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Abstract 

In this paper we describe how to integrate Internet 

Protocols (IP) into a typical hierarchical master-slave 

fieldbus network, supporting a logical ring token 

passing mechanism between master stations. The 

integration of the TCP/IP protocols in the fieldbus 

protocol rises a number of issues that must be 

addressed properly. In this paper we particularly 

address the issues related to the conveyance of IP 

fragments in fieldbus frames (fragmentation/de-

fragmentation) and on how to support the symmetry 

inherent to the TCP/IP protocols in fieldbus slaves, 

which lack communication initiative. 

1. Introduction 
Fieldbus is a generic name given to fully digital 

communication protocols for industrial measurement 

and control applications. Several fieldbus protocols 

exist, while the general-purpose Fieldbus 

Communication System European Standard - EN 

50170, proposed PROFIBUS, WorldFIP and P-Net 

as fieldbus protocol standards. [1]  

The fieldbus protocol addressed in this paper 

distinguishes between two types of devices - masters 

and slaves – and supports both mono-master and 

multi-master systems. A master can send a message 

on its own initiative (without an external request), 

once it gains the right to access the bus. On the other 

hand, slaves do not have bus access rights and they 

can only acknowledge or respond to requests from 

masters.  

The medium access control (MAC) mechanism of the 

fieldbus protocol is based on a simplified logical ring 

timed token protocol, which is a well-proven solution 

for real-time communication systems [2,3]. Bus 

access is based on a hybrid, decentralised/centralised 

method: masters use a token-passing procedure to 

grant bus access rights and a master-slave procedure 

to communicate with slave stations. The token, which 

represents the right to access the bus, circulates in a 

logical ring composed by the masters.  

An important concept is the Message Cycle, which 

comprises the Action Frame sent by the initiator 

(always a master) and the associated Acknowledge or 

Response Frame from the responder (slave or 

master). The protocol distinguishing between high 

and low priority messages. The latter can further be 

divided in three subtypes:  

- Cyclic low priority message cycles (Poll Cycle), 

that represent the execution of the requests 

contained in the poll-list; 

- Acyclic low-priority message cycles, which 

comprise application and remote management 

services; 

- Gap maintenance cycles, that are actions taken 

to determine the status of the others station in 

order to support dynamic changes in the 

network. 

The need to integrate the TCP/IP stack in a fieldbus 

protocol, which is mandatory for such applications as 

industrial multimedia, raises several issues: 

1. The transfer of IP packets through fieldbus 

networks. 

2. The provision of full IP functionalities to 

fieldbus slaves, lacking communication 

initiative. 

3. The impact of such an integration on the fieldbus 

usual real-time control traffic. 

4. The Scheduling and Admission Control 

mechanisms needed to correctly integrate the 

TCP/IP traffic (supporting multi-media 

applications) with the fieldbus control-related 

traffic. 

In this paper we particularly focus on issues 1 and 2. 
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2. General Design Aspects 
The integration can be done transparently from the 

perspective of the TCP/IP applications (Figure 1) 

taking into consideration the use of the TCP/IP stack 

on top of the fieldbus Data Link Layer (DL). 

Therefore, the fieldbus DL controls the data link, 

while the TCP/IP stack implements the desired 

network and transport functionalities. From the 

perspective of the TCP/IP applications, the fieldbus 

DL and the adequate interface provide the data link 

communication services needed to support the 

exchange of IP packets between TCP/IP 

communication peers. 

 

Fieldbus 

DL 

TCP 

Applications 

IGMP 

UDP 

ICMP 

RARP 
ARP

 

Physical Medium 

Link 

Network 

Transport 

Application 
Ping 

Traceroute 
Multicast 

Apps 

FTP 
Telnet 
HTTP 

TFTP 
DNS 

RealAudio 

IP-Mapper 

Admission Control 

Scheduling 

IP 

 

Figure 1 - Integration of a Fieldbus network in a TCP/IP 
stack 

From the Fieldbus DL perspective (Figure 2), this 

integration can be done considering the TCP/IP stack 

as an extra DL User, which will be scheduled 

together with native DL Users. The adequate 

interface ensures that the TCP/IP related traffic will 

be converted to fieldbus DL traffic and that it will not 

jeopardise the timing requirements of the control-

related traffic. 
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Figure 2 - Higher Layer General Model 

Figure 2 shows the layers that need to be inserted on 

top of the fieldbus DL for the handling of the IP 

traffic: the IP Mapper, the IP ACS (Admission 

Control and Scheduler) and the Dispatcher. These 

layers are responsible for the transparent integration 

of the TCP/IP stack with the fieldbus protocol stack, 

taking into account the issues raised by this 

integration. IP traffic passes through the IP Mapper, 

the IP ACS and the Dispatcher. In the following 

paragraphs the functionalities of each one of these 

layers are presented.  

