
 1

Supporting Internet Protocols in Master-Slave Fieldbus

Networks

F. Pacheco

1
, E.Tovar

1
, A. Kalogeras

2
, N. Pereira

1

1
 Department of Computer Engineering, ISEP, Polytechnic Institute of Porto, Portugal

e-mail: {ffp, emt, i960820}@dei.isep.ipp.pt

2
 Industrial Systems Institute, University of Patras, Greece

e-mail : kalogeras@isi.gr

Abstract

In this paper we describe how to integrate Internet

Protocols (IP) into a typical hierarchical master-slave

fieldbus network, supporting a logical ring token

passing mechanism between master stations. The

integration of the TCP/IP protocols in the fieldbus

protocol rises a number of issues that must be

addressed properly. In this paper we particularly

address the issues related to the conveyance of IP

fragments in fieldbus frames (fragmentation/de-

fragmentation) and on how to support the symmetry

inherent to the TCP/IP protocols in fieldbus slaves,

which lack communication initiative.

1. Introduction
Fieldbus is a generic name given to fully digital

communication protocols for industrial measurement

and control applications. Several fieldbus protocols

exist, while the general-purpose Fieldbus

Communication System European Standard - EN

50170, proposed PROFIBUS, WorldFIP and P-Net

as fieldbus protocol standards. [1]

The fieldbus protocol addressed in this paper

distinguishes between two types of devices - masters

and slaves – and supports both mono-master and

multi-master systems. A master can send a message

on its own initiative (without an external request),

once it gains the right to access the bus. On the other

hand, slaves do not have bus access rights and they

can only acknowledge or respond to requests from

masters.

The medium access control (MAC) mechanism of the

fieldbus protocol is based on a simplified logical ring

timed token protocol, which is a well-proven solution

for real-time communication systems [2,3]. Bus

access is based on a hybrid, decentralised/centralised

method: masters use a token-passing procedure to

grant bus access rights and a master-slave procedure

to communicate with slave stations. The token, which

represents the right to access the bus, circulates in a

logical ring composed by the masters.

An important concept is the Message Cycle, which

comprises the Action Frame sent by the initiator

(always a master) and the associated Acknowledge or

Response Frame from the responder (slave or

master). The protocol distinguishing between high

and low priority messages. The latter can further be

divided in three subtypes:

- Cyclic low priority message cycles (Poll Cycle),

that represent the execution of the requests

contained in the poll-list;

- Acyclic low-priority message cycles, which

comprise application and remote management

services;

- Gap maintenance cycles, that are actions taken

to determine the status of the others station in

order to support dynamic changes in the

network.

The need to integrate the TCP/IP stack in a fieldbus

protocol, which is mandatory for such applications as

industrial multimedia, raises several issues:

1. The transfer of IP packets through fieldbus

networks.

2. The provision of full IP functionalities to

fieldbus slaves, lacking communication

initiative.

3. The impact of such an integration on the fieldbus

usual real-time control traffic.

4. The Scheduling and Admission Control

mechanisms needed to correctly integrate the

TCP/IP traffic (supporting multi-media

applications) with the fieldbus control-related

traffic.

In this paper we particularly focus on issues 1 and 2.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

2. General Design Aspects
The integration can be done transparently from the

perspective of the TCP/IP applications (Figure 1)

taking into consideration the use of the TCP/IP stack

on top of the fieldbus Data Link Layer (DL).

Therefore, the fieldbus DL controls the data link,

while the TCP/IP stack implements the desired

network and transport functionalities. From the

perspective of the TCP/IP applications, the fieldbus

DL and the adequate interface provide the data link

communication services needed to support the

exchange of IP packets between TCP/IP

communication peers.

Fieldbus

DL

TCP

Applications

IGMP

UDP

ICMP

RARP
ARP

Physical Medium

Link

Network

Transport

Application
Ping

Traceroute
Multicast

Apps

FTP
Telnet
HTTP

TFTP
DNS

RealAudio

IP-Mapper

Admission Control

Scheduling

IP

Figure 1 - Integration of a Fieldbus network in a TCP/IP
stack

From the Fieldbus DL perspective (Figure 2), this

integration can be done considering the TCP/IP stack

as an extra DL User, which will be scheduled

together with native DL Users. The adequate

interface ensures that the TCP/IP related traffic will

be converted to fieldbus DL traffic and that it will not

jeopardise the timing requirements of the control-

related traffic.

