
162 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 3, AUGUST 2005

FTT-Ethernet: A Flexible Real-Time Communication
Protocol That Supports Dynamic QoS Management

on Ethernet-Based Systems
Paulo Pedreiras, Member, IEEE, Paolo Gai, Luís Almeida, Member, IEEE, and

Giorgio C. Buttazzo, Senior Member, IEEE

Abstract—Ethernet was not originally developed to meet the
requirements of real-time industrial automation systems and
it was commonly considered unsuited for applications at the
field level. Hence, several techniques were developed to make
this protocol exhibit real-time behavior, some of them requiring
specialized hardware, others providing soft-real-time guaran-
tees only, or others achieving hard real-time guarantees with
different levels of bandwidth efficiency. More recently, there has
been an effort to support quality-of-service (QoS) negotiation
and enforcement but there is not yet an Ethernet-based data
link protocol capable of providing dynamic QoS management
to further exploit the variable requirements of dynamic appli-
cations. This paper presents the FTT-Ethernet protocol, which
efficiently supports hard-real-time operation in a flexible way,
seamlessly over shared or switched Ethernet. The FTT-Ethernet
protocol employs an efficient master/multislave transmission
control technique and combines online scheduling with online
admission control, to guarantee continued real-time operation
under dynamic communication requirements, together with data
structures and mechanisms that are tailored to support dynamic
QoS management. The paper includes a sample application,
aiming at the management of video streams, which highlights
the protocol’s ability to support dynamic QoS management with
real-time guarantees.

Index Terms—Distributed systems, dynamic QoS management,
manufacturing automation, real-time communication.

I. INTRODUCTION

NOWADAYS, intelligent nodes, i.e., microprocessor-based
communication-enabled devices, are extensively used in

the lower layers of both process control and manufacturing in-
dustries [44]. In these environments, applications range from
embedded command and control systems to image processing,
monitoring, human-machine interfacing, etc. The communica-
tion among these nodes has specific requirements [4] that are
quite different from, and sometimes opposed to, those found
in office environments. For instance, predictability is favored
against average throughput, and message transmission is typ-
ically characterized by time and precedence constraints. Fur-
thermore, the nonrespect of such constraints can have a signifi-
cant negative impact on the system performance, e.g., degrading

Manuscript received April 20, 2004; revised May 4, 2005.
P. Pedreiras and L. Almeida are with the Department of Electronics and

Telecommunications, University of Aveiro, Aveiro, Portugal.
P. Gai is with Evidence Srl, Pisa, Italy.
G. C. Buttazzo is with the Department of Computer Engineering, University

of Pavia, Pavia, Italy
Digital Object Identifier 10.1109/TII.2005.852068

the quality of the control action in distributed computer control
systems (DCCS) or the quality of the system state observation
in distributed monitoring systems (DMS). During the last two
decades special-purpose networks have been developed to de-
liver adequate quality-of-service (QoS) to these systems. They
are generically called fieldbuses and are particularly suited for
supporting frequent exchanges of small amounts of data under
time, precedence and dependability constraints [44]. Some well
known examples today include PROFIBUS, WorldFIP, P-Net,
Foundation Fieldbus, ControlNet, TTP/C, Controller Area Net-
work (CAN) and CAN-based protocols such as DeviceNet.

In early DCCSs, network nodes presented simple interfaces
and supported limited sets of actions. However, the quantity,
complexity and functionality of these nodes have been steadily
increasing. Consequently, the amount of information that must
be exchanged over the network has also increased, for both con-
figuration and operational purposes. The increase on the amount
of data exchanged between DCCS nodes is reaching the limits
achievable using traditional fieldbuses given their limited band-
width, typically between 1 and 5 Mbps [4]. Thus, other alterna-
tives are needed to support higher bandwidth demands while
fulfilling the main requirements of real-time communication,
i.e., predictability and timeliness, implying bounded delays and
jitter.

Starting in the 1980s, several high bandwidth general-pur-
pose networks have also been proposed for use at the field level.
For example, FDDI and ATM have been extensively analyzed,
both for hard and soft real-time communication systems [42].
However, due to high complexity, high cost, lack of flexibility,
and interconnection capacity, these protocols have not gained
general acceptance [42].

On the other hand, Ethernet, despite also being a general-pur-
pose network, exhibits high availability, low cost, clear path for
future expandability and physical compatibility with networks
used at higher layers in the factory structures, which is a set of
appealing attributes. However, the direct use of Ethernet at the
field level was, for many years, impaired by its nondetermin-
istic arbitration mechanism. Thus, several techniques were pro-
posed to overcome such limitation and allow Ethernet to support
time-constrained communication. Later on, with the advent of
switched Ethernet and its intrinsic absence of collisions, new
works have appeared (e.g., [42], [48]) addressing the ability of
such a topology to support real-time traffic.

Nevertheless, existing approaches to real-time over Ethernet
still exhibit drawbacks either concerning timeliness guarantees,

1551-3203/$20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54929104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PEDREIRAS et al.: FTT-ETHERNET: A FLEXIBLE REAL-TIME COMMUNICATION PROTOCOL 163

operational flexibility or bandwidth efficiency. Moreover, there
is, at the datalink level, a general lack of support for dynamic
QoS management with timeliness guarantees as required by
emerging automation applications, e.g., industrial multimedia
streaming.

This paper presents a new protocol, FTT-Ethernet, which
aims at reducing such limitations and fulfilling the requirements
of dynamic real-time applications. Particularly, it includes
online admission control to guarantee continued real-time op-
eration under dynamic communication requirements, together
with data structures and mechanisms that are tailored to support
dynamic QoS management.

The rest of this paper is structured as follows. Section II
briefly describes the Ethernet protocol and refers some of
the most relevant techniques for achieving real-time behavior
and QoS support. Section III states the design goals of the
FTT-Ethernet protocol and presents its architecture and oper-
ation. Section IV describes the protocol implementation using
the SHaRK real-time kernel. Section V describes a sample
application for assessing and verifying the implementation.
Finally, Section VI presents the conclusion.

II. THE WAY TOWARDS REAL-TIME ETHERNET

Ethernet was invented nearly 30 years ago by Robert Metcalfe
at the Xerox’s Palo Alto Research Center. Its initial purpose
was to connect a personal computer to a laser printer devel-
oped by Xerox. Since then, this protocol has evolved in many
ways, both concerning transmission speed and topology. In the
former aspect, it has grown from the original 2.94 Mbps [5] to
10 Mbps [13], [14], [16], then to 100 Mbps [17] and, more re-
cently, to 1 Gbps [18] and 10 Gbps [19]. Concerning the latter
aspect, it moved from a bus topology, initially based on thick
coaxial cable [13], to a more structured and fault-tolerant ap-
proach based on a star or tree [15], [16]. Despite this evolu-
tion, Ethernet protocols have kept two fundamental properties:
the existence of a single collision domain (broadcast medium)
and the Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) arbitration.

According to the CSMA/CD mechanism, the network inter-
face cards (NICs) carry out frame transmission as soon as the
application requests it and the bus is sensed free. After starting
a transmission, NICs continue sensing the bus for a time slot to
detect a collision. If it occurs, all the stations abort the ongoing
transmission, issue a jamming signal, and wait for a random
time interval before repeating the process. An exponentially in-
creasing wait time is used to reduce the probability of chained
collisions on heavy loaded networks.

This nondeterministic nature of the CSMA/CD arbitration
mechanism has been considered, for many years, the main ob-
stacle for using Ethernet to support real-time applications. That
particular obstacle was removed in the 1990s with the introduc-
tion of microsegmented switched Ethernet that bypasses the na-
tive CSMA/CD arbitration mechanism and prevents collisions.
However, this does not make Ethernet fully deterministic. For
example, if a burst of messages destined to a single port arrives
at the switch in a short time interval, they must be serialized and
transmitted one after the other. If the arriving rate is greater than

the transmission rate for a sufficiently large time interval, buffers
will be exhausted and messages will be discarded due to buffer
overflow. Therefore, even with switched Ethernet, some kind of
higher-level coordination is required to enforce timeliness.

