
1

A Real-time Service-Oriented Architecture for

Industrial Automation
Tommaso Cucinotta, Antonio Mancina, Gaetano F. Anastasi, Giuseppe Lipari

Real-Time System Laboratory, Scuola Superiore Sant’Anna, Pisa, Italy

{t.cucinotta,a.mancina,g.anastasi,g.lipari}@sssup.it
Leonardo Mangeruca, PARADES, Rome, Italy

leonardo@parades.rm.cnr.it

Roberto Checcozzo, Fulvio Rusinà, COMAU, Grugliasco (To), Italy
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Abstract—Industrial automation platforms are experiencing a
paradigm shift. New technologies are making their way in the
area, including embedded real-time systems, standard local area
networks like Ethernet, Wi-Fi and ZigBee, IP-based communi-
cation protocols, standard Service Oriented Architectures (SOA)
and Web Services. An automation system will be composed of
flexible autonomous components with Plug & Play functionality,
self configuration and diagnostics, and autonomic local control
that communicate through standard networking technologies.

However, the introduction of these new technologies raises
important problems that need to be properly solved, one of
these being the need to support real-time and Quality of Service
(QoS) for real-time applications. This paper describes a Service-
Oriented Architecture enhanced with real-time capabilities for
Industrial Automation. The proposed architecture allows for
negotiation of the QoS requested by clients from web services,
and provides temporal encapsulation of individual activities. This
way, it is possible to perform an a-priori analysis of the temporal
behaviour of each service, and to avoid unwanted interference
among them. After describing the architecture, experimental
results gathered on a real implementation of the framework
(which leverages a soft real-time scheduler for the Linux kernel)
are presented, showing the effectiveness of the proposed solution.
The experiments were performed on simple case studies designed
in the context of industrial automation applications.

Index Terms—Industrial Automation, Real-Time Embedded
Systems, Service-Oriented Architectures

I. INTRODUCTION

The factory automation industry is slowly but steadily

experiencing a paradigm shift. The increasing demand for

efficiency in machine retooling and commissioning to reduce

time-to-market of new products requires a drastic improve-

ment in efficiency throughout the design chain, from process

engineering to field tests. A reasonable way to improve this

efficiency is to leverage the deployment of new hardware and

software technologies, such as embedded real-time systems,

standard networking protocols and Information and Commu-

nication Technologies (ICTs). Furthermore, the possibility,

in the factory automation context, to reuse open standards,

protocols, network infrastructures and software components

that are widely used in general- purpose ICT application areas,

is becoming increasingly appealing, due to their support for

Quality of Service and low costs of deployment.

Unfortunately, some technological barriers are preventing

the deployment of such technologies in current industrial

practise. A critical bottleneck in process efficiency and flex-

ibility of current systems is represented by the networking

infrastructure. Today, many communication networks adopted

for process automation are still proprietary, designed for col-

lecting I/O data from the field, even though open standardised

protocols (Modbus, Profibus, Ethernet variants) are making

inroads. The adoption of an open network infrastructure, with

the ability to provide Plug & Play services and the capability

to hide the devices complexity, provides a simpler and more

natural work-flow from the mechanic engineer to the control

engineer, allowing for the adoption of the same platform in

the identification of the objects and their properties.

Also, reconfiguration of an industrial plant suffers of a set

of inefficiencies that are related, among other factors, to the

lack of a sufficient level of “intelligence” embedded directly

within the components. In fact, these usually exhibit a passive

behaviour and are controlled by a centralised Programmable

Logic Controller (PLC). Such an approach requires a change

in the PLC code at each reconfiguration, which limits mod-

ularisation and interoperability. On the other hand, increased

efficiency, configurability and monitoring capabilities may be

obtained by distributing such functionality as self-diagnostic,

self-configurable, and local real-time control within the com-

ponents, or within embedded micro-controllers close to them.

Clearly, the increased complexity both at the networking

and at the component level, where the same set of physical

resources (network links and micro-controllers) are shared

for functionality related to the support of both remote high-

level control, monitoring and reconfiguration, and local, low-

level, control logics, needs appropriate design to ensure the

appropriate temporal isolation degree between such activities.

a) Paper Contributions: This paper presents a software

infrastructure for industrial automation, that leverages widely

used open technologies in the domain of general-purpose

systems, such as Service Oriented Architectures (SOAs),

Ethernet-based communications and real-time technologies.

Specifically, the envisioned architecture is based on:

Ethernet-based communications embodying TCP/IP network-

ing capabilities with real-time traffic management; SOAs for

easing the problem of identification, discovery and com-

munications among networked components, where the WS-

Agreement protocol has been extended in order to support

attributes related to real-time and QoS of individual activities,

to allow for the configuration of the system at run-time; a mod-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54933057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Figure 1. Importance of Plug & Play technology foreseen for year 2010 by
interviewed experts, in the different control layers of a manufacturing plant.

ified Linux kernel supporting real-time scheduling strategies

for the purpose of achieving temporal isolation between high-

level software infrastructures and low-level control logics.

b) Paper Outline: The remainder of the paper is organ-

ised as follows. Section II introduces key problems in the

area of systems for industrial automation. Section III surveys

related work in the area. Section IV gives a brief outline of

the system architecture, focusing on aspects related to the

achievement of temporal isolation. Section V describes the

architecture explaining design choices and providing imple-

mentation details. Section VI describes the final demonstrator

built for the RI-MACS project making use of the proposed

architecture, in order to show its practical relevance in the

context of an industry-driven scenario. Section VII presents

quantitative results gathered through proper experiments on

the proposed platform, focusing on the achieved enhancements

in the timing behaviour predictability. Finally, Section VIII

describes the current status of the development, along with

the planned future directions of work.