 TCP/IP
Applications

Fieldbus native Applications

TCP/IP
Stack

AL
Network
Mana-
gement

 Fieldbus DL

Fieldbus PHY

IP-Mapper

Layer 7 protocols

LLI DDLM

empty

User

Layer 7

Layers 3-6

Layer 2

Layer 1

Admission Control

Dispatcher

Figure 2 - Higher Layer General Model

Figure 2 shows the layers that need to be inserted on

top of the fieldbus DL for the handling of the IP

traffic: the IP Mapper, the IP ACS (Admission

Control and Scheduler) and the Dispatcher. These

layers are responsible for the transparent integration

of the TCP/IP stack with the fieldbus protocol stack,

taking into account the issues raised by this

integration. IP traffic passes through the IP Mapper,

the IP ACS and the Dispatcher. In the following

paragraphs the functionalities of each one of these

layers are presented.

The IP Mapper layer resides directly below the

TCP/IP Protocol Stack. This layer is responsible for

the conversion of IP packets into/from fieldbus DL

frames. Therefore, it maps the TCP/IP services into

the fieldbus DL services and performs the

identification, fragmentation and reassembly of the

IP packets to/from fieldbus DL frames. The IP-

Mapper layer is also responsible for the transparent

support of the peer-to-peer relationship inherent to

the IP protocol, mapping it to the fieldbus DL

master/slave structure.

The Admission Control and Scheduling (ACS) layer

resides directly below the IP Mapper Layer. This

layer is responsible for the control/limitation of the

network resources usage by the TCP/IP applications.

This limitation can be accomplished through specific

traffic scheduling policies, distinguishing the traffic

generated by different TCP/IP applications. Such

scheduling policies must provide the desired Quality

of Service for multimedia applications, while

guaranteeing that the timing requirements of the

control-related traffic are always satisfied.

The Dispatcher layer resides under the IP ACS

Layer. Both fieldbus native traffic and IP traffic pass

through this layer. This layer is responsible for the

transfer of both kinds of traffic to the fieldbus DL.

The dispatcher is responsible for maintaining proper

timing constraints, so that the Dispatcher Cycle Time

(TDCY) is met. The value of TDCY must be set during

the system planning (pre-runtime), according to the

timing requirements of the transactions. See [4] for

details on these aspects and also on admission control

and scheduling.

3. IP Mapper
The IP Mapper is responsible for the conversion of IP

packets into/from fieldbus DL frames as well as the

transparent support of the peer-to-peer relationship

inherent to the IP protocol, when mapping it to the

fieldbus DL master/slave structure.

To meet these needs it maps the TCP/IP services into

the fieldbus DL services, performs identification,

fragmentation and reassembly of the IP packets

to/from fieldbus DL frames. The IP Mapper (Figure

3) must include the following entities:

- Fragmentation Entity;

- Reassembly Entity;

- Identification and Routing Entity;

- Switching Entity;

- ID Generation Entity.

 3

3.1. IP-Mapper Fragmentation

A clarification has to be made here on the meaning of

IP Fragments in the context of this document. The IP

Fragments that the IP Mapper passes to its lower

layers take into account the limitations that are

imposed by the underlying fieldbus network. In this

context, the IP Mapper may receive from the TCP/IP

Stack an already fragmented IP packet and fragment

it again according to these limitations.

Figure 3 - IP Mapper Structure

There are several reasons for the IP to use a 60-byte

header, and most of them do not apply in the fieldbus

scenario. In effect, typical fieldbus networks have a

very small error rate, a small number of hosts.

Therefore the number of IP packets being transmitted

between two machines can be limited, without

limiting the TCP/IP intended functionality, and the

underlying network supports host-to-host

communication. In this way the IP encapsulation

needed for applications is simplified. For each

original IP packet a specific fragmentation protocol

can be used, utilising a very small overhead in each

fragment, and a larger one on the first one (to send

the original IP header). The necessary data is: a

Fragment Number and a Packet ID:

- The Fragment Number will be coded in the

following way:

Value Meaning

0 Not Fragmented

1 First Fragment

2 Second Fragment

… …

127 Last Fragment

128 to 255 Reserved

Table 1 - Fragment Encoding

- The Packet ID will identify the packet to which

the fragment belongs.

The implementation of this solution is quite

straightforward and very few resources of the

machines and the network are used.