A. Brief Survey on Real-Time Techniques

In the quest for real-time communication over Ethernet, sev-
eral techniques were developed and used by both industry and
academia, some of which are briefly referred to in this section,
grouped according to their main features. Deeper descriptions
of these techniques are presented in [55].

CSMA/CD based protocols achieve real-time behavior over
shared Ethernet relying solely on the original CSMA/CD con-
tention resolution mechanism (e.g., NDDS [34], ORTE [40],
RTPS [39]), taking advantage of the fact that the probability
of collision between concurrent nodes is closely related to the
traffic properties such as the bus utilization factor, message
lengths and burstiness [38]. A slightly different approach ([23],
[24], [27]) consists in shaping the traffic produced by each
station, limiting its amount and burstiness. Modified CSMA
protocols tamper the Ethernet’s native CSMA/CD arbitration
scheme in order to improve the temporal behavior of the
network, either by reducing the probability of collisions (e.g.,
Virtual Time CSMA protocol [29], [33]) or by sorting out colli-
sions in a deterministic way (e.g., Windows [29], CSMA/DCR
[26], and EquB [41]). Token passing based mechanisms,
allowing only the node in possession of a (unique) token to
access the communication medium, have also been proposed
(e.g., Timed-Token Protocol [28], RETHER [47], RT-EP [30],
[31], and VTPE [3]). TDMA and Master/Slave (MS) tech-
niques also enforce mutual exclusion on medium access by,
respectively, allocating disjoint time slots to each node (e.g.,
MARS [22], [25]) and allowing transmissions only after ex-
plicit indication of a master node (e.g., ETHERNET Powerlink
(EPL) [7], [8]). Token passing, TDMA, and MS techniques
completely avoid the possibility of collisions, thus providing
deterministic access time to the communication medium.

Since the early 1990s, the interest in switched Ethernet
has been growing steadily, being a means to improve global
throughput, implement traffic isolation, and reduce the impact
of the nondeterministic CSMA/CD arbitration. Despite not
being capable of providing real-time communication services
by themselves [37], switches do reduce the nondeterminism
with respect to CSMA/CD medium access control and open the
way to efficient implementations of Ethernet-based real-time
communication.

As for shared Ethernet, Traffic shaping (e.g., Loeser et al.
[48]) and MS (e.g., EtherCAT [49]) techniques have been pro-
posed to limit the amount of traffic submitted to the switch,
preventing overloads. Another class of approaches consists in
enhancing the switch with extra functionality, providing more
efficient scheduling policies and admission control (e.g., [11],
[12], [45], [46] and PROFInet Isochronous Real Time (IRT)
[50]). Finally, standard switched Ethernet infrastructures may
also be used (e.g., [9], [20], [32], and [54]) but avoiding over-
loads and achieving timely behavior requires a careful analysis
by the system designer as there are no run-time mechanisms to
enforce them.

164 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 3, AUGUST 2005

B. Dynamic QoS Management

The previous section briefly addressed the most relevant con-
tributions to achieving real-time behavior on Ethernet networks.
Such behavior is a requirement imposed by applications typ-
ically found at the field or plant level of industrial automation
systems. Delivering real-time behavior can be seen as providing
an adequate QoS, where quality in this scope stands for guaran-
teed bandwidth with low and bounded network-induced latency
and jitter.

However, many real systems are complex and include dif-
ferent subsystems that operate sporadically, or that endure op-
erational mode changes according to environment stimuli, or
that reconfigure dynamically according to online requirements
update, or, finally, that need handling a variable number of re-
quests from other subsystems or environments (e.g., flexible
manufacturing in which cells reconfigure online according to
evolving requirements, mobile robots operating in dynamic en-
vironments). In these examples, the level of resources utilized in
the system may vary dynamically and, thus, static resource allo-
cation policies become very inefficient. For efficiency reasons,
and consequently for cost reasons, such emerging applications
require online changes to the communication requirements [43].

In order to support dynamic communication requirements, as
referred above, the communication system must feature opera-
tional flexibility. On the other hand, the changes in the commu-
nication requirements must be carried out without jeopardizing
system timeliness. This combination of operational flexibility
with timeliness guarantees requires adequate admission control,
a feature that is not included in current COTS real-time Ethernet
protocols. Conversely, there are a few research protocols that do
include admission control, e.g., [11] and [45], and are thus ade-
quate to support online addition of new streams in a timely way.
Resource reservation protocol (RSVP) also implements admis-
sion control but between Internet Protocol (IP) networks using
routers, thus at a layer higher than the one we are addressing in
this paper.

However, admission control is still not enough to support dy-
namic adaptation of message streams, e.g., rate-adaptation [21].
This requires the definition of operational ranges in the mes-
sage attributes, e.g., minimum and maximum rate, admissible
latency, jitter, etc., and use of an online QoS manager that sets
the instantaneous individual message parameters maximizing a
given reward function [2]. To the best of our knowledge, this
level of operational flexibility is not directly supported by any
current real-time Ethernet protocol. This has been the major mo-
tivation for the proposal of the FTT-Ethernet protocol, which
was first introduced in [35] and is presented in Section III.

III. FTT-ETHERNET PROTOCOL

Field-level communication systems able to support real-time
applications have to fulfill a set of specific requirements. The
most commonly referred ones [4] are predictability, support
for periodic traffic with different periods, support for sporadic
traffic, bounded latency, information on temporal consistency
[53], and efficient handling of small data packets.

In addition to those well established requirements, we also
consider the need for online admission control and dynamic

QoS management to efficiently support the emerging applica-
tions referred to in the previous section.

Based on these requirements, we can establish the following
goals for a real-time communication protocol.

• Time-triggered communication with operational flexi-
bility.

• Support for on-the-fly changes both on the message set
and the scheduling policy used.

• Online admission control and dynamic QoS management.
• Indication of temporal accuracy of real-time messages.
• Support of event-triggered and time-triggered traffic.
• Support of hard, soft, and non real-time traffic.
• Temporal isolation: the distinct types of traffic must not

disturb each other.
• Efficient use of network bandwidth.
• Efficient support of multicast messages.
• Use of Ethernet COTS components.
These goals are not fully met by current real-time Ethernet

protocols, not only because of the generalized lack of support
to dynamic QoS management but also because several proto-
cols either require specialized hardware, or provide probabilistic
timeliness guarantees, only, or are bandwidth/response-time in-
efficient, or, finally, are inflexible concerning the communica-
tion requirements, as well as the traffic scheduling policy.

This section presents the FTT-Ethernet protocol that attempts
to meet the goals referred above and which is based on the Flex-
ible Time-Triggered (FTT) paradigm [6]. Another implementa-
tion of this paradigm is described in [1], namely the FTT-CAN
protocol based on CAN.

A. Basic Architectural Options

In order to fulfill the above goals, the protocol uses central-
ized scheduling and master/multislave transmission control.
Since both communication requirements and message sched-
uling are localized in one single node, the Master, it is possible
to update both on-the-fly, thus providing a high level of
operational flexibility. This centralization also facilitates imple-
menting online admission control to support dynamic changes
in the communication requirements with guaranteed timeliness,
as required for dynamic QoS management.

The master/multislave transmission control allows enforcing
a coherent notion of time in the network while avoiding
collisions since the master explicitly tells each slave when
to transmit. It also saves overhead with respect to common
master-slave protocols since the same master message is used
to trigger several messages in several slaves and the turnaround
time in all slaves is overlapped.