II. REQUIREMENTS IN FACTORY AUTOMATION AND

PROBLEM PRESENTATION

The issues briefly introduced in the previous section have

been extensively studied during the first phase of the RI-

MACS project [1], where a set of precise requirements on the

software and hardware infrastructures for industrial automation

have been derived also considering interviews that have been

carried out on a total of 35 experts1, chosen from both

large enterprises and Small and Medium Enterprises (SMEs)

operating mainly in the areas of automotive, machinery and

equipment, and industrial control. Results are summarised in

Figure 1, showing the importance, in a scale from 1 to 5, of

Plug & Play technology foreseen for year 2010 by interviewed

experts, in the different control layers of a manufacturing

plant: Enterprise Resource Planning (ERP), Manufacturing

Execution Systems (MES), single production line or building

(System), single station (Cell), Device, Sensor–Actuator. This

study [2] led to the following points related to this paper:

1 It was decided to perform interviews personally to a relatively small
number of experts, rather than sending out a questionnaire to many companies.

• production lines life-cycle is expected to become more

dynamic in the next years, where rapid reconfiguration

and re-installation, achievable through Plug & Play de-

vices capability, is considered to be a key success factor;

• the percentage of standardised and Plug & Play mecha-

tronic solutions is still below 25%, but it is increasing;

• investments on automation systems (software, hardware

and communication infrastructures) constitutes a signifi-

cant part of the total investments for new plants;

• the adoption of open architectures and embedded control

solutions is expected to put the foundations for an easy,

dynamic reconfiguration of plants, while there is a general

consensus in the will to substitute current proprietary

communication solutions with open ones.

This set of high-level considerations may be translated into

precise requirements that need to be satisfied in the automated

factories of the (near) future:

• Integration: the HW/SW architecture of the plant control

system must facilitate integration of different parts, to

reduce costs incurred when assembling the system for

commissioning and due to maintenance operations.

• Heterogeneity: given the wide range of commercial

solutions and standards and the fragmentation of avail-

able technical solutions, it is not realistic to mandate

specific HW/SW. The provided solution must integrate

multi-vendor and multi-purpose software and hardware.

Different subsystems may in principle use different hard-

ware, programming languages and models, where legacy

subsystems with proprietary protocols must be supported

and cannot be ruled out from any realistic solution.

• Interoperability: despite heterogeneity of devices com-

posing the global automation system, it should be possi-

ble to interconnect them through a standardised, clearly

defined, possibly open set of interfaces.

• Accessibility: it should be possible for operators to have

an easy and immediate access to the monitoring and

reconfiguration interfaces of each interconnected device.

These requirements implicitly require that some more “in-

telligence” be put inside (or as close as possible to) intercon-

nected components of the automated factory. Not only must

they be capable of carrying on the main control operations

they have been designed for, but they must also embed the

software infrastructure needed for dealing with monitoring and

reconfiguration capabilities. The additional layers of software

needed to provide a uniform interface for accessing the multi-

tude of heterogeneous devices introduces new problems, along

with the many advantages they have been conceived for.

One important problem concerns the real-time and Quality

of Service (QoS) aspects. For the system to operate properly,

activities must be provided within pre-specified timeliness

and/or QoS constraints. As an example, the operation of setting

the value for a property of a component must be completed

within a bounded time, otherwise the system may not work

properly. Different types of service may have very different

needs in terms of timeliness guarantees: for example, the

discovery of a new component that has been just plugged into

the network may take place in a large amount of time, as this

is not considered to be a critical operation. On the other hand,

notification of failures and error conditions must be delivered

within very stringent time frames.
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In the current industrial practise, timing constraints are

guaranteed by using dedicated hardware and careful off-line

benchmarking and analysis techniques. On the other hand, in

the next-generation automation platforms, increased flexibility

at lower costs is expected to be achieved by sharing, among

different activities, the available computational and commu-

nication resources (thanks to the increasing trend in using

Ethernet-based communications also in mission-critical areas).

However, the inter-mixing of activities with different criti-

cality levels, in a shared set of nodes and communication links,

makes it more difficult to provide the required QoS. Therefore,

to respect in-place timeliness requirements, appropriate real-

time scheduling strategies ensuring temporal isolation among

tasks on the same physical node, as well as among concurrent

communications on the same physical link, are needed.

For these reasons, it is very important to provide a flexible

and robust infrastructure for supporting QoS at all levels in

the system: flexibility is necessary because the system must

be scalable and allow for dynamic configuration and reconfig-

uration of the QoS parameters; robustness, here, means that

the proposed solution must be tolerant to faulty components, in

the sense that if a software service starts to behave incorrectly,

the guarantees of other services must not be affected.

In what follows, this paper describes the RI-MACS ap-

proach to address these issues: adopting a HW/SW architecture

based on heterogeneous nodes connected through standard

communication networks (like Ethernet) for soft-real-time

communication, and custom real-time networks (e.g. CAN,

Profibus, Interbus, etc.) for critical hard real-time traffic. On

top of these, while adopting a Real-Time Operating Sys-

tems (RTOS) for hard real-time activities, it is also possible

to use a General-Purpose Operating System (GPOS) like

Linux, enriched with appropriate Real-Time extensions at the

scheduling level, for the deployment of a middleware layer

based on Service Oriented Architectures (SOAs) and Web

Services. This constitutes the fundamental ground on which

it is possible to build higher-level features like Plug & Play,

dynamic reconfiguration, diagnostics, monitoring and logging,

and Human Machine Interfaces (HMIs).

