

At a new or restarted replica, the infrastructure buffers 
messages following the Recovery_Start message, and 
discards messages preceding the Recovery_Start mes­
sage. When it receives the log containing the checkpoint, 
the infrastructure installs the checkpoint by invoking the 
set_state() method. It then replays, to the new or 
restarted replica, first the messages that are contained in 
the log and then those that it has buffered since the 
Recovery_Start message, until the new or restarted 
replica catches up with the other replicas. 

The time at which the group membership changes and 
the time at which the checkpoint is taken are logically 
distinct. Consequently, this strategy is not a classical virtual 
synchrony strategy, but it does maintain the essential 
feature of virtual synchrony that the state transfer is 



Fig. 3. Sequence diagram for the recovery of an aborted transaction. 

synchronized with the message sequence. By not using 
view change state transfer, we prevent the blocking of 
processing of multicast messages, while a new or restarted 
replica is being added to the group. 

4.4 Recovery of Aborted Transactions 
A transaction might be aborted for several reasons, 
including deadlock prevention, invalid authentication, and 
process or communication faults. The fault tolerance 
infrastructure and group communication system shield 
the application against process, processor, and communica­

tion faults and, thus, against the rollback of a transaction. 
However, if any replica decides to abort a transaction, the 
transaction is aborted. 

For flexibility, the fault tolerance infrastructure provides 
APIs that allow the application to indicate whether or not 
the infrastructure should retry an aborted transaction. The 
application can disable the retry of an aborted transaction 
if it has code for retrying the aborted transaction. Unless 
the application indicates otherwise, the infrastructure 
automatically retries and recovers aborted transactions. 
The key steps for recovery of an aborted transaction are 
shown in Fig. 3. 

When the fault tolerance infrastructure becomes aware 
that a transaction has been aborted, it sends a notification to 
all of the participants in the transaction (including the 
initiator). Then, the infrastructure resets the states of the 
application objects involved in the aborted transaction by 
applying the most recent checkpoints and replaying the 
logged request and reply messages up to, but not including, 
the message that took the objects into the transaction. It 
discards the logged messages within the aborted transac­
tion. Finally, the infrastructure replays the message that 
initiated the transaction at the initiator. 

Resetting the state of an application object is different 
from recovering a replica. To reset the state of an 
application object, the infrastructure applies, to the object, 
the most recent checkpoint of the object in the message log. 
It does not reset the middleware or service state. The retried 
transaction must be regarded as a new transaction that has a 
new transaction identifier; otherwise, the database system 

would regard the retried database operations as duplicates, 
and the transaction coordinator would abort the retried 
transaction because it has the same identifier as the aborted 
transaction. 

If an application object is the initiator of a transaction 
and the transaction is aborted, the infrastructure initi­
alizes the object with the most recent checkpoint in the 
log and then replays the request and reply messages 
since the checkpoint up to, but not including, the message 
that initiated the transaction. The infrastructure discards 
logged request and reply messages within the aborted 
transaction and then restarts the application object, which 
reinitiates the transaction. 

If an application object is a participant in a transaction, 
but is not the initiator, and the transaction is aborted, the 
infrastructure initializes the object with the most recent 
checkpoint in the log and then replays the request and reply 
messages since the checkpoint up to, but not including, the 
request message that took the object into the transaction. 
The application object waits to receive the request message 
as part of the retried transaction. Retrying the transaction 
results in regeneration of request and reply messages that 
were previously logged within the aborted transaction, 
which is why these logged messages must be discarded at 
the beginning of the retry process. 

4.5 Gateway Replication 
Our fault tolerance infrastructure for three-tier applications 
employs two kinds of gateways at the boundaries of the 
fault tolerance domain, the inbound gateway between the 
external clients and the replicated middle-tier servers, and 
the outbound gateway between the replicated middle-tier 
servers and the database system, as shown in Fig. 1. 

