111 research outputs found

    Supporting internet protocols in master-slave fieldbus networks

    Get PDF
    In this paper we describe how to integrate Internet Protocols (IP) into a typical hierarchical master-slave fieldbus network, supporting a logical ring token passing mechanism between master stations. The integration of the TCP/IP protocols in the fieldbus protocol rises a number of issues that must be addressed properly. In this paper we particularly address the issues related to the conveyance of IP fragments in fieldbus frames (fragmentation/de-fragmentation) and on how to support the symmetry inherent to the TCP/IP protocols in fieldbus slaves, which lack communication initiative

    QoS of IP services in a fieldbus network: on the limitations and possible improvements

    Get PDF
    This paper focuses on the problem of providing efficient scheduling mechanisms for IP packets encapsulated in the frames of a real-time fieldbus network - the PROFIBUS. The approach described consists on a dual-stack approach encompassing both the controlrelated traffic ("native" fieldbus traffic) and the IPrelated traffic. The overall goal is to maintain the hard real-time guarantees of the control-related traffic, while at the same time providing the desired quality of service (QoS) to the coexistent IP applications. We start to describe the work which have been up to now carried out in the framework of the European project RFieldbus (High Performance Wireless Fieldbus in Industrial Multimedia-Related Environments - IST-1999-11316). Then we identify its limitations and point out solutions that are now being addressed out of the framework of the above-mentioned European project

    Integration of TCP/IP and PROFIBUS protocols

    Get PDF
    Recent technological developments are pulling fieldbus networks to support a new wide class of applications, such as industrial multimedia applications. These applications are usually supported by the widely used TCP/IP stack. It is thus essential to provide support to TCP/IP based applications, in fieldbus networks. This paper presents an effort that is being carried out to integrate the TCP/IP and PROFIBUS stacks, in order to support industrial multimedia applications, whilst guarantying the timing requirements of control-related traffic

    Position paper on time and event-triggered communication services in the context of e-manufacturing

    Get PDF
    Modern factories are complex systems where advances in networking and information technologies are opening new ways towards higher efficiency. Such move is being driven by market rules with ever-increasing competition levels, in search for faster time-to-market, improved process yield, non-stop operations, flexible manufacturing and tighter supply-chain coupling. All these aims present a common requirement, i.e. a realtime flow of information, from the plant-floor up to the management, maintenance, suppliers and clients, to support accurate monitoring and control of the factory. This stresses the importance achieved by the communication infrastructure in modern manufacturing industry. This paper presents the authors view concerning the current trends in modern factory communication systems. It addresses the problems of seamlessly integrating different information flows with diverse requirements, mainly in terms of timeliness. In this aspect, the debate between event-triggered and time-triggered communication is revisited as well as the joint support for both types of traffic. Finally, a view of where factory communication systems are moving to is also presented, showing the impact of open and widely available technologies.FCT. ComissĂŁo Europeia(ARTIST,IST-2001-34820

    A Real-Time Service-Oriented Architecture for Industrial Automation

    Get PDF
    Industrial automation platforms are experiencing a paradigm shift. New technologies are making their way in the area, including embedded real-time systems, standard local area networks like Ethernet, Wi-Fi and ZigBee, IP-based communication protocols, standard service oriented architectures (SOAs) and Web services. An automation system will be composed of flexible autonomous components with plug & play functionality, self configuration and diagnostics, and autonomic local control that communicate through standard networking technologies. However, the introduction of these new technologies raises important problems that need to be properly solved, one of these being the need to support real-time and quality-of-service (QoS) for real-time applications. This paper describes a SOA enhanced with real-time capabilities for industrial automation. The proposed architecture allows for negotiation of the QoS requested by clients from Web services, and provides temporal encapsulation of individual activities. This way, it is possible to perform an a priori analysis of the temporal behavior of each service, and to avoid unwanted interference among them. After describing the architecture, experimental results gathered on a real implementation of the framework (which leverages a soft real-time scheduler for the Linux kernel) are presented, showing the effectiveness of the proposed solution. The experiments were performed on simple case studies designed in the context of industrial automation applications

    Current challenges and future trends in the field of communication architectures for microgrids

    Full text link
    [EN] The concept of microgrid has emerged as a feasible answer to cope with the increasing number of distributed renewable energy sources which are being introduced into the electrical grid. The microgrid communication network should guarantee a complete and bidirectional connectivity among the microgrid resources, a high reliability and a feasible interoperability. This is in a contrast to the current electrical grid structure which is characterized by the lack of connectivity, being a centralized-unidirectional system. In this paper a review of the microgrids information and communication technologies (ICT) is shown. In addition, a guideline for the transition from the current communication systems to the future generation of microgrid communications is provided. This paper contains a systematic review of the most suitable communication network topologies, technologies and protocols for smart microgrids. It is concluded that a new generation of peer-to-peer communication systems is required towards a dynamic smart microgrid. Potential future research about communications of the next microgrid generation is also identified.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant BES-2013-064539.Marzal-Romeu, S.; Salas-Puente, RA.; GonzĂĄlez Medina, R.; GarcerĂĄ, G.; Figueres AmorĂłs, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews. 82(2):3610-3622. https://doi.org/10.1016/j.rser.2017.10.101S3610362282