Indeed, such software technologies are open and interoper-

able. By making use of an infrastructure based on web ser-

vices, the engineering process may exploit all the advantages

of client-server based architectures, with publish-subscribe

mechanisms supporting automated discovery of interconnected

devices and of the set of services that are available on them,

such as monitoring, control and re-configuration. Furthermore,

any error condition that should arise at run-time may be

detected and delivered to the operator through the network, so

that appropriate recovery actions may be undertaken (either

remotely exploiting the same networked infrastructure, or

working directly on the device whenever necessary).

III. RELATED WORK

This section overviews related work in the general domains

of the adoption of SOAs approaches, and the support for

soft real-time and QoS guarantees through general-purpose

infrastructures, in automation engineering.

The idea of adopting SOAs for manufacturing systems is not

new. For example, in the context of the SIRENA European

Project [3], a service-oriented communication framework is

proposed in which an industrial plant is composed of intel-

ligent devices. Such devices expose their own functionality

as a set of services, hiding their complexity and allowing

for transparent communication with other devices. This way,

devices may be composed and aggregated into higher-level

services, achieving a high grade of scalability. This approach is

certainly fascinating, however it is not practical nor convenient

today, because of the costs needed for the integration of the

additional functionality inside the devices, and the problem of

legacy sub-system integration. Moreover, real-time sensitive

tasks cannot be handled satisfactorily using Service-Oriented

Architectures, as none of the technologies used for the im-

plementation of these architectures explicitly target real-time

constraints. This is true even for the “Device Profile for Web

Services” (DPWS [4]) standard, that is being adopted in the

context of existing industrial plants, as documented in [5].

In [6], the need has been underlined for using SOAs not

only in the well-established “high-level” domain of work-flow

and information management, but also in the “low-level” one

of plant monitoring, configuration and control. However, the

same work pointed out that usually implementations of such

infrastructures lack real-time capabilities, which are of funda-

mental importance due to the in-place timeliness constraints.

It is well-known from the real-time literature [7] that

increasing the computation power on which software is run-

ning is not enough, in general, for meeting precise real-time

requirements. Appropriate scheduling strategies and analysis

techniques need to be put in action, and this is exactly what

is done in the approach proposed in the present paper.

However, prior works exist that investigate on the inte-

gration of real-time scheduling strategies within middle-ware

components for distributed real-time applications [8], [9], [10],

[11]. For example, Hola QoS [12] is an architecture specifi-

cally tied to the needs of consumer electronics embedded mul-

timedia systems, providing flexible resource management and

adaptivity. CORBA-based approaches are also worth to men-

tion. In fact, the CORBA specification has been extended to

address reusability in the CORBA Component Model (CCM),

which also considers QoS aspects. For example, this has been

implemented in the Component-Integrated ACE ORB [13].

TAO [14] constitutes a C++ implementation of the Real-Time

CORBA specification [15], which exposes fundamental func-

tionality of distributed real-time applications via the CORBA

paradigm. Also, TAO has been integrated with QuO [16], a

framework that exploits the capabilities of CORBA to reduce

the impact of QoS management on the application code. The

result [17] is a middleware for adaptive QoS control using real-

time scheduling facilities at the computation and network lev-

els. However, the work presented in this paper is based on the

SOA paradigm (not on CORBA), which is leveraged in order

to achieve important properties such as automatic discovery

and configuration, location-independence and fault-tolerance.

Moreover, TAO used to rely on the traditional priority-

based scheduling services foreseen by real-time CORBA,

neglecting issues related to temporal enforcement (such as

achieved by techniques like POSIX Sporadic Server [18]),

while the present work relies on the more efficient EDF-based

scheduling and temporal encapsulation provided by techniques

existing in the domain of the real-time a-periodic servers [7].

Note that the Dynamic Scheduling extensions to real-time

CORBA, also integrated within TAO [19], addressed the first
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issue (adding deadline-based scheduling and adaptive changes

of the scheduling parameters), but apparently not the second

one (enforcement of temporal constraints).
Also, investigations on the adoption of real-time techniques

in heterogeneous networks typical of automated factories have

been carried on in the context of the Virtual Automation

Network (VAN) project [20]. However, VAN focuses strongly

on real-time and QoS support at the heterogeneous networking

layer, whereas the architecture proposed in the present paper

tackles the problem of real-time support both at the networking

and at the computing/OS level. Similar comments apply to

the work that can be found in [21], where the authors pro-

pose to extend the CAMX SOAP/XML-based communications

framework with QoS support, where new XML messages are

described for regulating the interactions among middleware

components, whereas the actual QoS guarantees derive from

the application of well-known Differentiated Services for IP

networks to a set of aggregated data flows.
Finally, it is worth to mention the IRMOS European