Figure 4 - 2 byte Fragment Header

3.2. Fragmentation Entity

The Fragmentation entity is responsible for the

fragmentation of IP packets received from the upper

layer into IP fragments.

The IP Datagrams will be fragmented according to

the FIFO principle. That means the next

fragmentation process will start after the previous

one is done. Two control bytes will be added to each

fragment. They correspond to the Fragment Header.

Figure 5 shows a fragment structure. The packet ID

of the newly generated fragments is of the default

value, namely 0. The fragment size

(FragmentationSize) will be determined by a

parameter to be defined at system planing (pre-

runtime).

Figure 5 - Fragment Structure

3.3 Reassembly Entity

By the Reassembly entity the IP Datagrams will be

reconstructed from the received fragments. The

reconstruction will be done based on the algorithm

shown in Figure 6: when receiving a first fragment a

buffer identified by the packet ID, source address and

with a size depending on the amount of the IP

datagram will be set up. The other received

fragments, with the 2 control bytes ripped off, will be

concatenated and kept in the buffer according to their

packet ID. These steps will be repeated again and

again, until the last fragment of an IP datagram is

received, as far as there is no disorder. The

reconstructed IP datagram is to be moved to a

reserved buffer (PickUpQueue) that is dependent on

the interface between TCP/IP stack and the IP

Mapper. Since the TCP/IP stack is generally part of

an operating system, this interface may be operation

system specific. After that the reserved buffer may be

released.

Were any disorders among the received fragments

that may be determined by the fragment number or

there is no more buffer space available, the fragments

are to be discarded.

Fragment
Number

Packet ID

Fragment
Number

Packet ID

...

Fragmentati
onSize
Octets

Data
2

Octets

Fragment
Header

 4

Yes

Fragment (Data) from IP ACS received

Begin

First Fragment?

End

No

Reserve buffer for

Data.PacketIDLast Fragment?

No

Yes

No

Consecutive?

Put fragment into buffer

with Data.PacketID

Discard buffer with

Data.PacketID

Yes

Put fragment into buffer

with Data.PacketID

Move IP datagram

to PickUpQueue

Release the Buffer

Keep the source

address
Buffer space available?

No

Yes

Figure 6 - Algorithm for the Reassembly

3.4. Identification and Routing Entity

As its name suggests, this entity is responsible for the

identification of the IP data traffic and its appropriate

routing whenever the received fragments are not

destined to the local station.

To accomplish this, it relies on information like:

- Protocol;

- Source address;

- Destination address;

- Source port address;

- Destination port address.

This information is collected from the IP header that

is available only in the first fragment of each IP

datagram. Thus, the packet ID is used to keep track

of the fragments that belong to the same IP datagram.

An important characteristic of TCP/IP application

protocols is the fact that many servers wait for

requests at a well-known port so that their clients

know to which port they must direct their requests.

This entity relies on this information (port number,

protocol, source and destination address) to correctly

identify the different kinds of IP data fluxes.

Therefore, it is a task of the system planning to

associate these parameters with the Relationship ID

of the Relationship entity, where the IP traffic with

the defined characteristics will be delivered.

In this way, all the different kinds of traffic can be

efficiently handled, indifferently of the application

(server or client) or the node (master or slave). Based

on this information the appropriate Relationship

Entity ID will be determined and fragments will be

accordingly transferred.

Routing decisions for fragments bearing the same

packet ID will also be made. Possible destinations are

the Reassembly entity or the underlying IP ACS. In

the case that no match is possible for a fragment, it

will be trashed.

In order for the source and destinations addresses to

follow the IP addressing conventions, IP Class C

network addresses need to be used for all fieldbus

network stations. Therefore, they should follow the

format Y1.Y2.Y3.X, where X is the fieldbus DLL

address and Y1.Y2.Y3 a system wide Class C

Network ID (like 192.0.1) as shown in Figure 7.

Figure 7 - IP Address Convention

IP fragments are conveyed to the Identification and

Routing Entity either through the local user

application (via the Fragmentation Entity) or in the

case of master stations through the remote

application (via the Switching Entity). The ID Tagger

will assign a unique packet ID to all fragments of the

same IP packet, issued by the ID Generator entity.

The Identification and Routing entity is also

responsible for the discarding of packet fragments.

Whenever a fragment is discarded, the entity also

discards all the other fragments in the IP Mapper

layer with the same Packet ID. The discarding of all

relevant fragments, will result in the associated

Packet ID release.