The IP Mapper layer resides directly below the 

TCP/IP Protocol Stack. This layer is responsible for 

the conversion of IP packets into/from fieldbus DL 

frames. Therefore, it maps the TCP/IP services into 

the fieldbus DL services and performs the 

identification, fragmentation and reassembly of the 

IP packets to/from fieldbus DL frames. The IP-

Mapper layer is also responsible for the transparent 

support of the peer-to-peer relationship inherent to 

the IP protocol, mapping it to the fieldbus DL 

master/slave structure. 

The Admission Control and Scheduling (ACS) layer 

resides directly below the IP Mapper Layer. This 

layer is responsible for the control/limitation of the 

network resources usage by the TCP/IP applications. 

This limitation can be accomplished through specific 

traffic scheduling policies, distinguishing the traffic 

generated by different TCP/IP applications. Such 

scheduling policies must provide the desired Quality 

of Service for multimedia applications, while 

guaranteeing that the timing requirements of the 

control-related traffic are always satisfied.  

The Dispatcher layer resides under the IP ACS 

Layer. Both fieldbus native traffic and IP traffic pass 

through this layer. This layer is responsible for the 

transfer of both kinds of traffic to the fieldbus DL. 

The dispatcher is responsible for maintaining proper 

timing constraints, so that the Dispatcher Cycle Time 

(TDCY) is met. The value of TDCY must be set during 

the system planning (pre-runtime), according to the 

timing requirements of the transactions. See [4] for 

details on these aspects and also on admission control 

and scheduling. 

3. IP Mapper 
The IP Mapper is responsible for the conversion of IP 

packets into/from fieldbus DL frames as well as the 

transparent support of the peer-to-peer relationship 

inherent to the IP protocol, when mapping it to the 

fieldbus DL master/slave structure.  

To meet these needs it maps the TCP/IP services into 

the fieldbus DL services, performs identification, 

fragmentation and reassembly of the IP packets 

to/from fieldbus DL frames. The IP Mapper (Figure 

3) must include the following entities: 

- Fragmentation Entity; 

- Reassembly Entity; 

- Identification and Routing Entity; 

- Switching Entity; 

- ID Generation Entity. 
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3.1. IP-Mapper Fragmentation 

A clarification has to be made here on the meaning of 

IP Fragments in the context of this document. The IP 

Fragments that the IP Mapper passes to its lower 

layers take into account the limitations that are 

imposed by the underlying fieldbus network. In this 

context, the IP Mapper may receive from the TCP/IP 

Stack an already fragmented IP packet and fragment 

it again according to these limitations. 

 

Figure 3 - IP Mapper Structure 

There are several reasons for the IP to use a 60-byte 

header, and most of them do not apply in the fieldbus 

scenario. In effect, typical fieldbus networks have a 

very small error rate, a small number of hosts. 

Therefore the number of IP packets being transmitted 

between two machines can be limited, without 

limiting the TCP/IP intended functionality, and the 

underlying network supports host-to-host 

communication. In this way the IP encapsulation 

needed for applications is simplified. For each 

original IP packet a specific fragmentation protocol 

can be used, utilising a very small overhead in each 

fragment, and a larger one on the first one (to send 

the original IP header). The necessary data is: a 

Fragment Number and a Packet ID: 

- The Fragment Number will be coded in the 

following way: 

Value Meaning 

0 Not Fragmented 

1 First Fragment 

2 Second Fragment 

… … 

127 Last Fragment 

128 to 255 Reserved 

Table 1 - Fragment Encoding 

- The Packet ID will identify the packet to which 

the fragment belongs. 