Project2, started in February 2008, that is investigating on the

use of SOAs and real-time technologies used at the network-

ing, computing and storage levels. The project targets SOA-

based high-performance computing services, to be provided

through broadband Internet connections by service providers,

under well-established Service-Level Agreements (SLAs) en-

riched with QoS specification, and in the context of well-

defined business models with automated SLA negotiations.
To the best of the authors knowledge, this paper introduces

for the first time an architecture that is comprehensive of the

multi-faceted requirements typical of control units distributed

in industrial plants: soft and hard (non-safety-critical) real-

time computing and communications may share resources,

and at the same time interact with safety-critical components

that instead may coexist in the framework with their own

dedicated (and usually proprietary) hardware elements; an

SOA paradigm is used for the purpose of easing discovery of

interconnected elements, control, configuration and monitoring

of the plant, and web-service messages are extended for

the purpose of supporting QoS-related attributes and their

negotiation at the SOA level (see Section V).
Note that this paper mainly focuses on the intermixing of

real-time techniques with SOAs, whilst other aspects typical of

SOA-based approaches to software design, like semantics and

ontology, are not considered. However, some works do exist

that consider such aspects also in the application domain of

industrial automation, for example the one in [22]. For aspects

related to CPU scheduling, the work presented in this paper

relies on the open-source AQuoSA [23] architecture for Linux.

The presented framework has been built on top of AQuoSA,

providing the SOA-level components needed to “plug” real-

time scheduling in the wider context of a SOA platform for

industrial automation. For further details on AQuoSA, the

reader may refer to [23] and to the project web-site3.

IV. SYSTEM ARCHITECTURE

A. Real-time model of execution

Many real-time systems comprise activities with different

levels of timing criticality. According to the classical defini-

2 More information is available at the URL: http://www.irmosproject.eu.
3More information is available at the URL: http://aquosa.sourceforge.net.

tion [7], a hard real-time activity must always be completed

before a certain deadline, otherwise some critical error may

occur that invalidates the correctness of the entire system. An

example of hard real-time activity is the low-level control loop

of a robot arm. Another example is the identification of an

hazard situation, the subsequent raising of an alarm and the

execution of a procedure to put the system in a safe state.

Soft real-time activities have less critical requirements. They

should complete before a certain deadline, however, if the

deadline is missed, nothing catastrophic happens; rather, the

quality of service delivered by the activity depends on the

frequency of deadline misses. Examples of such activities are

data streaming and logging and Human-Machine Interfaces

(HMI). In an ideal world, it would be possible to always treat

soft real-time activities like hard real-time ones; if no deadline

is ever missed, then the QoS is certainly maximised. However,

many practical issues affect the ability of a system to meet its

timing requirements, like the unpredictability of the underlying

hardware and operating system, the scarcity of resources, the

sharing of physical resources between different activities, etc..

Finally, non-real-time activities do not present any real-time

constraint and are performed in a best effort manner.

In a system in which all these types of activities coexist,

the goal of the designer is: 1) to guarantee that hard real-time

activities are always completed on-time; 2) to minimise the

number of deadlines missed by soft real-time activities; and

3) to ensure that some residual bandwidth is available to non-

real-time activities that are performed in background4.

The timing criticality of an activity is not necessarily related

to its time granularity. While a low-level control loop may

need to be performed every few milliseconds, the deadline for

a hazard identification may be in the order of hundreds of

milliseconds. For soft real-time activities, a video stream that

monitors an industrial process may be processed at various

frequencies depending on the foreseen use of the video. What

matters is not the timing granularity, but the possibility to a-

priori guarantee that the activity will be completed on-time,

or that it will be performed with a precise QoS.

B. Real-time requirements

The architecture envisioned in this paper aims to deal at the

same time with devices and subsystems that are very different

in nature and typical time-scale of operation. In the context

of the RI-MACS project, the following real-time requirements

have been identified:

• Enterprise Resource Planning (ERP) and Manufacturing

Execution Systems (MES) have basically no QoS require-

ments and may be supported in a best-effort way.

• Communications at the entire “System” level (production

line or building), which typically possess soft real-time

requirements, and whose reaction times need to reside

within hundreds of milliseconds (i.e., below 250ms).

• Communications among devices localised at a single

station (at the “Cell” level) where some work is done

4 This may be done for example by considering an additional background
scheduling entity for best-effort tasks when performing admission control for
the system, like done by the Default Server of AQuoSA [24] or by the Best-
Effort Bandwidth Server [25], and/or by a proper dynamic reclamation [26],
[27] of the budgets unused by the real-time activities.
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on the production line, which typically possess soft real-

time constraints in the range of hundreds of ms.

• Interactions at the “Device” level, i.e., typical control

loops within some mechatronic device (such as a sol-

dering machine, or a robotic arm), which possess hard

real-time requirements, with typical ranges below 10ms.
• Interactions at the “Sensor&Actuator” level, i.e., typical

of the sense-compute-actuate control loops needed for

reacting to some environmental condition, which have

also hard real-time requirements in a range below 10ms.

While this classification may not be the most general one,

this set of real-time requirements have been considered as a

reference for designing the architecture presented in this paper.

The goal of the design is to let activities with differ-

ent requirements and time granularity coexist on the same

computing platform. To this end, the temporal behaviours of

these activities need to be isolated as much as possible. In

the proposed solution, this may be done by using dedicated

hardware and software in some cases, like for the most critical

activities and for legacy applications; in other cases, proper

scheduling strategies may be used, like resource reservations

(see Section V), in order to let different activities share the

same physical resources without interfering with each other.

C. Architecture

Figure 2 depicts the automation platform that has been

conceived in the RI-MACS project. In the envisioned ar-

chitecture, standard (web-based) protocols and interfaces are

combined with QoS support at the networking level, and real-

time support at the computing level. The resulting facilities are

exposed to application developers through two main Applica-

tion Programming Interfaces (APIs). These have been designed

to allow developers to build applications in a way that is as

hardware-independent as possible.