FTT-Ethernet, similarly to CAN, WorldFIP [51] and others,
uses a source-addressing scheme for real-time traffic. This
means that when a message is sent the addressed entity is
not the destination but the data item that is being conveyed.
This addressing scheme is well suited for control applications,
where the data coming from sensors or controllers might be
required by several other nodes simultaneously (producer-con-
sumer model [52]). To implement this addressing scheme, the
Ethernet frames are transmitted with an adequate destination
address, unicast, multicast or broadcast, depending on the

PEDREIRAS et al.: FTT-ETHERNET: A FLEXIBLE REAL-TIME COMMUNICATION PROTOCOL 165

Fig. 1. Elementary cycle structure.

number of consumers for that message being one, a subset,
or all, respectively. The message identifier is inserted in the
data field. Common Ethernet direct addressing is also used for
non-real-time traffic as explained later.

B. Elementary Cycle

A key concept in the protocol is the Elementary Cycle (EC),
which is a fixed duration timeslot used to allocate traffic on the
bus. This concept is also used in ETHERNET Powerlink [7], and
in several other protocols for different media, e.g., WorldFIP.
The bus time is then organized as an infinite succession of ECs.
Within each EC there can exist several windows reserved to dif-
ferent types of messages. Particularly, two windows are con-
sidered: synchronous and asynchronous, dedicated to time-trig-
gered and event-triggered traffic, respectively (Fig. 1).

Each EC begins with the broadcast of a Trigger Message
(TM) by the Master node. This control message synchronizes
the network and conveys in its data field the identification of
the synchronous messages that must be transmitted by the re-
maining nodes within the respective EC (EC schedule). More-
over, the TM also conveys the information required to allow
each node to calculate the time instants within the EC (
in Fig. 1) at which the synchronous messages should be trans-
mitted. All the remaining nodes on the network decode the TM
and scan a local table to identify whether they are the senders of
any of the scheduled messages. If so, they transmit those mes-
sages in the specified instants.

For the asynchronous traffic, a polling mechanism is used to
probe the nodes for the presence of event-triggered messages
waiting for transmission. This traffic is divided in two types
according to the addressing scheme used: source addressing
or direct addressing. The latter is unconstrained traffic, hence
non-real-time, that may be associated with common appli-
cations using higher-level communication protocols such as
TCP/IP (e.g., web server, ftp). The Master node polls the
real-time asynchronous traffic first and then, if time is available
within the EC, the non-real-time one. The polling order of
each of these types of traffic is defined by appropriate sched-
uling policies, according to the respective communication
requirements.

The transmission instants of the messages within the EC are
specified in a way that no collisions occur and that no message
transmission crosses the boundary of the respective window.
Hence, both traffic timeliness within the EC and temporal iso-
lation between all types of traffic are enforced.

C. System Requirements Database

In order to facilitate the management of the communication
system, all the relevant operational information is stored locally
in the master node, in an appropriate data structure called the
System Requirements Database (SRDB). The SRDB contains
both the properties of the message streams to be conveyed, as
well as all other operational parameters. Specifically, the SRDB
contains three components: Synchronous Requirements, Asyn-
chronous Requirements, and System Configuration and Status.
The Synchronous Requirements component is formed by the
Synchronous Requirements Table (SRT), which includes the de-
scription of the synchronous message streams to be conveyed by
the communication system:

where is the maximum transmission time (including all over-
heads), the relative phasing (i.e., the initial offset), the
period, the deadline, and a fixed priority defined by the
application. and are expressed as integer multiples of
the EC duration. is the number of synchronous messages.

is a pointer to a custom structure that can be defined to
support specific parameters of a given QoS management policy,
e.g., admissible period values, elastic coefficient, and relative
QoS value (see [21] for a more complete description of using
this structure).

The Asynchronous Requirements component is formed by
the reunion of two tables, the Asynchronous Requirements
Table (ART) and the Non-Real-Time Table (NRT). The ART
contains the description of message streams that, despite being
transmitted as asynchronous messages, may exhibit time con-
straints (e.g., alarm messages):

This table is similar to the SRT except for the use of the ,
minimum interarrival time, instead of the period, and the ab-
sence of an initial phase parameter, since there is no phase con-
trol between different asynchronous messages.

The NRT contains the information required to guarantee
that non-real-time message transmissions fit within the asyn-
chronous window, as required to enforce temporal isolation.
The Master only needs to keep track of the length of the longest
non-real-time message that is transmitted by each node. The
NRT structure is the following:

where is the node identifier, is the transmission
time of the longest non-real-time message transmitted by that

166 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 3, AUGUST 2005

Fig. 2. Master internal architecture.

node (including all overheads), and is the node non-real-time
priority (used to allow an asymmetrical distribution of the bus
bandwidth among nodes). is the number of stations pro-
ducing non-real-time messages.

The last component of the SRDB is the System Configuration
and Status Record (SCSR), which contains all system configu-
ration data plus current traffic figures. This information is made
available at the application layer so that it can be used either for
profiling purposes or at run-time to make the system adaptive,
raise alarms, etc.

D. Master Node Architecture

The Master node plays the role of system coordinator and it is
responsible for maintaining the SRDB, building the EC-sched-
ules and broadcasting the EC trigger message.

Fig. 2 depicts the internal architecture of the Master node. The
Application Interface provides a set of services to the applica-
tion software for the SRDB management, regarding the system
configuration and to add, modify and delete entries in the SRT,
ART, and NRT.

The Scheduler uses the information provided by the SRDB
to build the EC-schedules for the synchronous traffic. Each
schedule is placed in the EC Schedule Register (ECSR) and
consists of the IDs of the synchronous messages to be trans-
mitted in the next EC and their transmission time. The scheduler
also gathers information concerning current traffic figures and
inserts it in the system status record SCSR.

The Admission Control runs a schedulability test over the
synchronous traffic whenever a request for changes in the SRT
is made. Changes are admitted upon a positive schedulability
result. The Admission Control can be replaced by a QoS Man-
agement module to perform QoS negotiation and adaptation
over the synchronous message streams, e.g., adjusting online the
bandwidth assigned to streams according to the current band-
width utilization.

The Dispatcher reads the EC Schedule Register, builds the
next Trigger Message with such EC schedule, and broadcasts it
over the network. Since the EC duration is assumed constant by
the scheduler, the TM must be broadcast regularly with suffi-
cient precision.

Fig. 3. FTT-Ethernet trigger message.

Fig. 4. Internal architecture of slave nodes.

Both the Scheduler and the Admission Control are encap-
sulated in modules with clearly defined interfaces. The system
supports a seamless integration of several different modules that
can be switched online, according to some triggering event. For
example, an EDF scheduler can be used and, upon the occur-
rence of a transient overload, the system can switch to a fixed
priority-based scheduling.

Fig. 3 shows the Trigger Message format used in FTT-Eth-
ernet. An Ethernet broadcast Destination Address is used be-
cause all the nodes in the network must receive this message.
The Type field uses a reserved constant value (FTT Type), used
by all messages except the non-real-time ones that are associ-
ated with other protocols and use their own Type identifiers. The
Data field of the Ethernet frame carries the FTT frame. Its first
word identifies the message type (MST_ID for a Trigger Mes-
sage). The next word contains the number of data messages that
should be transmitted in that EC. For each of these messages,
the FTT frame contains the respective identifier and transmis-
sion duration.

The correct and timely transmission of the EC trigger mes-
sage is very important for the continued correct behavior of
the communication system. Therefore, whenever fault-tolerant
communication is required, a mechanism based on redundant
masters is used to cope with possible master node failures.
Further details on the protocol to enforce replica determinism
among redundant masters as well as the bus takeover and
handover control are out of the scope of this paper.