The implementation of this solution is quite 

straightforward and very few resources of the 

machines and the network are used. 

Figure 4 - 2 byte Fragment Header 

3.2. Fragmentation Entity 

The Fragmentation entity is responsible for the 

fragmentation of IP packets received from the upper 

layer into IP fragments.  

The IP Datagrams will be fragmented according to 

the FIFO principle. That means the next 

fragmentation process will start after the previous 

one is done. Two control bytes will be added to each 

fragment. They correspond to the Fragment Header. 

Figure 5 shows a fragment structure. The packet ID 

of the newly generated fragments is of the default 

value, namely 0. The fragment size 

(FragmentationSize) will be determined by a 

parameter to be defined at system planing (pre-

runtime). 

Figure 5 - Fragment Structure 

3.3 Reassembly Entity 

By the Reassembly entity the IP Datagrams will be 

reconstructed from the received fragments. The 

reconstruction will be done based on the algorithm 

shown in Figure 6: when receiving a first fragment a 

buffer identified by the packet ID, source address and 

with a size depending on the amount of the IP 

datagram will be set up.  The other received 

fragments, with the 2 control bytes ripped off, will be 

concatenated and kept in the buffer according to their 

packet ID. These steps will be repeated again and 

again, until the last fragment of an IP datagram is 

received, as far as there is no disorder. The 

reconstructed IP datagram is to be moved to a 

reserved buffer (PickUpQueue) that is dependent on 

the interface between TCP/IP stack and the IP 

Mapper. Since the TCP/IP stack is generally part of 

an operating system, this interface may be operation 

system specific. After that the reserved buffer may be 

released. 

Were any disorders among the received fragments 

that may be determined by the fragment number or 

there is no more buffer space available, the fragments 

are to be discarded. 
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Figure 6 - Algorithm for the Reassembly 

3.4. Identification and Routing Entity 

As its name suggests, this entity is responsible for the 

identification of the IP data traffic and its appropriate 

routing whenever the received fragments are not 

destined to the local station. 

To accomplish this, it relies on information like:  

- Protocol; 

- Source address; 

- Destination address; 

- Source port address; 

- Destination port address. 

This information is collected from the IP header that 

is available only in the first fragment of each IP 

datagram. Thus, the packet ID is used to keep track 

of the fragments that belong to the same IP datagram. 

An important characteristic of TCP/IP application 

protocols is the fact that many servers wait for 

requests at a well-known port so that their clients 

know to which port they must direct their requests.  

This entity relies on this information (port number, 

protocol, source and destination address) to correctly 

identify the different kinds of IP data fluxes. 

Therefore, it is a task of the system planning to 

associate these parameters with the Relationship ID 

of the Relationship entity, where the IP traffic with 

the defined characteristics will be delivered. 

In this way, all the different kinds of traffic can be 

efficiently handled, indifferently of the application 

(server or client) or the node (master or slave). Based 

on this information the appropriate Relationship 

Entity ID will be determined and fragments will be 

accordingly transferred.  

Routing decisions for fragments bearing the same 

packet ID will also be made. Possible destinations are 

the Reassembly entity or the underlying IP ACS. In 

the case that no match is possible for a fragment, it 

will be trashed. 

In order for the source and destinations addresses to 

follow the IP addressing conventions, IP Class C 

network addresses need to be used for all fieldbus 

network stations. Therefore, they should follow the 

format Y1.Y2.Y3.X, where X is the fieldbus DLL 

address and Y1.Y2.Y3 a system wide Class C 

Network ID (like 192.0.1) as shown in Figure 7. 

Figure 7 - IP Address Convention 

IP fragments are conveyed to the Identification and 

Routing Entity either through the local user 

application (via the Fragmentation Entity) or in the 

case of master stations through the remote 

application (via the Switching Entity). The ID Tagger 

will assign a unique packet ID to all fragments of the 

same IP packet, issued by the ID Generator entity.  

The Identification and Routing entity is also 

responsible for the discarding of packet fragments. 

Whenever a fragment is discarded, the entity also 

discards all the other fragments in the IP Mapper 

layer with the same Packet ID. The discarding of all 

relevant fragments, will result in the associated 

Packet ID release. 

In the Slave stations, this entity is simplified, since IP 

fragments are only conveyed to the Identification and 

Routing Entity through the local user application. 