Both the inbound and the outbound gateways are 
replicated using a hybrid replication scheme that resem­
bles semiactive replication [30] with a primary replica and 
one or more backup replicas. However, from within the 
fault tolerance domain, the inbound and outbound gate­
ways appear to be actively replicated. Because the 
inbound gateway mechanisms have been specified in 



Fig. 4. Sequence diagram for normal operations of an outbound gateway. 

the FT CORBA standard [25], we do not discuss them 
further in this paper. 

Only the primary outbound gateway establishes TCP/IP 
connections with the database servers. However, both the 
primary and the backup outbound gateways receive 
messages generated by the replicated middle-tier servers 
and pass the messages from the database servers back to the 
replicated middle-tier servers. 

The outbound gateway mechanisms reside in the same 
address space as the Totem group communication process. 
The connections from the application objects to the out­
bound gateway mechanisms are implemented using Unix 
sockets. Library interpositioning is used to capture the 
connection function calls and messages between a transac­
tional process and the outbound gateway. 

The primary outbound gateway does not write a request 
message for the database server to the TCP/IP connection 
immediately when it receives the message from the 
application. Instead, as shown in Fig. 4, it waits for 
acknowledgments of the request message from all of the 
backup gateways before sending its request message to the 
database server. This avoids the loss of messages if the 
primary outbound gateway fails and provides certainty for 
database updates equivalent to the certainty provided by 
safe delivery, without incurring the overhead of such a 
multicast for other messages. 

The reply messages, including both GIOP and SQL/XA 
reply messages, are multicast to all of the outbound 
gateway replicas serving a replica group. The primary 
outbound gateway delivers reply messages only when the 
multicast group communication protocol has totally or­
dered them, as shown in Fig. 4. Because there is at most one 
outstanding request per connection, there is no ambiguity 
in matching a reply message from the database server with 
the corresponding request message. There is no need to 
know the wire protocol used by the database vendor. 

When a middle-tier server processes multiple transac­
tions concurrently, the database servers process multiple 
requests in an arbitrary unknown serialization order. This 
arbitrary order does not violate the strong replica 

consistency guarantees of our fault tolerance infrastruc­
ture because each database server appears as a single 
entity to our infrastructure and each database request is 
submitted once only to the database server and is never 
repeated. If the infrastructure retries an aborted transac­
tion, e.g., due to failure of the primary gateway, the 
retried transaction appears to the database server as a 
new transaction with a different XID. If we were to 
replicate the database servers, we would also need to be 
concerned with consistent ordering of transactions within 
the replicas of the database. 

4.6 Gateway Recovery 
Modern commercial databases, such as Oracle 8i, allow a 
client of the database server (in our case, the primary 
outbound gateway) to reestablish a connection to the 
same or a different database server endpoint and continue 
the transaction when a fault occurs in the midst of a 
transaction. The database server matches such a reconnec­
tion with an ongoing transaction using the XID. It also 
uses a timeout mechanism, so that the database server 
can abort a transaction unilaterally, if a client fails 
(otherwise, the database server might wait forever for 
the client to reconnect). 

If the database system does not support reconnection, 
all ongoing transactions, except for transactions that have 
been prepared, must be rolled back. Likewise, if the 
primary outbound gateway fails before the transaction 
has been prepared and the new primary gateway is not 
sure of the status of the transaction, the transaction must 
be rolled back. Continuing an ongoing transaction during 
the failover of a gateway might result in the database 
server’s processing an invocation twice. The automatic 
transaction-retry mechanisms of our infrastructure trans­
parently retry a rolled-back transaction to achieve roll-
forward recovery. 

The group communication system multicasts messages, 
including transaction prepare and commit messages, and 
delivers them in total order to both the primary and the 
backup gateway replicas. Each gateway replica maintains a 
table of outstanding request messages. When it receives a 



Fig. 5. A three-tier banking application running on top of our fault tolerance infrastructure. 

reply corresponding to an outstanding request, it removes 
the request from its request table. If the primary gateway 
fails, a backup gateway uses its request table to achieve 
consistent recovery, as described below. 

