1,346 research outputs found

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    Data Placement And Task Mapping Optimization For Big Data Workflows In The Cloud

    Get PDF
    Data-centric workflows naturally process and analyze a huge volume of datasets. In this new era of Big Data there is a growing need to enable data-centric workflows to perform computations at a scale far exceeding a single workstation\u27s capabilities. Therefore, this type of applications can benefit from distributed high performance computing (HPC) infrastructures like cluster, grid or cloud computing. Although data-centric workflows have been applied extensively to structure complex scientific data analysis processes, they fail to address the big data challenges as well as leverage the capability of dynamic resource provisioning in the Cloud. The concept of “big data workflows” is proposed by our research group as the next generation of data-centric workflow technologies to address the limitations of exist-ing workflows technologies in addressing big data challenges. Executing big data workflows in the Cloud is a challenging problem as work-flow tasks and data are required to be partitioned, distributed and assigned to the cloud execution sites (multiple virtual machines). In running such big data work-flows in the cloud distributed across several physical locations, the workflow execution time and the cloud resource utilization efficiency highly depends on the initial placement and distribution of the workflow tasks and datasets across the multiple virtual machines in the Cloud. Several workflow management systems have been developed for scientists to facilitate the use of workflows; however, data and work-flow task placement issue has not been sufficiently addressed yet. In this dissertation, I propose BDAP strategy (Big Data Placement strategy) for data placement and TPS (Task Placement Strategy) for task placement, which improve workflow performance by minimizing data movement across multiple virtual machines in the Cloud during the workflow execution. In addition, I propose CATS (Cultural Algorithm Task Scheduling) for workflow scheduling, which improve workflow performance by minimizing workflow execution cost. In this dissertation, I 1) formalize data and task placement problems in workflows, 2) propose a data placement algorithm that considers both initial input dataset and intermediate datasets obtained during workflow run, 3) propose a task placement algorithm that considers placement of workflow tasks before workflow run, 4) propose a workflow scheduling strategy to minimize the workflow execution cost once the deadline is provided by user and 5)perform extensive experiments in the distributed environment to validate that our proposed strategies provide an effective data and task placement solution to distribute and place big datasets and tasks into the appropriate virtual machines in the Cloud within reasonable time

    Performance optimization and energy efficiency of big-data computing workflows

    Get PDF
    Next-generation e-science is producing colossal amounts of data, now frequently termed as Big Data, on the order of terabyte at present and petabyte or even exabyte in the predictable future. These scientific applications typically feature data-intensive workflows comprised of moldable parallel computing jobs, such as MapReduce, with intricate inter-job dependencies. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on workflow completion time, energy consumption, and financial cost if executed in clouds, which remains largely unexplored. This dissertation conducts an in-depth investigation into the properties of moldable jobs and provides an experiment-based validation of the performance model where the total workload of a moldable job increases along with the degree of parallelism. Furthermore, this dissertation conducts rigorous research on workflow execution dynamics in resource sharing environments and explores the interactions between workflow mapping and task scheduling on various computing platforms. A workflow optimization architecture is developed to seamlessly integrate three interrelated technical components, i.e., resource allocation, job mapping, and task scheduling. Cloud computing provides a cost-effective computing platform for big data workflows where moldable parallel computing models are widely applied to meet stringent performance requirements. Based on the moldable parallel computing performance model, a big-data workflow mapping model is constructed and a workflow mapping problem is formulated to minimize workflow makespan under a budget constraint in public clouds. This dissertation shows this problem to be strongly NP-complete and designs i) a fully polynomial-time approximation scheme for a special case with a pipeline-structured workflow executed on virtual machines of a single class, and ii) a heuristic for a generalized problem with an arbitrary directed acyclic graph-structured workflow executed on virtual machines of multiple classes. The performance superiority of the proposed solution is illustrated by extensive simulation-based results in Hadoop/YARN in comparison with existing workflow mapping models and algorithms. Considering that large-scale workflows for big data analytics have become a main consumer of energy in data centers, this dissertation also delves into the problem of static workflow mapping to minimize the dynamic energy consumption of a workflow request under a deadline constraint in Hadoop clusters, which is shown to be strongly NP-hard. A fully polynomial-time approximation scheme is designed for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic is designed for the generalized problem with an arbitrary directed acyclic graph-structured workflow on a heterogeneous cluster. This problem is further extended to a dynamic version with deadline-constrained MapReduce workflows to minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes a semi-dynamic online scheduling algorithm based on adaptive task partitioning to reduce dynamic energy consumption while meeting performance requirements from a global perspective, and also develops corresponding system modules for algorithm implementation in the Hadoop ecosystem. The performance superiority of the proposed solutions in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated through real-life workflow implementation and experiments using the Oozie workflow engine in Hadoop/YARN systems