E. Slave Nodes Architecture

Slave nodes execute the application software required by the
user, eventually requesting the services delivered by the com-
munication system. This system is organized as a stack of layers
following the OSI network reference model. However, two par-
allel stacks are used, one for non-real-time and the other for
real-time communication as shown in Fig. 4. The former uses

PEDREIRAS et al.: FTT-ETHERNET: A FLEXIBLE REAL-TIME COMMUNICATION PROTOCOL 167

Fig. 5. FTT-Ethernet data message.

a standard IP protocol suite, where the only specific compo-
nent is a modified Data Link Layer (DLL). The latter follows
the collapsed three-layers OSI reference model typically found
in fieldbuses. It provides a specific application interface, the
Real-Time Application Programming Interface (RTAPI), which
allows defining the messages locally produced or consumed, up-
dating and accessing their values and setting up callbacks asso-
ciated with the respective transmission or reception events.

At the DLL, a transmission control layer is added on top of
the Ethernet layer, both for real-time and non-real-time com-
munication. This is referred to as the FTT-Ethernet Interface
Layer (Fig. 4), which triggers and manages all communication
activities in the system. Particularly, it receives and decodes
the Trigger Message, retrieves messages from the network that
convey entities requested locally, and, when instructed to do so
via the TM, it transmits messages that convey entities produced
locally and requested elsewhere. Moreover, it also receives the
asynchronous polling requests issued by the master node and
transmits the requested traffic.

The non-real-time traffic is intercepted and queued by the
FTT-Ethernet Interface Layer. Whenever the node is allowed to
transmit this kind of traffic, waiting messages are de-queued and
transmitted. On the other hand, all the received non-real-time
traffic is passed up to the TCP/IP stack. This method makes
the real-time protocol operation fully transparent from the point
of view of the non-real-time tasks and messages. Concerning
real-time frames, synchronous or asynchronous, their structure
is depicted in Fig. 5.

On reception of a data message, the FTT-Ethernet Interface
Layer matches the ID of the received message with the list of
the locally consumed entities. If it is locally consumed, its local
image is updated with the received data. The FTT-Ethernet pro-
tocol also supports temporal accuracy information of real-time
entities by associating a timer to each such entity. The timer
is set with a value corresponding to the validity interval when-
ever the entity is updated by the application. The timer is decre-
mented while the message waits to be transmitted, and its cur-
rent value is inserted in the message just before its transmis-
sion. On the consumer side, a number of units corresponding
to the message transmission time is subtracted from the timer,
which then continues being decremented. When the applica-
tion software consumes a real-time entity, the associated timer
value is also delivered together, allowing assessing its temporal
accuracy.

F. Performance Issues

FTT-Ethernet belongs to the class of MS protocols, thus in-
heriting their typical properties (e.g., good timeliness, arbitrary
traffic scheduling) and limited bandwidth efficiency. However,

FTT is inherently more efficient than other common MS imple-
mentations because there is one single control message (TM)
per cycle and one common turnaround period, right after the
transmission of the TM. With respect to timeliness, adequate
schedulability analysis has been developed and presented in [1],
[21], and [36]. The protocol uses a fixed duration EC, which re-
duces the temporal resolution available to express the commu-
nication requirements and might lead to a relatively small waste
of bandwidth.

FTT-Ethernet also supports asynchronous traffic, handled by
polling. This technique is robust with respect to overloads but
introduces an extra latency that can be as large as the poll period,
plus any related jitter and overhead (Section V-B).

The FTT-Ethernet theoretical efficiency limit is close to the
one achieved by TDMA protocols. As examples, the theoretical
limit is 67.2% for 1ms ECs at 10 Mbps and using small packets.
It raises to 97.5% with 5 ms ECs at 100 Mbps and using large
packets. Practical implementations may exhibit lower efficien-
cies (Section IV), induced by limited accuracy of transmission
instants. The current number of possible IDs for synchronous
messages is 65 535. FTT-Ethernet does not impose any limit on
the number of nodes in one segment neither on the number of
messages that can be scheduled in a single cycle (several TMs
can be cascaded, if necessary).

G. Vertical Integration Issues in Industry

One aspect that is particularly important in automation sys-
tems is vertical integration, meaning that all levels of the in-
dustrial organization, from the shop floor to the accountancy,
management, and supply chain, must communicate with each
other. However, these levels present conflicting communication
requirements, a fact commonly referred to as one of the reasons
for the proliferation of different industrial communication stan-
dards. Ethernet appeared recently as an attempt to support all
levels with a single technology, but the different nature of the
communication requirements at each level still requires the use
of adequate filtering, whichever protocols are used.

In this scope, FTT-Ethernet appears as a protocol for the shop
floor and machine control levels, where real-time requirements
are more stringent. Within FTT-Ethernet segments, all nodes
must comply with the protocol meaning that they must imple-
ment the FTT-Ethernet Interface Layer (Section III-E). Thus, to
support vertical integration, FTT-Ethernet segments must con-
nect to other segments or levels by means of adequate gateways
that respect the protocol transmission control and which can per-
form the required traffic filtering. These gateways, however, are
easy to implement, as no complex protocol conversions are re-
quired. An FTT-Ethernet/Ethernet gateway just queues the Eth-
ernet packets and transmits them in the FTT-Ethernet side at the
right instants. Moreover, these packets are transmitted without
any modification as non-real-time traffic (Section III-E).

H. Microsegmented Switched FTT-Ethernet

FTT-Ethernet can be deployed seamlessly over shared,
switched or mixed shared/switched Ethernet networks. How-
ever, the use of switches introduces additional latencies that
must be taken into account when setting the EC duration and
intermessage guarding windows.

168 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 3, AUGUST 2005

When deployed over a microsegmented switched Ethernet,
the Master can schedule consecutive synchronous messages
without guarding windows in between, since the switch serial-
izes their transmission disregarding any possible overlapping
caused by dispatching jitter in the slaves. This boosts band-
width utilization, as messages are transmitted with minimum
interframe gap, and relieves the transmission control system.
Also, the traffic scheduling may take into account the destina-
tion address of messages, either broadcast, multicast or unicast,
exploiting the existence of disjoint paths and consequently
increasing the global throughput. Moreover, FTT-Ethernet may
enhance the real-time behavior of switches by performing the
traffic control required to support adequate management in
the output ports queues, for example, preventing overloads
and allowing priority scheduling beyond the standard eight
priority levels available in IEEE 802.1D. In fact, the scheduling
carried out by the Master node may take into account individual
priorities of each message, possibly dynamic priorities, e.g., for
EDF scheduling, which are neither restricted nor correlated to
the eight priority levels defined in IEEE 802.1D.

IV. PROTOTYPE IMPLEMENTATION ON SHARK

Several real-time communication protocols require precise
control of the transmission instants and in some other cases a
prompt reaction to a command or token. The best way to en-
force such capability is to use special-purpose hardware support
such as communication controllers that trigger transmissions
autonomously. The negative aspect of this choice is that COTS
NICs cannot be used any longer, thus raising the costs of the
system and reducing the choice of suppliers. Another possibility
is to use COTS components and implement the specific pro-
tocol layers in software. This option, however, may require ad-
equate software support, normally a real-time operating system
(RTOS), to maintain an acceptable control over the transmission
instants. This approach is substantially cheaper and easier to im-
plement but typically limits the achievable efficiency because of
precision limitations on the timing enforced by the RTOS.

Considering the pros and cons referred to above, it was de-
cided to implement FTT-Ethernet in software. Considering that
the protocol includes components that are time-critical and that
it is important to reduce to a minimum the potential interference
of the application software in the timeliness of the protocol com-
ponents, it was decided to use a RTOS. These different timeli-
ness requirements are easily managed by the SHaRK real-time
kernel [10], through its explicit support of tasks with distinct
QoS requirements.

A. SHaRK Brief Overview

SHaRK is a dynamic configurable kernel designed to support
hard, soft, and non-real-time applications with interchangeable
scheduling algorithms.