Note that the request table is necessary regardless of the 
type of delivery (agreed or safe) used for request messages 
because the reply messages originate at the database servers 
and are sent via point-to-point TCP/IP communications. It 
is possible that the primary gateway receives a reply 
message (and the underlying TCP/IP stack acknowledges 
the reception of the message to the node running the 
sending database server) and fails before it multicasts the 
reply message to all of the gateway replicas. Note also that, 
if the database server were capable of multicasting the reply 
messages or if the gateway were collocated with the 
database server, it could multicast them directly to the 
replicated middle-tier servers. Safe delivery could then be 
used to eliminate the uncertainty and to render the request 
table unnecessary. 

On failure of the primary gateway, the group commu­
nication system forms a new membership and broadcasts a 
membership change message, from which a backup gate­
way can determine that the primary gateway failed. The 
backup gateway checks whether there are any requests in 
its request table. It regards such requests as uncertain 
outstanding requests. 

For each uncertain outstanding request, the backup 
gateway contacts the infrastructure for the status of the 
transaction to which the request belongs. In some cases, the 
infrastructure might have to query the transaction coordi­
nator to determine whether the transaction is in the prepared 
state, or to query an XA resource to determine whether the 
XA resource has been prepared. If the transaction has not 
been prepared and there is an uncertain outstanding 
request, the backup gateway notifies the infrastructure to 
abort the transaction (we assume that the database server 
supports reconnection). In the second phase of the 2PC 
protocol, an uncertain outstanding request does not cause 
the rollback of the current transaction because the commit 
notification to the database server is idempotent [26]. 

If the database server times out a connection while the 
infrastructure is failing over the outbound gateway, the 
database server aborts the transaction using the new 
connection if the transaction has not been prepared and 
propagates the abort decision to the application object in the 
middle tier. The infrastructure notices the abort, enables the 
automatic retry mechanism, and restarts the transaction. If 
the database server times out a connection and makes a 
heuristic decision to abort a prepared transaction, it is up to 
the application to resolve the conflict. 

Note that the abort of an on-going transaction when the 
primary gateway fails is due to our assumption that we 
have no access to the database tier except for TCP/IP 
connections. Otherwise, the risk of loss of transactions due 
to failure of the primary gateway could be reduced by 
collocating the primary gateway with the database server. 

A remaining issue to be resolved is how to avoid critical 
runs during recovery. For example, if the transaction 
coordinator is recovering very fast in the presence of very 
slow participants, the infrastructure might misread messages 
and, consequently, the system might not recover properly. 

5 IMPLEMENTATION AND PERFORMANCE 

We have implemented a prototype of the fault tolerance 
infrastructure that unifies transactions and replication for 
three-tier enterprise applications. The prototype works with 
the ORBacus CORBA ORB and its OTS implementation [27] 
from Object Oriented Concepts, Inc. (now Iona). The 
Oracle 8i database management system is used as the XA 
resource manager. We ran our experiments on six Pentium 
III PCs over a 100 Mbit/sec local-area network. Each PC is 
equipped with a single 1GHz CPU and 256 MBbytes of 
RAM and runs the Mandrake Linux 7.2 operating system. 
Although it would be more desirable and realistic to deploy 
the clients and database servers on different networks, this 
more ideal setup is not yet attainable due to the limitations 
of our current testbed. 

The three-tier banking application that we used in our 
experiments is shown in Fig. 5. A client invokes the 



Fig. 6. Performance measurement results as a function of the number of concurrent clients, with and without replication. (a) Throughput of the 
middle-tier server. (b) Mean latency for transaction startup and business logic. (c) Mean latency for the two-phase commit protocol. 

replicated middle-tier server for a fund transfer operation 
between two different accounts that are managed by two 
different database servers which update the tables in the 
corresponding databases. In the middle tier, there are 
four distinct server processes (groups) running: an 
account manager, two account servers, and the OTS 
server. The account manager accepts remote method 
invocations from clients, initiates a distributed transaction 
for each fund transfer request, contacts the two account 
servers for the fund transfer, and commits the transaction. 
Each distributed transaction involves one (read-only) 
query and one update between each middle-tier account 
server and its associated database server. For each run, 
each client initiates a total of 1,000 transactions; each 
transfer request follows completion of the prior request 
without any delay. 