    Real-Time Performance of Industrial IoT Communication Technologies: A Review

    Full text link
    With the growing need for automation and the ongoing merge of OT and IT, industrial networks have to transport a high amount of heterogeneous data with mixed criticality such as control traffic, sensor data, and configuration messages. Current advances in IT technologies furthermore enable a new set of automation scenarios under the roof of Industry 4.0 and IIoT where industrial networks now have to meet new requirements in flexibility and reliability. The necessary real-time guarantees will place significant demands on the networks. In this paper, we identify IIoT use cases and infer real-time requirements along several axes before bridging the gap between real-time network technologies and the identified scenarios. We review real-time networking technologies and present peer-reviewed works from the past 5 years for industrial environments. We investigate how these can be applied to controllers, systems, and embedded devices. Finally, we discuss open challenges for real-time communication technologies to enable the identified scenarios. The review shows academic interest in the field of real-time communication technologies but also highlights a lack of a fixed set of standards important for trust in safety and reliability, especially where wireless technologies are concerned.Comment: IEEE Internet of Things Journal 2023 | Journal article DOI: 10.1109/JIOT.2023.333250

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    FTT-Ethernet: A Flexible Real-Time Communication Protocol that Supports Dynamic QoS Management on Ethernet-based Systems

    Get PDF
    Ethernet was not originally developed to meet the requirements of real-time industrial automation systems and it was commonly considered unsuited for applications at the field level. Hence, several techniques were developed to make this protocol exhibit real-time behavior, some of them requiring specialized hardware, others providing soft-real-time guarantees only, or others achieving hard real-time guarantees with different levels of bandwidth efficiency. More recently, there has been an effort to support quality-of-service (QoS) negotiation and enforcement but there is not yet an Ethernet-based data link protocol capable of providing dynamic QoS management to further exploit the variable requirements of dynamic applications. This paper presents the FTT-Ethernet protocol, which efficiently supports hard-real-time operation in a flexible way, seamlessly over shared or switched Ethernet. The FTT-Ethernet protocol employs an efficient master/multislave transmission control technique and combines online scheduling with online admission control, to guarantee continued real-time operation under dynamic communication requirements, together with data structures and mechanisms that are tailored to support dynamic QoS management. The paper includes a sample application, aiming at the management of video streams, which highlights the protocol’s ability to support dynamic QoS management with real-time guarantees

    Channel adaptive real-time medium access control protocols for industrial wireless networks

    Get PDF
    Wireless technology is increasingly finding its way into industrial communication because of the tremendous advantages it is capable of offering. However, the high bit error rate characteristics of wireless channel due to conditions, such as attenuation, noise, channel fading and interference seriously impact the timeliness and reliability guarantee that need to be provided for real-time traffic. Existing wireless protocols either do not adapt well to erroneous channel conditions or do not provide real-time guarantees. The goal of our work is to design and evaluate novel real-time MAC (Medium Access Control) protocols for combined scheduling of periodic and aperiodic messages taking into account the time-varying channel condition.;Our first contribution is the design of a combined scheduling algorithm that exploits both spatial and temporal diversity of the wireless channel through exchange of slots among nodes, to effectively mitigate bursty channel error conditions. Simulation results show that the proposed algorithm achieves significant improvements in message success ratio compared to baseline protocols under a wide range of traffic and channel conditions.;The second contribution assumes a two-level hierarchical network in which nodes are grouped into clusters and the communication occurs within each cluster and across clusters. The goal is to maximize the schedulability of intra- and inter-cluster periodic and aperiodic messages with deadline guarantees. In this context, we propose an Adaptive protocol that maximizes the channel utilization by enabling parallel transmissions in a collision-free manner, in conjunction with the use of the slot-exchange technique to actively combat the erroneous channel conditions. Through simulation studies, we show that the proposed Adaptive protocol achieves significant improvement in packet loss performance compared to the baseline protocols that exploit complete parallelism and full exchange, for a wide range of channel conditions.;The future work includes: (i) Formulation of the MAC scheduling problem to a n-level hierarchical network and developing novel scheduling algorithms (ii) Extending the scheduling problem to account for node mobility and developing mobility-aware MAC protocols
    • 

    corecore