The APIs can be divided into two categories: the Common

API and the Custom API.

The Common API basically allows for the development of

component-specific Web Services by exporting to the network

the necessary sensor and actuator variables that are needed in

order to monitor and operate on the associated device(s). This

API is implemented through standard protocols and network

stacks comprising SOAP, XML, HTTP and TCP/IP or UDP/IP.

On the top of these, the Device Profile for Web Services

(DPWS) standard is used in order to provide Plug & Play

functionality of the devices within the architecture.

The Web Service communication stack is capable of provid-

ing response times in the order of tens of milliseconds [5] with

a high variability in execution times, which is inappropriate for

supporting hard real-time communications with stringent time-

liness constraints, as needed within the automation plant. It is

generally known that the performance bottleneck of current

Web Service technology resides in the need for continuously

parsing text-based XML chunks (from SOAP messages), and

that such issue may be mitigated by the use of a binary-

based encoding of XML hierarchies, as found for example

in [28]. Recently, experiments [29] have shown that it is indeed

possible to run complex web-services on top of real-time

operating systems with bounded response times. However,

powerful processors are still required making this approach

not adequate to embedded systems with scarce resources.
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Figure 2. The RI-MACS Automation Platform

In the proposed architecture, the real-time service invocation

channel has been separated from the Web Service communica-

tions stack. In other words, real-time operations are performed

directly on the lower levels of the stack (e.g. UDP/IP on

Ethernet), whereas less critical services (during discovery of

new services or logging) are performed on top of the full web-

service stack in a soft real-time fashion.
The Common API is rooted in standard OS and commu-

nication stacks so as to enhance portability, flexibility and

composability. Proper scheduling techniques (see Section V)

are used to isolate services from each other. This is achieved

by associating each service with a fraction of the underlying

resources, such that it appears to be executing on a slower

dedicated virtual platform. This way, soft real-time support is

enabled for commercial-off-the-shelf (COTS) components.
In the Common API, the RI-MACS platform also integrates

the custom communication stack Modbus/TCP [30], so as to

build the foundations for moving hard real-time automation

services gradually towards the Common API paradigm, taking

advantage of the benefits arising from such an approach. With

the emerging standards for binary-encoded XML, and the ever

increasing computation power of embedded micro-controllers,

this is likely to constitute an innovative trend for development

of next-generation hard real-time control units.
The Custom API provides hard real-time services, and it is

instrumental for backward compatibility with legacy systems

and for the provisioning of custom services. The Custom API

is mostly executed on custom dedicated hardware. For exam-

ple, it is possible to use a custom communication interface

towards the CAN bus exclusively for legacy applications.
However, for the purpose of guaranteeing the correct oper-

ation of the RI-MACS Automation Platform, the management

of the communication and computation resources is still done

through the QoS management middleware. This is capable of

allocating the available resources based on real-time require-

ments and load characteristics, and allows for negotiation of

resources, monitoring of system operations, and reaction to

transient overloads, as detailed in the next section.

D. Real-time Communications

Apart from custom dedicated networks, in the RI-MACS

platform most of the traffic is directed through an IP stack on
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Figure 3. QoS Negotiation and Management Architecture

an Ethernet network. It is well-known that standard Ethernet,

under high load that induces significant contention, cannot

provide guaranteed response times. However, Ethernet and its

variants are being used in industrial settings in place of more

expensive and slower (but guaranteed) field buses.

Indeed, it is possible to provide at least soft real-time

communication though IP on Ethernet. For the MAC layer,

switched Ethernet is used within RI-MACS, which reduces the

collision problems on the shared channels [31], [32]. It is then

possible to use traffic smoothing techniques [33] to control the

traffic load and allocate fractions of communication bandwidth

to each application. For what concerns level 4 protocols, real-

time communications rely on UDP, which is connectionless

and does not support message re-transmission. Finally, non-

real-time, or less critical real-time, communications, e.g., the

DPWS service discovery protocol, rely on the TCP protocol.

V. QOS ARCHITECTURE DESCRIPTION

This section focuses on the QoS part of the RI-MACS

architecture, developed for the sake of satisfying timing re-

quirements needed by soft real-time activities. In particular,

a QoS negotiation and management architecture is proposed,

which allows clients to negotiate QoS levels, with the guar-

antee of provisioning of the negotiated QoS. Regarding this

basic functionality, the proposed architecture can be divided in

two layers, as highlighted in Figure 3: the Agreement Layer,

in which the negotiation happens; and the Service Layer, in

which the service is provided with QoS support according to

the negotiated parameters.

The QoS negotiation phase follows an agreement-based

model, in which the two parties involved in the negotiation

process establish a contract which specifies the QoS guarantees

to be provided. The QoS architecture leverages the WS-

Agreement framework [34], which uses open technologies

(like Web Services and XML) to define: (a) a language for

specifying QoS contracts; (b) a protocol to create contracts; (c)

<wsag:ServiceDescriptionTerm

wsag:Name="server_parameters"

wsag:ServiceName="use_of_web_server">

<ret:ServerParams xmlns:ret="schemas.retis">

<ret:CpuMinBudget unit="ms">9</ret:CpuMinBudget>

<ret:CpuMaxBudget unit="ms">9</ret:CpuMaxBudget>

<ret:CpuPeriod unit="ms">100</ret:CpuPeriod>

</ret:ServerParams>

</wsag:ServiceDescriptionTerm>

Figure 4. XML fragment of an Agreement for negotiating CPU allocation
parameters.

a protocol to verify the run-time compliance of contracts. WS-

Agreement was chosen in this context not only for its flexibil-

ity in comparison with other QoS-enabled technologies (like

WSLA [35]), but also for its standard nature (it is supported

by the Open Grid Forum), which may ensure penetration of

the platform within the industrial automation sector.