In the Slave stations, this entity is simplified, since IP

fragments are only conveyed to the Identification and

Routing Entity through the local user application.

3.4.1. ID Generation Entity

The ID Generation entity is responsible for the

management of the packet ID that identifies an IP

datagram. All the fragments, that an IP datagram is

fragmented to, have the same packet ID value. Packet

IDs are needed in order to keep tracking of the

received and routed fragments of the same IP

datagram.

Depending on the kind of request of the

Identification and Routing Entity the ID Generation

Entity will:

- search for an unused ID number, reserve it and

pass it to the requesting entity;

- release a previously reserved ID number from

the Fragmentation Entity.

An ID number will be released in the following

cases:

- after the sending of the last fragment of an IP

datagram;

Octet 1 Octet 2 Octet 3 Octet 4

191 0 1 Fieldbus
DLL

Address

 5

- after the discarding of the last fragment of an IP

datagram.

3.4.2. Fieldbus - TCP/IP Gateway

This approach also supports the concept of Fieldbus -

TCP/IP Gateway, i.e. a station that will forward IP

packets to other networks. Each station that supports

traffic to the “outside” world must have a configured

fieldbus address of the gateway. When sending

packets the system checks the network address ID of

the packet and the network address ID of the station.

If they match, the Host ID will be used as fieldbus

destination address. Else the gateway address will be

used. In the latter case if there is no gateway address

configured, the packet will be discarded. In the

TCP/IP Gateway side, these packets will be delivered

as any other IP packet to the TCP/IP stack that is

responsible to do the routing to the correct network

interface (Ethernet, Dial Up…). On the opposite

direction (outside world to fieldbus) the TCP/IP

Stack will route the packets from the outside to the

fieldbus that will treat them as any other packets.

3.5. Switching Entity

The switching entity is the one that receives from the

lower layers IP fragments being transferred from

other stations. Relevant to the DLL service used, the

switching entity passes the fragments appropriately

to either the identification and routing entity or the

reassembly entity.

On the slave, this Entity can be simplified or even

removed, since the slave will not handle IP traffic

that is not destined to it, and all the traffic received is

directly passed to the reassembly entity.

4. IP Admission Control and
 Scheduling
The Admission Control and Scheduling (ACS) layer

resides directly under the IP Mapper Layer. This

layer is responsible for the control/limitation of the

network resources usage by the TCP/IP applications.

Using specific traffic scheduling policies, capable of

distinguishing the traffic generated by different

TCP/IP applications this limitation can be

accomplished. Such scheduling policies must provide

the desired Quality of Service for multimedia

applications, while guaranteeing that the timing

requirements of the control-related traffic are always

satisfied.

4.1. Functionality

The ACS Layer is composed of several Relationship

Entities, and a Scheduler implementing a determined

scheduling algorithm.

The multimedia traffic can typically be of two types:

traffic that does not require stringent timing

characteristics (denoted as IP Best Effort traffic –

IPBE), and multimedia traffic characterised by

specific QoS characteristics, namely bandwidth and

jitter (referred to as IPH).

The term scheduling (or scheduling algorithm), used

here, refers to the production of a sequence (or order)

for the transmission of IP traffic. This schedule is

destined mainly for the IPH traffic. IPBE Traffic

Queues will be served in a round-robin way.

The scheduling will be done based on differentiated

services to be given to the different types of IP

traffic. Thus, the scheduler has to be aware of the

different types of traffic and the related QoS. The

differentiation of the IP traffic will be made using

Relationship Entities. Each Relationship Entity

receives fragments delivered from the IP Mapper to

the IP ACS layer related to a specific QoS (including

“Best Effort”) and peer to peer relationships. See [4]

for more details on scheduling and timing

characteristics of the proposed architecture.

The general functionality of the ACS Layer is shown

in Figure 8.

RelationshipEntity

Scheduler

Relationship
Entity

Max Queue Size

MxQS Discarder

Slave Support

IP HI
IP BE

Can be Simplified or Removed in Slaves

Figure 8 - General Functionality of the ACS Layer

4.2. Relationship Entities

Each Relationship Entity accepts requests from the

Scheduler to deliver the traffic to the Dispatcher.

When the Relationship Entity successfully delivers a

fragment to the dispatcher it will generate a positive

confirmation to the IP Mapper.