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center

    Full text link
    [EN] Total profit is one of the most important factors to be considered from the perspective of resource providers. In this paper, an original MapReduce workflow scheduling with deadline and data locality is proposed to maximize total profit of resource providers. A new workflow conversion based on dynamic programming and ChainMap/ChainReduce is designed to decrease transmission times among MapReduce jobs of workflows. A new deadline division considering execution time, float time and job level is proposed to obtain better deadlines of MapReduce jobs in workflows. With the adapted replica strategy in MapReduce workflow, a new task scheduling is proposed to improve data locality which assigns tasks to servers with the earliest completion time in order to ensure resource providers obtain more profit. Experimental results show that the proposed heuristic results in larger total profit than other adopted algorithms.This work is supported by the National Key Research and Development Program of China (No. 2017YFB1400801), the National Natural Science Foundation of China (Nos. 61872077, 61832004) and Collaborative Innovation Center of Wireless Communications Technology. Rubén Ruiz is partly supported by the Spanish Ministry of Science, Innovation, and Universities, under the project ¿OPTEP-Port Terminal Operations Optimization¿ (No. RTI2018-094940-B-I00) financed with FEDER funds¿.Wang, J.; Li, X.; Ruiz García, R.; Xu, H.; Chu, D. (2020). Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center. Service Oriented Computing and Applications. 14(2):101-118. https://doi.org/10.1007/s11761-020-00290-1S101118142Zaharia M, Chowdhury M, Franklin M et al (2010) Spark: cluster computing with working sets. In: Usenix conference on hot topics in cloud computing, pp 1765–1773Li L, Ma Z, Liu L et al (2013) Hadoop-based ARIMA algorithm and its application in weather forecast. Int J Database Theory Appl 6(5):119–132Xun Y, Zhang J, Qin X (2017) FiDoop: parallel mining of frequent itemsets using MapReduce. IEEE Trans Syst Man Cybern Syst 46(3):313–325Wang Y, Shi W (2014) Budget-driven scheduling algorithms for batches of MapReduce jobs in heterogeneous clouds. IEEE Trans Cloud Comput 2(3):306–319Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–49Bu Y, Howe B, Balazinska M et al (2012) The HaLoop approach to large-scale iterative data analysis. VLDB J 21(2):169–190Gunarathne T, Zhang B, Wu T et al (2013) Scalable parallel computing on clouds using Twister4Azure iterative MapReduce. Future Gener Comput Syst 29(4):1035–1048Zhang Y, Gao Q, Gao L et al (2012) iMapReduce: a distributed computing framework for iterative computation. J Grid Comput 10(1):47–68Dong X, Wang Y, Liao H (2011) Scheduling mixed real-time and non-real-time applications in MapReduce environment. In: International conference on parallel and distributed systems, pp 9–16Tang Z, Zhou J, Li K et al (2013) A MapReduce task scheduling algorithm for deadline constraints. Clust Comput 16(4):651–662Zhang W, Rajasekaran S, Wood T et al (2014) MIMP: deadline and interference aware scheduling of Hadoop virtual machines. In: International symposium on cluster, cloud and grid computing, pp 394–403Teng F, Magoulès F, Yu L et al (2014) A novel real-time scheduling algorithm and performance analysis of a MapReduce-based cloud. J Supercomput 69(2):739–765Palanisamy B, Singh A, Liu L (2015) Cost-effective resource provisioning for MapReduce in a cloud. IEEE Trans Parallel Distrib Syst 26(5):1265–1279Hashem I, Anuar N, Marjani M et al (2018) Multi-objective scheduling of MapReduce jobs in big data processing. Multimed Tools Appl 77(8):9979–9994Xu X, Tang M, Tian Y (2017) QoS-guaranteed resource provisioning for cloud-based MapReduce in dynamical environments. Future Gener Comput Syst 78(1):18–30Li H, Wei X, Fu Q et al (2014) MapReduce delay scheduling with deadline constraint. Concurr Comput Pract Exp 26(3):766–778Polo J, Becerra Y, Carrera D et al (2013) Deadline-based MapReduce workload management. IEEE Trans Netw Serv Manag 10(2):231–244Chen C, Lin J, Kuo S (2018) MapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systems. IEEE Trans Cloud Comput 6(1):127–140Kao Y, Chen Y (2016) Data-locality-aware MapReduce real-time scheduling framework. J Syst Softw 112:65–77Bok K, Hwang J, Lim J et al (2017) An efficient MapReduce scheduling scheme for processing large multimedia data. Multimed Tools Appl 76(16):1–24Chen Y, Borthakur