In the WS-Agreement specification view, a contract (or

Agreement), is represented by an XML document mainly

containing meta-information about involved parties and QoS

parameters to be negotiated. In this work, the parameters to

be negotiated are represented by the scheduling parameters

that regulate the CPU allocation on the side of the web server

accepting service requests.

CPU allocations have been managed through the well-

known Reservations Based (RB) scheduling framework [36].

Such an approach provides the fundamental property of tempo-

ral protection (a.k.a., temporal isolation) in allocating a shared

resource to a set of tasks that need to concurrently use it: this

means that each task is reserved a fraction of the resource

utilisation, so that its ability to meet timing constraints is not

influenced by the presence of other tasks in the system.

The set of parameters transmitted in an Agreement reflect

the RB allocation model. In RB scheduling, a resource al-

location is specified in terms of a budget Q and a period

P, with the meaning that the resource is granted for a

minimum of Q time units every time-frame of duration P.
The ratio Q/P represents the “share” of the resource that

has been reserved, whereas the period constitutes the basic

time granularity with which the share is granted (and is

representative of the maximum activation delay). The actual

budget that is granted to each reserved activity in a time

window of duration P may usually vary between a minimum

budget Qmin that is always guaranteed independently of other

concurrently running activities, and a maximum budget Qmax

that is never exceeded. The additional budget with respect to

the basic guaranteed value Qmin may be distributed among

competing reservations according to various policies, whose

description is out of the scope of the present paper (the reader

may refer to [23] for further details).

Referring to the structure of an Agreement (see [34]), a

Service Description Term is used to store the QoS

parameters of the server, defined using the XML Schema

language [37]. A representative XML fragment, in which the

CPU allocation to negotiate is 9ms every 100ms, is shown in

Figure 4.

Secondly, the QoS architecture uses the WS-Agreement

framework for defining the interactions between involved

parties, usually a service client and a service provider. An

Agreement Template is used to generate an agreement offer,
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filled with the requested scheduling parameters. This is then

inspected by the service provider, which decides, according to

its internal resource management policy, whether to accept or

reject it. In this case, acceptance test is based on the admis-

sion control policy embedded within the underlying resource-

reservation scheduler. If the agreement offer is accepted, then

an Agreement is created and sent back to the requester, so

that it knows it may access the service with the requested QoS

level. On the other hand, if the agreement offer is rejected, the

client is notified so that it may adopt some error management

policy, such as trying again after decreasing the requested QoS

level, or trying at a later time. Such situation may occur in case

of temporary overload of the server that has already accepted

a number of agreements saturating available resources.

This kind of interaction is realised by the agreement layer

components, which are described as follows:

• WebAgreementFactory This component, which is an

implementation of the common AgreementFactory com-

ponent defined in the WS-Agreement framework, mainly

interacts with the client in the agreement creation process.

So it provides agreement templates, receives agreement

offers and communicates to client decisions about them.

• WebAgreement This component, which is an imple-

mentation of the common Agreement component defined

in the WS-Agreement framework, represents a created

Agreement, so it is instantiated after each offer accep-

tance.

• BookingAgent This component performs admission con-

trol in order to verify if the QoS level requested by the

client can be guaranteed, and, in such case, it reserves

the necessary resources to correctly execute the requested

service. When the reserved resources are no more neces-

sary, the BookingAgent deletes them. The resources are

reserved and deleted through the communication with the

lower level of the architecture.

This partition of the agreement layer assures that an Agree-

ment will be created only if QoS guarantees can be main-

tained during service provisioning. The relationships between

components during the creation of an Agreement can be seen

in the sequence diagram of Figure 5, related to a successful

agreement creation. It can be seen that the client interacts

with the WebAgreementFactory to retrieve a template and

make an offer. Then, the WebAgreementFactory receives the

offer and invokes the BookingAgent for the admission test.

The BookingAgent evaluates if the requested QoS can be

guaranteed and reserves resources for the client. After the

positive response of the BookingAgent, the WebAgreement-

Factory invokes the WebAgreement component to create the

Agreement. Finally, as a sign of acceptance, a reference of

the created Agreement is returned to the client. Note that all

interactions will follow the WS-Agreement interaction model.

After the creation of an Agreement, service requests of the

client must be served assuring the negotiated QoS. In case of

the WS-Agreement interaction model, this is translated to the

need for serving client requests, within a web server, with the

pre-specified scheduling parameters.

This has been implemented, in the architecture, by the Rt-

Module component, that uses the functionality of the Apache2

web server for receiving and processing service requests, then

it reserves the actual resources by using the available API

Figure 5. Successful Agreement creation

for accessing the RB facilities available in the underlying

scheduler (see Figure 6).
Apache2 is a very popular web server and it is easily

extensible thanks to its internal modular structure: this allowed

for the realisation of RtModule as a web server module,

making it more durable to server changes and easier to install.
In order to guarantee requested QoS in provisioning of

services, the RtModule uses the user-space library made

available through the AQuoSA framework [23], that enhances

the Linux kernel with a real-time scheduling policy based

on Earliest Deadline First (EDF), whose main concepts have

been introduced in [38]. This way, the RtModule exploits

real-time scheduling of the underlying modified OS kernel

so as to provide temporal isolation to tasks that execute

services on behalf of remote clients, resulting in guaranteed

and predictable performance and response times of served

requests. This approach perfectly suites the needs of soft real-

time tasks in a Linux environment.
The RtModule has the following internal structure:

• The WebServer Interface uses web server functionality

mainly to receive and process service requests.