Each Relationship Entity has a FIFO Queue where

the received fragments are stored. This FIFO Queue

is characterised by a Maximum Queue Size, when the

Relationship Entity receives a request from the IP

Mapper that would overload the Queue, it will

discard all fragments in the Queue that have the same

Packet ID as in the request. It will also generate

negative confirmations to the IP Mapper matching all

the discarded fragments, including the one that

overloaded the Queue.

 6

Each entity should have (IP ACS internal) services to

the Scheduler that provide information about the

contents of the Entity’s Queue and let the Scheduler

change in run time the Maximum Size of the Queue.

After the Relationship Entity receives a request for a

change on the Maximum Size of the Queue it checks

if there are any fragments in the Queue that will

overload the Queue. If this is the case, it will discard

all fragments with the same Packet ID in the queue

and generate negative confirmations to the IP

Mapper.

The Relationship Entity will also provide the

Scheduler with timing characteristics concerning the

message cycles related to the transmission of the

fragments in the queue.

Since a fieldbus Slave Station can transfer data only

as a response to a Master’s request, it is impossible to

support multimedia IP traffic from a Slave Station,

when no Master originated traffic exists. To

overcome this limitation, when a request for a

fragment is issued by the Scheduler Entity to an

empty Relationship Entity Queue, then the

Relationship Entity generates a special frame if the

Slave Poll Option is set. This feature of the

Relationship Entities is especially useful for the

support of multimedia capabilities by DLL Slave

Stations, maintaining the QoS defined in System

Planning.

Due to limitations on the Slave side, it is a System

Planning task to guarantee that one and only one

Master polls a Multimedia traffic enabled Slave.

However several Relationship Entities can be Slave-

Enabled in that Master. If the Slave Pull Option of

the Relationship Entity is disabled, it will simply take

no action when it receives a request from the

Scheduler and no data is available on the Queue.

4.3. Scheduler

A Scheduler Entity is responsible for the appropriate

serving of the different Relationship Entity Queues

so that all different QoS are respected. The Scheduler

Entity uses a service interface, internal to the ACS,

for the emptying of the different Relationship Entity

Queues or the acquisition of information relevant to

their contents.

The Scheduler uses an interface to the Dispatcher

layer in order to determine whether it is allowed to

fill the Dispatcher queues. The queues that may be

fed by the ACS layer are the IPH queue and the IPBE

queue.

The Scheduler is executed periodically. There are

two different ways to perform the Scheduling of the

Relationship Entity queues:

- It may be done off-line. In this case a table in the

Station Management gives the actual schedule of

the different Relationship Entity queues. This

schedule is created off-line, taking into account

all needed information so that the diverse QoS

requirements of the different Relationship Entity

queues are met. In this case the Scheduler

actually works as a dispatcher for IP Traffic.

- It may be done on-line. In this case a table in the

Station Management gives the parameters

needed by the Scheduling Algorithm so that the

actual schedule is determined each time the

Scheduler is executed. In addition to these QoS

specific parameters, the Scheduling algorithm

has to take into account the time allocated for IP

HP traffic and the remaining time for BE traffic.

The reasoning for these algorithms, timing

parameters, and examples are fully approached in [4].

5. Conclusions
This paper gives a general insight to an architecture

for the integration of Internet protocols for industrial

multimedia over a master slave fieldbus network.

The integration of the TCP/IP stack in the fieldbus

protocol raises several issues. In this paper we

addressed mainly the functionalities that must be

added to the fieldbus in order to support transparently

(both in the masters and slaves) TCP/IP transactions.

Emphasis was particularly given to the issues of

fragmentation/de-fragmentation of IP packets and to

the support of symmetric internet protocols over the

master-slave model of the fieldbus networks.

References
[1] “General Purpose Field Communication

System, Volume 2” – Profibus, European Norm

EN 50170, 1996.

[2] Tovar, E. and Vasques, F., “Cycle Time

Properties of the Profibus Timed Token

Protocol”, in Computer Communications,

Elsevier Science, 22(13), pp. 1206-1216,

August 1999.

[3] Tovar, E. and Vasques, F., “Real-Time Fieldbus

Communications Using Profibus Networks”, in

IEEE Transactions on Industrial Electronics,

Vol. 46, No. 6, pp. 1241-1251, December 1999.

[4] Tovar, E., Vasques, F. and Pacheco, F.,

“Scheduling IP Traffic in RFieldbus”, Technical

Report, Polytechnic Institute of Porto,

HURRAY-TR-0122, March 2001.