The kernel is fully modular in terms of scheduling policies,
aperiodic servers, and concurrency control protocols. Modu-
larity is achieved by partitioning the system activities between
generic kernel and modules that can be registered at initializa-
tion time to configure the kernel according to specific applica-
tion requirements. The kernel supports device scheduling and

Fig. 6. Time-critical activities (slave nodes).

thus, it allows extending scheduling algorithms used for the
CPU to other hardware resources. Tasks are owned by Sched-
uling Modules, each of which behaves like a multilevel sched-
uler in the sense that tasks registered on lower priority modules
are scheduled in the background with respect to tasks registered
on higher priority modules.

The system is compliant with almost all the POSIX 1003.13
PSE52 specifications to simplify porting of application code.
In addition to the standard features of the previously referred
specifications, SHaRK provides various other services, such as

• temporal isolation and task execution time policing;
• asynchronous buffers and other mechanisms for non-

blocking intertask communication;
• interrupt and hardware port handling.

B. Implementing FTT-Ethernet on Top of SHaRK

1) Master Node: The internal critical tasks performed inside
the master node are two, the Scheduler and the Dispatcher. The
Master node also carries other less or non-time-critical activi-
ties, such as the system requirements database management, the
interface to higher protocol layers, task admission control, the
application interface, and the operator interface handling.

The Dispatcher task transmits the Trigger Message, which
carries the EC schedule, invoking a SHaRK Network API ser-
vice that directly sends a packet to the Ethernet layer. The cor-
rect behavior of the communication system is linked to the pre-
cision in the transmission of the TM; i.e., it must be transmitted
with low jitter. Thus, the Dispatcher uses the kernel services for
periodic hard tasks and it is assigned to the scheduling module
with the highest priority level, preempting every other running
tasks.

The Scheduler also has a strict time constraint because it must
deliver a new EC schedule before the start of the next EC. For
that reason, it is registered as a hard aperiodic task and its exe-
cution is triggered by the Dispatcher.

2) Slave Nodes: Correct transmission and reception of Eth-
ernet messages are the critical tasks executed inside the slave
nodes. The system also executes other less or nontime-critical
activities such as the Local Requirements Database manage-
ment, the update of the local buffers, the interface to higher pro-
tocol layers, and user I/O handling. The critical group includes
two tasks, executed in the order depicted in Fig. 6.

Notice that slaves must wait for a TM before initiating any
communication activity. Then, every time an Ethernet packet
arrives, an interrupt is raised. To control the interference of that
interrupt on the currently running task, the network interrupt
handler just queues the packet and activates a task, called Net-
work_RX, which afterwards processes the incoming packets.
Since the activations of the Network_RX task generally follow
an unknown pattern, the respective task model is soft, to bound
the amount of processor bandwidth used. Each node becomes

PEDREIRAS et al.: FTT-ETHERNET: A FLEXIBLE REAL-TIME COMMUNICATION PROTOCOL 169

Fig. 7. Experimental setup.

aware of the reception of messages only after the execution of
the Network_RX task. Therefore, to limit the end-to-end time
from message arrival to the application delivery, this task must
be inserted into the highest priority scheduling module.

The reception of a TM activates the Msg_Prod task, which
identifies the local synchronous messages that must be trans-
mitted in the current EC and sets a number of timed-events,
managed by the kernel. This is the most time-critical and
jitter-sensitive task on the slave node since unbounded delays
in its execution may lead to delays in the preset transmission
instants and, consequently, to collisions. For this reason this
task is granted with the highest priority.

V. APPLICATION EXAMPLE: A REMOTE

SURVEILLANCE SYSTEM

To experimentally verify the functionalities of FTT-Ethernet
a setup was built using 10 Mbps shared Ethernet. This type of
network was chosen because it is more demanding in terms of
the system timeliness since collisions must be avoided. It seems,
thus, more appropriate for the purpose of verifying the correct
operation of the protocol. Similarly, the use of a low transmis-
sion rate, 10 Mbps, facilitates the generation of higher band-
width utilization factors that expose the advantages of using
FTT-Ethernet.

The specific application is a video surveillance security
system with four independent video cameras, attached to one
PC each, the Master station and the Operator console that
displays all four images simultaneously (Fig. 7). An additional
monitoring station (Sniffer) is used for logging purposes.

The four video streams corresponding to the four cameras are
conveyed within synchronous messages. The traffic scheduling
policy applied to these messages by the Master station is Earliest
Deadline First (EDF).

Each camera can be served with distinct QoS levels, corre-
sponding, in this case, to different frame rates of the respective
stream. In normal operating conditions, all the cameras are al-
lowed to send frames at a predefined nominal rate. However,
certain events may cause a request for increased QoS of a given
camera, e.g., movement detection by an attached sensor or an
explicit operator command. If there is not enough bandwidth
available to satisfy the request, a management mechanism is ap-
plied to try to redistribute the bandwidth among the streams in
order to accommodate the request and still deliver acceptable

TABLE I
SYNCHRONOUS MESSAGE SET ATTRIBUTES

levels of QoS to all streams. If it is not possible to serve a request
while delivering at least minimum (prespecified) QoS levels to
all streams, the request is rejected, keeping current bandwidth
assignments.

This management mechanism is based on the elastic band-
width management policy [2] according to which, bandwidth
requirements are considered to be elastic and can be com-
pressed up to a specified value to cope with an overload
condition. Elastic coefficients are used to diversify compression
among the streams, so that bandwidth reduction is higher for
streams with higher elasticity. The implementation of the elastic
bandwidth management mechanism within FTT-Ethernet is
detailed in [36].

Using this experimental setup, several measurements were
carried out concerning the transmission jitter of synchronous
streams and the transmission latency for asynchronous ones.
The EC duration was set to 5 ms and the synchronous window
was upper bounded to 1.85 ms, i.e., approximately 37% of the
EC. This bandwidth was just enough to handle the nominal syn-
chronous requirements. The remaining bandwidth was left for
the asynchronous traffic and the transmission of the TM.

A. Synchronous Communication

The synchronous communication requirements arise from the
video streams associated with the four cameras. These cam-
eras have a resolution of pixels with 8 bits/pixel.
The image frames, with approximately 110 KB, are sent in raw
format, fragmented in 1 KB packets plus 10 bytes of fragmen-
tation/reassembly overhead. The synchronous message set at-
tributes used in the experiments are shown in Table I, where
represents the message transmission time, including FTT-Eth-
ernet overheads, , , and are the nominal, min-
imum, and maximum periods respectively and is the elastic
coefficient. The nominal synchronous bandwidth utilization is
35.7%.

At the beginning of the experiments, all cameras send data at
their nominal rate. At time camera 1 requests an increase
in its QoS. The elastic guarantee mechanism finds a feasible
solution by increasing the transmission periods of cameras 3 and
4. At time s, camera 1 returns to its nominal value and the
elastic management mechanism resets the message streams to
their nominal QoS. Table II summarizes the message periods
observed during the experiments.

Fig. 8 presents the number of synchronous packets trans-
mitted by each of the nodes as a function of time. The changes in
the rates of the video streams are clearly visible at the instants in
which there were requests for QoS changes of camera 1 (s
and s).

170 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 3, AUGUST 2005

TABLE II
PERIODS OF SYNCHRONOUS STREAMS

Fig. 8. Packets sent using FTT-Ethernet.

TABLE III
TRANSMISSION JITTER OF SYNCHRONOUS TRAFFIC

TABLE IV
ASYNCHRONOUS MESSAGE SET ATTRIBUTES

Table III summarizes the jitter figures of the synchronous
messages sent by the cameras. The values are presented in per-
centage and normalized to the respective nominal message pe-
riod. These values are relatively small despite the occurrence of
changes in the message set, due to the QoS management carried
out by the FTT protocol.