3.4.1. ID Generation Entity 

The ID Generation entity is responsible for the 

management of the packet ID that identifies an IP 

datagram. All the fragments, that an IP datagram is 

fragmented to, have the same packet ID value. Packet 

IDs are needed in order to keep tracking of the 

received and routed fragments of the same IP 

datagram.  

Depending on the kind of request of the 

Identification and Routing Entity the ID Generation 

Entity will: 

- search for an unused ID number, reserve it and 

pass it to the requesting entity; 

- release a previously reserved ID number from 

the Fragmentation Entity. 

An ID number will be released in the following 

cases: 

- after the sending of the last fragment of an IP 

datagram; 

Octet 1 Octet 2 Octet 3 Octet 4 

191 0 1 Fieldbus 
DLL 

Address 
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- after the discarding of the last fragment of an IP 

datagram. 

3.4.2. Fieldbus - TCP/IP Gateway 

This approach also supports the concept of Fieldbus - 

TCP/IP Gateway, i.e. a station that will forward IP 

packets to other networks. Each station that supports 

traffic to the “outside” world must have a configured 

fieldbus address of the gateway. When sending 

packets the system checks the network address ID of 

the packet and the network address ID of the station. 

If they match, the Host ID will be used as fieldbus 

destination address. Else the gateway address will be 

used. In the latter case if there is no gateway address 

configured, the packet will be discarded. In the 

TCP/IP Gateway side, these packets will be delivered 

as any other IP packet to the TCP/IP stack that is 

responsible to do the routing to the correct network 

interface (Ethernet, Dial Up…). On the opposite 

direction (outside world to fieldbus) the TCP/IP 

Stack will route the packets from the outside to the 

fieldbus that will treat them as any other packets. 

3.5. Switching Entity 

The switching entity is the one that receives from the 

lower layers IP fragments being transferred from 

other stations. Relevant to the DLL service used, the 

switching entity passes the fragments appropriately 

to either the identification and routing entity or the 

reassembly entity. 

On the slave, this Entity can be simplified or even 

removed, since the slave will not handle IP traffic 

that is not destined to it, and all the traffic received is 

directly passed to the reassembly entity. 

4. IP Admission Control and  
    Scheduling 
The Admission Control and Scheduling (ACS) layer 

resides directly under the IP Mapper Layer. This 

layer is responsible for the control/limitation of the 

network resources usage by the TCP/IP applications. 

Using specific traffic scheduling policies, capable of 

distinguishing the traffic generated by different 

TCP/IP applications this limitation can be 

accomplished. Such scheduling policies must provide 

the desired Quality of Service for multimedia 

applications, while guaranteeing that the timing 

requirements of the control-related traffic are always 

satisfied. 

4.1. Functionality 

The ACS Layer is composed of several Relationship 

Entities, and a Scheduler implementing a determined 

scheduling algorithm. 

The multimedia traffic can typically be of two types: 

traffic that does not require stringent timing 

characteristics (denoted as IP Best Effort traffic – 

IPBE), and multimedia traffic characterised by 

specific QoS characteristics, namely bandwidth and 

jitter (referred to as IPH). 

The term scheduling (or scheduling algorithm), used 

here, refers to the production of a sequence (or order) 

for the transmission of IP traffic. This schedule is 

destined mainly for the IPH traffic. IPBE Traffic 

Queues will be served in a round-robin way. 

The scheduling will be done based on differentiated 

services to be given to the different types of IP 

traffic. Thus, the scheduler has to be aware of the 

different types of traffic and the related QoS. The 

differentiation of the IP traffic will be made using 

Relationship Entities. Each Relationship Entity 

receives fragments delivered from the IP Mapper to 

the IP ACS layer related to a specific QoS (including 

“Best Effort”) and peer to peer relationships. See [4] 

for more details on scheduling and timing 

characteristics of the proposed architecture. 

The general functionality of the ACS Layer is shown 

in Figure 8. 

 
RelationshipEntity 

Scheduler 

Relationship
Entity 

Max Queue Size 

MxQS Discarder 

Slave Support 

IP HI 
IP BE 

Can be Simplified or Removed in Slaves  

Figure 8 - General Functionality of the ACS Layer 

4.2. Relationship Entities 

Each Relationship Entity accepts requests from the 

Scheduler to deliver the traffic to the Dispatcher. 