The middle-tier servers, including the OTS server, are 
three-way actively replicated on four of the six processors. 
Replicas of the same server (including the OTS server) are 
deployed on different processors (i.e., no two replicas of 
the same server are collocated on the same processor). 
Thus, there are three replicas of the different servers on 
each processor. Inevitably, some server replicas execute on 
the same processor as an OTS server replica. Up to eight 
unreplicated clients are evenly distributed (whenever 
possible) on the two remaining processors. Two Oracle 
database management systems also execute on these two 
processors. 

For comparison purposes, we measured the performance 
when the middle-tier servers are not replicated. In this case, 
the account manager server, the two account servers, and 
the OTS server each run on a separate processor while the 
clients and the Oracle database servers run on the 
remaining two processors. 

As shown in Fig. 6a, with replication, the overall system 
throughput, in transactions per second, is reduced by 
10-20 percent over the unreplicated case. This minor 
reduction in throughput does not, however, reflect the true 
cost of our fault tolerance infrastructure in general. The 
overhead of our fault tolerance infrastructure is better 

reflected in Fig. 6b, which considers the time for the middle-
tier servers to start a new transaction and to carry out the 
fund transfer operation. The latency overhead of the fault 
tolerance infrastructure for the application business logic 
operations now increases from about 50 percent when the 
load is low to more than 100 percent when the load is high. 
The low system throughput overhead is due to the 
dominant cost of the two-phase commit operations, as can 
be seen from Fig. 6c. 

To investigate the actual cost, we added a method to 
each middle-tier account manager to query (read-only) the 
new account balance from the database server and to return 
that balance to the account manager. For the sake of 
benchmarking, the account manager invokes this method 
multiple times on each account manager before committing 
a transaction. The results of this experiment are shown in 
Fig. 7, where a single client invokes the account manager for 
a fund transfer with different numbers of account-balance­
read operations inserted by the account manager. As can be 
seen in the figure, when the number of such read-only 
operations is larger, the relative replication overhead for the 
end-to-end latency is correspondingly higher. 

In summary, the overhead of the fault tolerance infra­
structure is primarily due to: 1) communication cost, where 

Fig. 7. Mean end-to-end latency in milliseconds, with and without 
replication, as a function of the number of read-only operations of the 
middle-tier server. 



a message is multicast by the group communication system 
and some of the messages are redirected through the 
gateways; 2) processing cost, where some of the CPU cycles 
are dedicated to token handling in Totem, duplicate 
detection and suppression, and message parsing and 
patching; and 3) loss of concurrency because of total 
ordering of messages and message scheduling to guarantee 
strong replica consistency. All three factors result in larger 
overheads when the load is higher. 

In addition to the fault-free runtime performance, we 
measured the fault detection time and recovery time for our 
infrastructure. For a process crash fault, a Totem instance 
records a start time before it sends a kill signal to the process 
and an end time when it receives the notification regarding 
the lost socket event. The process crash fault detection time 
is the difference between the end time and the start time. On 
average, the process crash fault detection time is about 3 ms. 
The processor fault detection time depends on the timeout 
value used in Totem which, in turn, depends on the 
characteristics of the network. In our testbed, a 1 second 
timeout suffices and, therefore, the processor fault detection 
time is approximately 1 second. 

The recovery time for a process replica includes the time 
for the replica to join the group membership, the time to 
retrieve the state of an existing replica, the state transfer 
time, and the time to inject the state into the new or 
restarted replica. In the best case, when there is no queueing 
involved in retrieving and restoring the application state, 
and no other process is competing with the replica for 
retrieving and restoring the application state, it takes about 
100 ms to recover a replica with a state size of 100 kBytes. If 
the communication and/or computation loads are higher, 
the recovery time is correspondingly longer. The fault 
detection time is also longer under higher load. 