B. Asynchronous Communication

The asynchronous messages used in the experiments include
a set of five real- and four non-real-time messages, as depicted
in Table IV. Messages 1–4 are real-time alarm messages, used
to signal abnormal events, and are polled every 5 ms for fast
response. The message with ID 10 is used for QoS manage-
ment, and consequently its latency restricts the system respon-
siveness. Therefore, it is classified as real-time and polled every
20 ms. Finally, messages with IDs 20 to 23 are used for ser-
vice and maintenance. These messages are seldom required and

Fig. 9. Asynchronous message latency.

are not subject to time constraints; thus they are configured as
non-real-time, with a poll period of 50 ms. Note that, due to its
nature, non-real-time messages are transmitted in background
with respect to the real-time ones and consequently its polling
period is not guaranteed. The resulting asynchronous bandwidth
utilization traffic is 10.9%.

The experiments in this case concerned the latency in the
transmission of asynchronous real-time messages. For this pur-
pose, the latency affecting the transmission of the QoS message
(ID 10) was monitored. This latency was measured between the
invocation of the send() primitive in the source node and the
instant in which the message was inserted in the receiver node
queue, being available to the receiver task. The measurements
were carried out using timestamps with clocks synchronized to
a precision of 10 s.

Fig. 9 presents a histogram of the latency results obtained
with FTT-Ethernet, which vary between 2.2 ms and 22.5 ms,
with an average value of 12.3 ms and roughly following a uni-
form distribution. This is expected, since the ECs are periodic
and the asynchronous transmission requests were submitted al-
most periodically, too, but not synchronized.

The values obtained for the latency are also expected, and
can be checked with a trivial response-time analysis. In fact,
the worst-case value should correspond to the situation in which
the message arrives at the FTT interface layer right after being
polled, leading to one polling cycle delay, i.e., 20 ms. Moreover,
all higher priority real-time asynchronous messages fit within
the asynchronous window and are always polled jointly with
this message. Thus, the poll suffers a constant delay but without
significant scheduling jitter. On the other hand, the best-case
value should occur when the message arrives at the FTT in-
terface layer right before being polled. In that case, the trans-
mission time practically equals the physical transmission of the
frame, which is close to 672 s. Finally, either the best-case or
worst-case values must be complemented with the time to buffer
the message in the sender node, to wake-up and transmit the
message at the right instant, to receive and buffer the message
in the receiver node and finally signal the receiving task with
new data available. In this experimental setup, these overheads
were measured, exhibiting values between 2.0 ms and 2.5 ms.

PEDREIRAS et al.: FTT-ETHERNET: A FLEXIBLE REAL-TIME COMMUNICATION PROTOCOL 171

Therefore, the expected latency values were comprised between
2.6 ms and 23.1 ms, which agree with the measured ones.

VI. CONCLUSIONS

This paper addresses the recent trends verified in industrial
real-time distributed systems, and particularly at the field level,
toward higher flexibility and larger bandwidth requirements. In
order to fulfill such requirements, Ethernet has long been pro-
posed for use in such systems. Moreover, several techniques
have also been proposed to allow supporting real-time commu-
nication. However, these are not yet adequate to support dy-
namic management of QoS with timeliness guarantees, a feature
that is becoming more and more appealing to cope with dynamic
environments and run-time updates.

This paper presented the FTT-Ethernet protocol, which
has been tailored to specifically support dynamic QoS man-
agement under guaranteed timeliness. The basic architectural
options have been presented as well as the mechanisms to
support dynamic communication requirements, arbitrary
traffic scheduling policies, online admission control, time and
event-triggered traffic with temporal isolation, and temporal
accuracy information.

The paper also presents the protocol implementation using
the SHaRK real-time kernel as well as a sample application, for
experimental verification of the protocol. The sample applica-
tion, i.e., a video surveillance system, highlights the capacity of
this protocol to support online management of the QoS of sev-
eral streams.

Finally, as future work, the implementation of FTT-Ethernet
over microsegmented switched architectures will be addressed
as it may, on one hand, simplify the protocol implementation,
and on the other, solve some of the problems that currently affect
the real-time performance of Ethernet switches.

REFERENCES

[1] L. Almeida, P. Pedreiras, and J. A. Fonseca, “The FTT-CAN pro-
tocol: Why and how,” IEEE Trans. Ind. Electron., vol. 49, no. 6, pp.
1189–1201, Dec. 2002.

[2] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic scheduling
for flexible workload management,” IEEE Trans. Comput., vol. 51, no.
3, pp. 289–302, Mar. 2002.

[3] F. Carreiro, J. A. Fonseca, and P. Pedreiras, “Virtual token-passing Eth-
ernet-VTPE,” in FET’03—5th IFAC Int. Conf. on Fieldbus Systems and
their Applications, Aveiro, Portugal, 2003, pp. 275–282.

[4] J.-D. Decotignie, “A perspective on Ethernet as a fieldbus,” in Proc.
FeT’2001—4th Int. Conf. on Fieldbus Systems and Their Applications,
Nancy, France, Nov. 2001, pp. 138–143.

[5] “DIX Ethernet V2.0 Specification,”, 1982.
[6] Flexible Time-Triggered (FTT) paradigm. [Online]. Available: http://

www.ieeta.pt/lse/ftt
[7] ETHERNET Powerlink Protocol. [Online]. Available: http://ethernet-

powerlink.org
[8] (2002) ETHERNET Powerlink Data Transport Services White-Paper

Ver. 0005. Bernecker, Rainer Industrie-Elektronic Ges.m.b.H. [Online].
Available: http://www.ethernet-powerlink.org

[9] Ethernet/IP (Industrial Protocol) Specification. [Online]. Available:
http://www.odva.org

[10] P. Gai, M. Giorgio, L. Abeni, and G. Buttazzo, “A new kernel approach
for modular real-time systems development,” in 13th Euromicro Conf.
on Real-Time Systems, Delft, Netherlands, Jun. 2001.

[11] H. Hoang, M. Jonsson, U. Hagstrom, and A. Kallerdahl, “Switched
real-time Ethernet with earliest deadline first scheduling—Protocols
and traffic handling,” in Proc 10th Int. Workshop on Parallel and
Distributed Real-Time Systems, CITY?, FL, Apr. 2002.

[12] H. Hoang and M. Jonsson, “Switched real-time Ethernet in industrial
applications—Asymmetric deadline partitioning scheme,” in Proc. 2nd
Int. Workshop on Real-Time LAN’s in the Internet Age, RTLIA’03, Porto,
Portugal, Jul. 2003.

[13] IEEE 802.3 10BASE5 Std..
[14] IEEE 802.3 10BASE2 Std..
[15] IEEE 802.3c 1BASE5 StarLan Std..
[16] IEEE 802.3i 10BASE-T.
[17] IEEE 802.3u 100BASE-T.
[18] IEEE 802.3z 1000BASE-T.
[19] IEEE 802.3ae-2002—10 Gbps.
[20] J. Jasperneit and P. Neumann, “Switched Ethernet for factory communi-

cation,” in Proc of ETFA2001—8th IEEE Int. Conf. on Emerging Tech-
nologies and Factory Automation, Antibes, France, Oct. 2001.

[21] P. Pedreiras and L. Almeida, “The flexible time-triggered (FTT) par-
adigm: An approach to QoS management in distributed real-time sys-
tems. WPDRTS 2003,” in 11th IEEE Work. on Parallel and Distributed
Real-Time Systems, Nice, France, Apr. 2003.

[22] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and
R. Zainlinger, “Distributed fault-tolerant real-time systems: The MARS
approach,” IEEE Micro, vol. 9, no. 1, pp. 25–40, Feb. 1989.

[23] S.-K. Kweon, K. G. Shin, and Q. Zheng, “Statistical real-time commu-
nication over Ethernet for manufacturing automation systems,” in Proc.
5th IEEE Real-Time Technology and Applications Symp., Jun. 1999.