• The ReservationManager uses the functionality of the un-

derlying QoS support level to allow execution of services

guaranteeing compliance with the negotiated QoS levels.

When a service request arrives to the web server, it is inter-

cepted in order to determine if it has to be served with QoS

guarantees. This is done by comparing the client identification

with all the entries related to valid contracts. If a request must

be served guaranteeing QoS, then the ReservationManager is

invoked to create a reservation to manage client requests, if

it has not been created yet. However, in case of multiple

requests coming concurrently from the same client, only a

single reservation is created, to which all service tasks are

Figure 6. The RtModule in the RI-MACS QoS architecture for CPU
reservations.
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Figure 7. Final demonstrator architecture used in the RI-MACS project.

attached. This way, all service requests coming from the

same client are encapsulated in the same CPU reservation,

guaranteeing temporal isolation across reserved services even

in case of malfunctioning or misbehaviour of one or more

clients (or services).

VI. RI-MACS FINAL DEMONSTRATOR

This section presents the demonstrator that has been set-

up, in front of the EC reviewers during the last official project

review meeting, in order to show effectiveness of the described

architecture for QoS management in the domain of soft

real-time industrial applications. The purpose of this section

is to highlight qualitatively the advantages of the proposed

architecture by means of an industry-driven application, whilst

a quantitative evaluation is performed in Section VII.

In order to show the RI-MACS platform capabilities, the

architecture shown in Figure 7 was conceived and set up.
In the picture, the following actors may be identified:

• a controlling PLC (the one on the left), with the purpose

of running the controlling program within the global

architecture;

• a PC, with the role of gateway between Modbus com-

munications from the PLC and the DPWS-based ones

throughout the rest of the network (over the Ethernet bus);

• one ETG-1000 server for each mechatronic device, which

parses the DPWS messages and forwards them to the

mechatronic devices on Modbus connections;

• several mechatronic devices, comprised of a PLC and a

standard industrial tool (like clamps or conveyors). Each

PLC transforms a passive tool in an active one, with the

possibility to interact with the rest of the plant.

The Linux-based PC gateway has been equipped with the

RI-MACS QoS management infrastructure described in the

previous section, so that the underlying AQuoSA scheduler

could be leveraged in order to guarantee the appropriate

temporal isolation degree across concurrently running soft

real-time tasks.

The gateway software consists of three components:

1) a background network-based application

2) two video streaming viewers;

3) a coordinating Human-Machine Interface application.

A visual representation is shown in Figure 8. The most

important software component is the first one: its role is to

take Modbus messages from the controller PLC and translate

MODBUS

client/slave

MODBUS
DPWS

translator

/

client/slave

DPWS

flow

IP Camera 1

Human Machine Interface Application

IP Camera 2

flow

PC GATEWAY

Modbus

Traffic

Video streaming

on Ethernet

DPWS

Traffic

Figure 8. Software organisation within the Linux gateway.

them into DPWS messages to be sent to the recipient of the

original Modbus frame (bottom of Figure 8). Since the PLC

is not able to speak an IP addressing compliant language,

the software component takes care of translating the logic

addresses of mechatronic devices into IP ones and replaces the

source address with the IP address of the gateway itself. When

the message reaches its destination, the corresponding DPWS

answer is generated and reaches the gateway once again: it is

then time to translate it back to the Modbus language, update

all the source and destination fields, and send it to the PLC.
The application gives the user the possibility to start and

stop the translating activity and to protect it by means of

Resource Reservations, through the usual budget and period

parameters specification. Furthermore, the experimental set-up

comprises the creation of a reservation for two instances of the

mplayer cross-platform multimedia player5, whose streams

come from two IP video cameras: their purpose is to give a

video feedback to the user of what is going on inside the plant.
In the demo, the usual comparison of the plant (and video

streaming) behaviour obtained with and without QoS manage-

ment through the RI-MACS architecture, showed qualitatively

the advantages of the proposed approach in provisioning of

real-time performance guarantees to individual activities in the

context of industrial automation.
Furthermore, note that the envisioned architecture allows

also for the containment of the possible problems caused by

misbehaving components in the plant, due to undesired tempo-

ral interference. In fact, should a software component exhibit

a failure leading to a wasteful consume of resources (i.e., a

bug leading to infinite CPU-intensive loops), the interference

remains contained within the bounds that have been assigned

at system design time for that software component, without

disrupting the functionality of the rest of the system.
Finally, note that, whenever mechanisms of this type are

engaged for all the resources involved in the networked plant,

they may be regarded as a robustness/security feature: in case

an attacker voluntarily manages to cause the misbehaviour of a

software component (consuming excessive CPU or bandwidth)

for the purpose of building a Denial of Service attack to

the plant, its efforts are likely to be contained within the

boundaries of the temporal allocations that were in place for

that computing or communication element.

VII. EXPERIMENTAL EVALUATIONS

The experimental evaluations described in this section focus

on the verification of the behaviour of the proposed architec-

5 More information is available at the URL: http://www.mplayerhq.hu/.
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ture, especially in guaranteeing a certain QoS level during

service provisioning. In particular, it is shown that it is not

possible to ensure predictable QoS levels, especially in heavy

load conditions, without using appropriate real-time schedul-

ing techniques. In the following experiments, scenarios that

are well-suited to the industrial automation field have been set-

up. The first two scenarios are built so as to “mimic” typical

image-processing services that may be needed in complex

vision-based control logics.