When the Relationship Entity successfully delivers a 

fragment to the dispatcher it will generate a positive 

confirmation to the IP Mapper. 

Each Relationship Entity has a FIFO Queue where 

the received fragments are stored.  This FIFO Queue 

is characterised by a Maximum Queue Size, when the 

Relationship Entity receives a request from the IP 

Mapper that would overload the Queue, it will 

discard all fragments in the Queue that have the same 

Packet ID as in the request. It will also generate 

negative confirmations to the IP Mapper matching all 

the discarded fragments, including the one that 

overloaded the Queue. 
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Each entity should have (IP ACS internal) services to 

the Scheduler that provide information about the 

contents of the Entity’s Queue and let the Scheduler 

change in run time the Maximum Size of the Queue. 

After the Relationship Entity receives a request for a 

change on the Maximum Size of the Queue it checks 

if there are any fragments in the Queue that will 

overload the Queue. If this is the case, it will discard 

all fragments with the same Packet ID in the queue 

and generate negative confirmations to the IP 

Mapper. 

The Relationship Entity will also provide the 

Scheduler with timing characteristics concerning the 

message cycles related to the transmission of the 

fragments in the queue.  

Since a fieldbus Slave Station can transfer data only 

as a response to a Master’s request, it is impossible to 

support multimedia IP traffic from a Slave Station, 

when no Master originated traffic exists. To 

overcome this limitation, when a request for a 

fragment is issued by the Scheduler Entity to an 

empty Relationship Entity Queue, then the 

Relationship Entity generates a special frame if the 

Slave Poll Option is set. This feature of the 

Relationship Entities is especially useful for the 

support of multimedia capabilities by DLL Slave 

Stations, maintaining the QoS defined in System 

Planning. 

Due to limitations on the Slave side, it is a System 

Planning task to guarantee that one and only one 

Master polls a Multimedia traffic enabled Slave. 

However several Relationship Entities can be Slave-

Enabled in that Master. If the Slave Pull Option of 

the Relationship Entity is disabled, it will simply take 

no action when it receives a request from the 

Scheduler and no data is available on the Queue. 

4.3. Scheduler 

A Scheduler Entity is responsible for the appropriate 

serving of the different Relationship Entity Queues 

so that all different QoS are respected. The Scheduler 

Entity uses a service interface, internal to the ACS, 

for the emptying of the different Relationship Entity 

Queues or the acquisition of information relevant to 

their contents.  

The Scheduler uses an interface to the Dispatcher 

layer in order to determine whether it is allowed to 

fill the Dispatcher queues. The queues that may be 

fed by the ACS layer are the IPH queue and the IPBE 

queue. 

The Scheduler is executed periodically. There are 

two different ways to perform the Scheduling of the 

Relationship Entity queues:  

- It may be done off-line. In this case a table in the 

Station Management gives the actual schedule of 

the different Relationship Entity queues. This 

schedule is created off-line, taking into account 

all needed information so that the diverse QoS 

requirements of the different Relationship Entity 

queues are met. In this case the Scheduler 

actually works as a dispatcher for IP Traffic. 

- It may be done on-line. In this case a table in the 

Station Management gives the parameters 

needed by the Scheduling Algorithm so that the 

actual schedule is determined each time the 

Scheduler is executed. In addition to these QoS 

specific parameters, the Scheduling algorithm 

has to take into account the time allocated for IP 

HP traffic and the remaining time for BE traffic. 

The reasoning for these algorithms, timing 

parameters, and examples are fully approached in [4]. 

5. Conclusions 
This paper gives a general insight to an architecture 

for the integration of Internet protocols for industrial 

multimedia over a master slave fieldbus network. 

The integration of the TCP/IP stack in the fieldbus  

protocol raises several issues. In this paper we 

addressed mainly the functionalities that must be 

added to the fieldbus in order to support transparently 

(both in the masters and slaves) TCP/IP transactions. 

Emphasis was particularly given to the issues of 

fragmentation/de-fragmentation of IP packets and to 

the support of symmetric internet protocols over the 

master-slave model of the fieldbus networks. 
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