[24] S.-K. Kweon, K. G. Shin, and G. Workman, “Achieving real-time
communication over Ethernet with adaptive traffic smoothing,” in Proc
of RTAS’00, 6th IEEE Real-Time Technology and Applications Symp,
Washington, DC, Jun. 2000, pp. 90–100.

[25] J. Lee and H. Shin, “A variable bandwidth allocation scheme for Eth-
ernet-based real-time communication,” in Proc. 2nd Int. Work. on Real-
Time Computing Systems and Applications, Tokyo, Japan, Oct. 1995, pp.
28–33.

[26] G. LeLann and N. Rivierre, “Real-Time Communications Over Broad-
cast Networks: The CSMA-DCR and the DOD-CSMA-CD Protocols,”,
INRIA Rep. RR1863, 1993.

[27] L. L. Bello et al., “Fuzzy traffic smoothing: An approach for real-time
communication over Ethernet networks,” in Proc of WFCS’02, 4th
IEEE Work. on Factory Communication Systems, Västeras, Sweden,
Aug. 2002.

[28] N. Malcolm and W. Zhao, “The timed-token protocol for real-time com-
munications,” IEEE Computer, vol. 27, no. 1, pp. 35–41, Jan. 1994.

[29] , “Hard real-time communications in multiple-access networks,”
in Real Time Systems. Norwell, MA: Kluwer, 1995, vol. 9, pp.
75–107.

[30] J. Martínez, M. Harbour, and J. Gutiérrez, “A multipoint communication
protocol based on Ethernet for analyzable distributed applications,” in
Proc. 1st Int. Work. on Real-Time LAN’s in the Internet Age, RTLIA’02,
Vienna, Austria, 2002.

[31] , “RT-EP: Real-time Ethernet protocol for analyzable distributed
applications on a minimum real-time posix kernel,” in Proc. 2nd Int.
Work. on Real-Time LAN’s in the Internet Age, RTLIA’03, Porto, Por-
tugal, Jul. 2003.

[32] A. Moldovansky, “Utilization of modern switching technology in Eth-
ernet/IP networks,” in Proc. of the 1st Int. Workshop on Real-Time LAN’s
in the Internet Age, RTLIA’02, Vienna, Austria, 2002.

[33] M. Molle and L. Kleinrock, “Virtual time CSMA: Why two clocks are
better than one,” IEEE Trans. Commun., vol. COM-33, pp. 919–933,
1985.

[34] G. Pardo-Castellote, S. Schneider, and M. Hamilton. (1999) NDDS:
The Real-Time Publish-Subscribe Middleware. Real-Time Innovations,
Inc., Sunnyvale, CA. [Online]. Available: http://www.rti.com/products/
ndds/literature.html

[35] P. Pedreiras, P. Gai, and L. Almeida, “The FTT-Ethernet protocol:
Merging flexibility, timeliness and efficiency,” in Proc. 14th Euromicro
Conf. Real-Time Systems, Vienna, Austria, 2002, pp. 152–160.

[36] P. Pedreiras, L. Almeida, P. Gai, and G. Buttazzo, “FTT-Ethernet: A
platform to implement the elastic task model over message streams,”
in Proc. 4th IEEE Int. Workshop on Factory Communication Systems,
Vasteras, Sweden, Aug. 28–30, 2002, pp. 225–232.

[37] P. Pedreiras, R. Leite, and L. Almeida, “Characterizing the real-time
behavior of prioritized switched-ethernet,” in RTLIA’03, 2nd Work. on
Real-Time LAN’s in the Internet Age, Porto, Portugal, Jul. 2003.

[38] Can Ethernet be Real-Time?. Real-Time Innovations, Inc. [Online].
Available: http://www.rti.com/products/ndds/literature.html

[39] RTPS (Real-Time Publisher/Subscriber Protocol) Part of the IDA (In-
terface for Distributed Automation) Specification. [Online]. Available:
www.ida-group.org

172 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 3, AUGUST 2005

[40] P. Smolik, Z. Sebek, and Z. Hanzalek, “ORTE—Open source implemen-
tation of real-time publish-subscribe protocol,” in Proc. 2nd Int. Work-
shop on Real-Time LAN’s in the Internet Age, RTLIA’03, Porto, Portugal,
Jul. 2003.

[41] J. L. Sobrinho and A. S. Krishnakumar, “EQuB-Ethernet quality of ser-
vice using black bursts,” in Proc. 23rd Conference on Local Computer
Networks, Boston, MA, Oct. 1998, pp. 286–296.

[42] Y. Song, “Time constrained communication over switched Ethernet,” in
Proc. FeT’01—4th Int. Conf. Fieldbus Systems and their Applications,
Nancy, France, Nov. 2001, pp. 138–143.

[43] J. Stankovic, C. Lu, H. Son, and G. Tao, “The case for feedback control
real-time scheduling,” in Proc. IEEE 11th Euromicro Conf. Real-Time
Systems, 1999, pp. 11–20.

[44] J.-P. Thomesse, “Fieldbus and interoperability,” Contr. Eng. Pract., vol.
7, no. 1, pp. 81–94, 1999.

[45] S. Varadarajan and T. Chiueh, “EtheReal: A host-transparent real-time
fast Ethernet switch,” in Proc. 6th Int. Conf. on Network Protocols,
Austin, TX, Oct. 1998, pp. 12–21.

[46] S. Varadarajan, “Experiences with ethereal: A fault-tolerant real-time
Ethernet switch,” in Proc. 8th IEEE Int. Conf. on Emerging Technolo-
gies and Factory Automation (ETFA), Antibes, France, Oct. 2001, pp.
184–195.

[47] C. Venkatramani and T. Chiueh, “Supporting real-time traffic on Eth-
ernet,” in Proc of IEEE Real-Time Systems Symposium, San Juan, PR,
Dec. 1994.

[48] J. Loeser and H. Haertig, “Using switched Ethernet for hard real-time
communication,” in Proc. Parallel Computing in Electrical Engineering,
Int. Conf. (PARELEC’04), Dresden, Germany, Sep. 07–10, 2004, pp.
349–353.

[49] EtherCAT Technology Group. [Online]. Available: http://www.ethercat.
org/

[50] Real-Time PROFInet IRT. [Online]. Available: http://us.profibus.com/
profinet/07/

[51] European Std. EN 50170. General Purpose Fieldbus: Vol. 1: P-Net; vol.
2: PROFIBUS; vol. 3: WorldFIP. CENELEC, European Committee for
Electrotechnical Standardization, 1996.

[52] T. Li, “Time and industrial local area networks,” in Proc. of COM-
PEURO’93, Paris, France, 1993.

[53] H. Kopetz, “Consistency constraints in distributed real-time systems,” in
Proc. 8th IFAC Workshop on DCCS, Vitznau, 1988, pp. 29–34.

[54] M. Schwartz, “Implementation of a TTP/C Cluster Based on Commer-
cial Gigabit Ethernet Components,” M.Sc. thesis, TU Wien, Austria,
2002.

[55] P. Pedreiras and L. Almeida, “Approaches to enforce real-time behavior
in Ethernet,” in The Industrial Communication Systems Handbook, R.
Zurawski, Ed. Boca Raton, FL: CRC, 2005.

Paulo Pedreiras (M’03) received the licenciatura
degree in electronics and telecommunications engi-
neering from the University of Aveiro, Portugal, in
1997 and the Ph.D. degree in electrical engineering,
also from University of Aveiro, Portugal, in 2003.

Currently, he is Invited Assistant Professor in the
Department of Electronics and Telecommunications,
University of Aveiro. Formerly, he was a Design
Engineer in a company producing test equipment
for the automotive industry. His research interests
include distributed embedded systems, real-time

networks, real-time operating systems and mobile robotics.

