893 research outputs found

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Design, implementation and experimental evaluation of a network-slicing aware mobile protocol stack

    Get PDF
    Mención Internacional en el título de doctorWith the arrival of new generation mobile networks, we currently observe a paradigm shift, where monolithic network functions running on dedicated hardware are now implemented as software pieces that can be virtualized on general purpose hardware platforms. This paradigm shift stands on the softwarization of network functions and the adoption of virtualization techniques. Network Function Virtualization (NFV) comprises softwarization of network elements and virtualization of these components. It brings multiple advantages: (i) Flexibility, allowing an easy management of the virtual network functions (VNFs) (deploy, start, stop or update); (ii) efficiency, resources can be adequately consumed due to the increased flexibility of the network infrastructure; and (iii) reduced costs, due to the ability of sharing hardware resources. To this end, multiple challenges must be addressed to effectively leverage of all these benefits. Network Function Virtualization envisioned the concept of virtual network, resulting in a key enabler of 5G networks flexibility, Network Slicing. This new paradigm represents a new way to operate mobile networks where the underlying infrastructure is "sliced" into logically separated networks that can be customized to the specific needs of the tenant. This approach also enables the ability of instantiate VNFs at different locations of the infrastructure, choosing their optimal placement based on parameters such as the requirements of the service traversing the slice or the available resources. This decision process is called orchestration and involves all the VNFs withing the same network slice. The orchestrator is the entity in charge of managing network slices. Hands-on experiments on network slicing are essential to understand its benefits and limits, and to validate the design and deployment choices. While some network slicing prototypes have been built for Radio Access Networks (RANs), leveraging on the wide availability of radio hardware and open-source software, there is no currently open-source suite for end-to-end network slicing available to the research community. Similarly, orchestration mechanisms must be evaluated as well to properly validate theoretical solutions addressing diverse aspects such as resource assignment or service composition. This thesis contributes on the study of the mobile networks evolution regarding its softwarization and cloudification. We identify software patterns for network function virtualization, including the definition of a novel mobile architecture that squeezes the virtualization architecture by splitting functionality in atomic functions. Then, we effectively design, implement and evaluate of an open-source network slicing implementation. Our results show a per-slice customization without paying the price in terms of performance, also providing a slicing implementation to the research community. Moreover, we propose a framework to flexibly re-orchestrate a virtualized network, allowing on-the-fly re-orchestration without disrupting ongoing services. This framework can greatly improve performance under changing conditions. We evaluate the resulting performance in a realistic network slicing setup, showing the feasibility and advantages of flexible re-orchestration. Lastly and following the required re-design of network functions envisioned during the study of the evolution of mobile networks, we present a novel pipeline architecture specifically engineered for 4G/5G Physical Layers virtualized over clouds. The proposed design follows two objectives, resiliency upon unpredictable computing and parallelization to increase efficiency in multi-core clouds. To this end, we employ techniques such as tight deadline control, jitter-absorbing buffers, predictive Hybrid Automatic Repeat Request, and congestion control. Our experimental results show that our cloud-native approach attains > 95% of the theoretical spectrum efficiency in hostile environments where stateof- the-art architectures collapse.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Francisco Valera Pintor.- Secretario: Vincenzo Sciancalepore.- Vocal: Xenofon Fouka
    corecore