6 RELATED WORK 

Several researchers [7], [23], [31] have investigated object 
replication and fault tolerance for CORBA prior to the 
adoption of the Fault Tolerant CORBA standard [25]. Since 
then, other researchers [21], [24] have developed partial or 
complete implementations of Fault Tolerant CORBA that 
middle-tier servers might use. To the best of our knowl­
edge, none of those researchers has implemented an 
infrastructure that unifies transactions and replication in 
three-tier architectures. 

Frolund and Guerraoui [9], [10], [11] have pointed out 
the deficiencies of both the CORBA OTS and the FT CORBA 
standards. They have proposed an exactly once transactions 
(e-transactions) specification for three-tier architectures that 
integrates transactions and replication. They have also 
introduced a set of protocols as an implementation of their 
e-transactions specification. The e-transaction approach 
aims to combine replication with distributed transaction 
commitment and recovery to achieve higher availability 
and better performance. 

In [8], Felber and Narasimham have presented a 
discussion of the issues involved in, and the benefits of, 
reconciling transactions and replication for CORBA appli­
cations. They have outlined a protocol for use, in transac­
tional environments, that provides end-to-end reliability 

between the clients and the replicated servers. They have 
not provided any implementation details or performance 
measurements. 

In [19], Little and Shrivastava have proposed a high 
availability solution for CORBA applications written in 
Java. Their system replicates the application objects to 
achieve forward progress and uses transactions to 
provide consistency. Their implementation is based on 
the CORBA OTS, but not on FT CORBA. In [20], they 
have further explored ways in which transactions and 
group communication can be used together. They con­
clude that process groups can be used with transaction 
processing for binding service replication, faster failover, 
and active replication. 

JBoss is an open-source Java EJB/J2EE application server 
that has been extended with the JavaGroups group 
communication toolkit to provide session state replication 
and failover [2], [4]. JBoss uses an abstraction framework to 
isolate communication layers that resembles CORBA’s 
pluggable protocols framework. Thus, like our infrastruc­
ture, it achieves transparency to the applications and other 
middleware. However, JBoss extended with JavaGroups 
does not address all of the difficult issues that our 
infrastructure addresses in unifying transactions and 
replication. 

In [29], Patino-Martinez et al. have investigated the 
integration of transactions and group communication and 
have introduced the group transactions model, where a 
transactional server is a group of processes, and clients 
interact with the transactional server by multicasting 
requests to the group. Jimenez-Peris et al. [15] have 
described a nonblocking atomic commitment protocol that 
exploits replication to achieve the nonblocking property 
and that reduces the latency by employing optimistic 
techniques. Unlike our fault tolerance infrastructure, which 
can be plugged into the middleware transparently, their 
approaches require modification of the applications to use a 
particular programming and communication model, or use 
proprietary protocols that are difficult to integrate into 
existing middleware. 

In [14], Jimenez-Peris et al. have investigated determi­
nistic scheduling for transactional multithreaded replicas, 
using a special-purpose library, called Transactional Drago 
[28]. Jimenez-Peris and Patino-Martinez [17] have also 
presented techniques for deterministic scheduling and 
online recovery for transactional multithreaded replicas. 
In [3], Basile et al. have presented a deterministic schedul­
ing algorithm for multithreaded replicas; their algorithm is 
based on preemption. 

7 CONCLUSIONS AND FUTURE WORK 

We have described a fault tolerance architecture that unifies 
transactions and replication to achieve data consistency and 
high availability for enterprise applications. We have 
developed mechanisms that solve the transaction outcome 
nondeterminism problem, render the two-phase commit 
protocol nonblocking, and automatically retry aborted 
transactions. We have also developed replication mechan­
isms that guarantee strong replica consistency, not only 
during fault-free conditions, but also when adding a new or 



restarted replica to a group. Based on these mechanisms, we 
have implemented a prototype infrastructure that works 
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