Paolo Gai received the M.S. degree (with honors) in
computer science engineering from the University of
Pisa, Italy, in 2000, and the Ph.D. in computer engi-
neering from the ReTiS Lab of the Scuola Superiore
S. Anna, Pisa, in 2004.

Since 2002 he is CEO of Evidence Srl, a spinoff
company of the Scuola Superiore S. Anna. His main
research areas are multiprocessor real-time sched-
uling, memory and code optimization techniques
for embedded systems, real-time operating systems
for multiprocessor system-on-a-chip especially

targeted to automotive applications, real-time networks, and interfaces for the
specification of modular scheduling algorithms in real-time operating systems.

Luís Almeida (M’99) received the degree in elec-
tronics and telecommunications engineering in 1988
and the Ph.D. degree in electrical engineering in
1999, both from the University of Aveiro, Portugal.

He has been an Assistant Professor with the
Department of Electronics and Telecommunications,
University of Aveiro, since 1999. He is also a Senior
Researcher at the IEETA research unit of the same
university. Formerly, he was a Design Engineer in
a company producing digital telecommunications
equipment.

His research interests lie in the fields of real-time networks for distributed
industrial/embedded systems and navigation control for mobile robots.

Giorgio C. Buttazzo (M’93–SM’05) graduated
in electronic engineering from the University of
Pisa, Italy, in 1985, received the M.S. degree in
computer science from the University of Pennsyl-
vania, Philadelphia, in 1987, and the Ph.D. degree
in computer engineering from the Scuola Superiore
S. Anna of Pisa, Italy, in 1991.

He is an Associate Professor of computer en-
gineering at the University of Pavia, Italy. His
main research interests include real-time operating
systems, scheduling algorithms, quality of service

control, multimedia systems, advanced robotics applications, and neural
networks.

Dr. Buttazzo is a Senior Member of the IEEE Computer Society.

	toc
	FTT-Ethernet: A Flexible Real-Time Communication Protocol That S
	Paulo Pedreiras, Member, IEEE, Paolo Gai, Luís Almeida, Member,
	I. I NTRODUCTION
	II. T HE W AY T OWARDS R EAL -T IME E THERNET
	A. Brief Survey on Real-Time Techniques
	B. Dynamic QoS Management

	III. FTT-E THERNET P ROTOCOL
	A. Basic Architectural Options

	Fig. 1. Elementary cycle structure.
	B. Elementary Cycle
	C. System Requirements Database

	Fig. 2. Master internal architecture.
	D. Master Node Architecture

	Fig. 3. FTT-Ethernet trigger message.
	Fig. 4. Internal architecture of slave nodes.
	E. Slave Nodes Architecture

	Fig. 5. FTT-Ethernet data message.
	F. Performance Issues
	G. Vertical Integration Issues in Industry
	H. Microsegmented Switched FTT-Ethernet
	IV. P ROTOTYPE I MPLEMENTATION ON S HARK
	A. SHaRK Brief Overview

	Fig. 6. Time-critical activities (slave nodes).
	B. Implementing FTT-Ethernet on Top of SHaRK
	1) Master Node: The internal critical tasks performed inside the
	2) Slave Nodes: Correct transmission and reception of Ethernet m

	Fig. 7. Experimental setup.
	V. A PPLICATION E XAMPLE: A R EMOTE S URVEILLANCE S YSTEM

	TABLE I S YNCHRONOUS M ESSAGE S ET A TTRIBUTES
	A. Synchronous Communication

	TABLE II P ERIODS OF S YNCHRONOUS S TREAMS
	Fig. 8. Packets sent using FTT-Ethernet.
	TABLE III T RANSMISSION J ITTER OF S YNCHRONOUS T RAFFIC
	TABLE IV A SYNCHRONOUS M ESSAGE S ET A TTRIBUTES
	B. Asynchronous Communication

	Fig. 9. Asynchronous message latency.
	VI. C ONCLUSIONS
	L. Almeida, P. Pedreiras, and J. A. Fonseca, The FTT-CAN protoco
	G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, Elastic schedu
	F. Carreiro, J. A. Fonseca, and P. Pedreiras, Virtual token-pass
	J.-D. Decotignie, A perspective on Ethernet as a fieldbus, in Pr

	DIX Ethernet V2.0 Specification,, 1982.
	Flexible Time-Triggered (FTT) paradigm . [Online] . Available: h
	ETHERNET Powerlink Protocol . [Online] . Available: http://ether
	(2002) ETHERNET Powerlink Data Transport Services White-Paper Ve
	Ethernet/IP (Industrial Protocol) Specification . [Online] . Ava
	P. Gai, M. Giorgio, L. Abeni, and G. Buttazzo, A new kernel appr
	H. Hoang, M. Jonsson, U. Hagstrom, and A. Kallerdahl, Switched r
	H. Hoang and M. Jonsson, Switched real-time Ethernet in industri

	IEEE 802.3 10BASE5 Std. .
	IEEE 802.3 10BASE2 Std. .
	IEEE 802.3c 1BASE5 StarLan Std. .
	IEEE 802.3i 10BASE-T .
	IEEE 802.3u 100BASE-T .
	IEEE 802.3z 1000BASE-T .
	IEEE 802.3ae-2002 10 Gbps .
	J. Jasperneit and P. Neumann, Switched Ethernet for factory comm
	P. Pedreiras and L. Almeida, The flexible time-triggered (FTT) p
	H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
	S.-K. Kweon, K. G. Shin, and Q. Zheng, Statistical real-time com
	S.-K. Kweon, K. G. Shin, and G. Workman, Achieving real-time com
	J. Lee and H. Shin, A variable bandwidth allocation scheme for E
	G. LeLann and N. Rivierre, Real-Time Communications Over Broadca
	L. L. Bello et al., Fuzzy traffic smoothing: An approach for rea
	N. Malcolm and W. Zhao, The timed-token protocol for real-time c
	J. Martínez, M. Harbour, and J. Gutiérrez, A multipoint communic
	A. Moldovansky, Utilization of modern switching technology in Et
	M. Molle and L. Kleinrock, Virtual time CSMA: Why two clocks are
	G. Pardo-Castellote, S. Schneider, and M. Hamilton . (1999) NDDS
	P. Pedreiras, P. Gai, and L. Almeida, The FTT-Ethernet protocol:
	P. Pedreiras, L. Almeida, P. Gai, and G. Buttazzo, FTT-Ethernet:
	P. Pedreiras, R. Leite, and L. Almeida, Characterizing the real-

	Can Ethernet be Real-Time? . Real-Time Innovations, Inc. [Online
	RTPS (Real-Time Publisher/Subscriber Protocol) Part of the IDA (
	P. Smolik, Z. Sebek, and Z. Hanzalek, ORTE Open source implement
	J. L. Sobrinho and A. S. Krishnakumar, EQuB-Ethernet quality of
	Y. Song, Time constrained communication over switched Ethernet,
	J. Stankovic, C. Lu, H. Son, and G. Tao, The case for feedback c
	J.-P. Thomesse, Fieldbus and interoperability, Contr. Eng. Pract
	S. Varadarajan and T. Chiueh, EtheReal: A host-transparent real-
	S. Varadarajan, Experiences with ethereal: A fault-tolerant real
	C. Venkatramani and T. Chiueh, Supporting real-time traffic on E
	J. Loeser and H. Haertig, Using switched Ethernet for hard real-

	EtherCAT Technology Group . [Online] . Available: http://www.eth
	Real-Time PROFInet IRT . [Online] . Available: http://us.profibu
	European Std. EN 50170. General Purpose Fieldbus: Vol. 1: P-Net;
	T. Li, Time and industrial local area networks, in Proc. of COMP
	H. Kopetz, Consistency constraints in distributed real-time syst
	M. Schwartz, Implementation of a TTP/C Cluster Based on Commerci
	P. Pedreiras and L. Almeida, Approaches to enforce real-time beh