A. First scenario: centroid detection

The first scenario regards the object tracking problem and,

in particular, centroid detection. A network camera was used

as a device, capable of continuously acquiring images in jpg

format with resolution of 640x480 pixels. A gateway PC

was directly connected to the camera, exposing to clients

a WS-service providing centroid position detection within

the acquired image. The service, provided through a CGI

interface, consisted of: image acquisition from the camera;

image decompression; binarisation and centroid computation.

These details were obviously hidden to clients, which only

received the centroid coordinates in the acquired image. Then,

two clients have been deployed that simultaneously requested

the service, 50 times each. The service requests were generated

by using the Apache Benchmark tool6.
The network connecting the two clients with the server was

a switched Ethernet LAN, and traffic smoothing techniques

have been used as described in [33] to avoid interference

between different traffic flows. In particular, each client was

reserved a fixed fraction of the network bandwidth.
Note that the service needs to be provided respecting timing

guarantees even if the PC gateway, which provides services

through an Apache2 web server, is in heavy-load conditions:

to simulate this aspect, all the experiments were made when

the server executed in background a time-consuming task.
As the PC gateway is stressed by the Apache2 web server

executing requests, its behaviour has been verified both using

an unmodified Apache2 web server and an Apache2 enhanced

with the RtModule. In particular, a reservation of 45ms
every 100ms has been assigned to each incoming request,

in order to exploit almost all the CPU computation power

for service provisioning (remember that clients generated two

concurrent requests each time). For each test case, 20 runs of

the experiment have been repeated.
Among all the results collected by the benchmarking tool,

the service response times have been collected, and in partic-

ular the minimum, average and maximum values, the standard

deviation and 90% confidence intervals.
Results obtained for the unmodified web server are reported

in the first column of Table I (90% confidence interval is

7.5%), whereas results obtained for the web server containing

the RtModule are reported in the second column of the same

table (90% confidence interval is 1.1%).
In order to allow the client application to track the centroid

position with a sufficient precision, this service needed a soft

real-time constraint of a response-time below 300ms.
The maximum values reported in the first column of Table I

show that the original unmodified web server is not capable

6 More information is available at the URL: http://httpd.apache.org/docs/2.
2/programs/ab.html.

Table I
SERVICE RESPONSE TIMES

Processing Original RtModule

times web server (ms) server (ms)

min 119 115

avg 198 173

max 1175 273

std.dev 117 23

of satisfying this timeliness constraint. On the other hand,

the maximum response times exhibited by the web server

enhanced with RtModule successfully managed to always

respect the design constraint: this behaviour is due to the CPU

scheduling mechanism leveraged within the modified Apache

server architecture, that allows for guaranteeing temporal iso-

lation among client requests that need CPU-intensive services.

B. Second scenario: image rotation

The second scenario regards the problem of object flaw

auto-detection, which can involve geometric transformations

on images, like reported in [39]. In particular, a simple image

rotation algorithm has been chosen for the experiment.
Also in this case the server behaviour has been verified

both using an unmodified Apache2 web server and an Apache2

enhanced with the RtModule. For each test case, 20 repetitions

of the experiment have been done, with a heavy-loaded server.

In this case, requests were made by 10 clients simultaneously:

each client made 10 requests, for a total of 100 requests per

simulation. The Apache2 web server was configured to serve

10 requests concurrently with 10 different tasks and each task

was assigned by the RtModule a CPU reservation with a share

of 9%, and a period of P = 100ms.
The service response times have been measured for a

large image of 2000x2000 pixels, in order to highlight how

the best-effort model cannot provide sufficient performance

guarantees even when the computation times required for

service execution are large. This fact can be appreciated by

a graphical comparison between the different behaviours of

the two configurations, as depicted in Figure 9.
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Figure 9. Response times obtained with and without RtModule.

The graphs report the request number on the x-axis, and

the corresponding processing time (in seconds) on the y-

axis. Their comparison shows that the response times obtained

with real-time scheduling are far more predictable than the

ones obtained without the RtModule, which exhibit an unpre-

dictable behaviour. This can be explained by the fact that the

resource reservation techniques implemented in the RtModule
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provide a dedicated slower virtual processor for each service

instance. Therefore, with the RtModule, each service instance

has an almost constant response time (the continuous line

in Figure 9), because it has been reserved a fraction of the

real processor. On the contrary, without the RtModule, due to

the lack of temporal isolation, the service response time can

exhibit significant fluctuations (the dashed line in Figure 9),

if the processor is subject to concurrent requests.

VIII. CONCLUSIONS AND FUTURE WORK

This paper addressed some of the problems that arise in

deploying a middleware layer for supporting Service Oriented

Architectures in next generation industrial automation plat-

forms. In particular, real-time and QoS aspects have been

addressed, giving an effective way to guarantee QoS in service

provisioning through SOA. The architecture of the proposed

framework has been described, and its effectiveness has been

shown by means of extensive experimental evaluations, both

quantitative and qualitative, highlighting that the framework

provides significant and effective advantages over existing

solutions.
One possible direction of future work in this area is the

integration, within the framework, of adaptive reservation

techniques and feedback-based QoS control strategies [40],

for the purpose of assessing their effectiveness for efficient

resource management in the industrial automation domain.
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