D, Borthakur D et al (2012) Energy efficiency for large-scale MapReduce workloads with significant interactive analysis. In: ACM european conference on computer systems, pp 43–56Mashayekhy L, Nejad M, Grosu D et al (2015) Energy-aware scheduling of MapReduce jobs for big data applications. IEEE Trans Parallel Distrib Syst 26(10):2720–2733Lei H, Zhang T, Liu Y et al (2015) SGEESS: smart green energy-efficient scheduling strategy with dynamic electricity price for data center. J Syst Softw 108:23–38Oliveira D, Ocana K, Baiao F et al (2012) A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds. J Grid Comput 10(3):521–552Li S, Hu S, Abdelzaher T (2015) The packing server for real-time scheduling of MapReduce workflows. In: IEEE real-time and embedded technology and applications symposium, pp 51–62Cai Z, Li X, Ruiz R et al (2017) A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds. Future Gener Comput Syst 71:57–72Cai Z, Li X, Ruiz R (2017) Resource provisioning for task-batch based workflows with deadlines in public clouds. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2017.2663426Cai Z, Li X, Gupta J (2016) Heuristics for provisioning services to workflows in XaaS clouds. IEEE Trans Serv Comput 9(2):250–263Li X, Cai Z (2017) Elastic resource provisioning for cloud workflow applications. IEEE Trans Autom Sci Eng 14(2):1195–1210Tang Z, Liu M, Ammar A et al (2014) An optimized MapReduce workflow scheduling algorithm for heterogeneous computing. J Supercomput 72(6):1–21Xu C, Yang J, Yin K et al (2017) Optimal construction of virtual networks for cloud-based MapReduce workflows. Comput Netw 112:194–207Chiara S, Danilo A, Gianpaolo C et al (2013) Optimizing service selection and allocation in situational computing applications. IEEE Trans Serv Comput 6(3):414–428Baresi L, Elisabetta D, Carlo G et al (2007) A framework for the deployment of adaptable web service compositions. Serv Oriented Comput Appl 1(1):75–91Lim H, Herodotou H, Babu S (2012) Stubby: a transformation-based optimizer for MapReduce workflows. VLDB Endow 5(11):1196–1207Ke H, Li P, Guo S et al (2016) On traffic-aware partition and aggregation in MapReduce for big data applications. IEEE Trans Parallel Distrib Syst 27(3):818–828Yu W, Wang Y, Que X et al (2015) Virtual shuffling for efficient data movement in MapReduce. IEEE Trans Comput 64(2):556–568Chowdhury M, Zaharia M, Ma J et al (2011) Managing data transfers in computer clusters with orchestra. ACM SIGCOMM Comput Commun 41(4):98–109Guo D, Xie J, Zhou X et al (2015) Exploiting efficient and scalable shuffle transfers in future data center network. IEEE Trans Parallel Distrib Syst 26(4):997–1009Li D, Yu Y, He W et al (2015) Willow: saving data center network energy for network-limited flows. IEEE Trans Parallel Distrib Syst 26(9):2610–2620Tan J, Meng X, Zhang L (2013) Coupling task progress for MapReduce resource-aware scheduling. In: IEEE INFOCOM, pp 1618–1626Hammoud M, Rehman M, Sakr M (2012) Center-of-gravity reduce task scheduling to lower MapReduce network traffic. In: International conference on cloud computing, pp 49–58Guo Z, Fox G, Zhou M et al (2012) Improving resource utilization in MapReduce. In: International conference on cluster computing, pp 402–410Fischer M, Su X, Yin Y (2010) Assigning tasks for efficiency in Hadoop. In: Proceedings of the 22nd ACM symposium on parallelism in algorithms and architectures, pp 30–39Zhu Y, Jiang Y, Wu W et al (2014) Minimizing makespan and total completion time in MapReduce-like systems. In: IEEE INFOCOM, pp 2166–2174Kavulya S, Tan J, Gandhi R et al (2010) An analysis of traces from a production MapReduce cluster. In: IEEE/ACM international conference on cluster, cloud and grid computing, pp 94–103Abrishami S, Naghibzadeh M, Epema D (2013) Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service clouds. Future Gener Comput Syst 29(1):158–169Fernando B, Edmundo R (2010) Towards the scheduling of multiple workflows on computational grids. J Grid Comput 8(3):419–441Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–38Verma A, Cherkasova L, Campbell R (2013) Orchestrating an ensemble of MapReduce jobs for minimizing their makespan. IEEE Trans Dependable Secur Comput 10(5):314–327Heintz B, Chandra A, Sitaraman R et al (2017) End-to-end optimization for geo-distributed MapReduce. IEEE Trans Cloud Comput 4(3):293–306Chen L, Li X (2018) Cloud workflow scheduling with hybrid resource provisioning. J Supercomput 74(12):6529–6553Li X, Jiang T, Ruiz R (2016) Heuristics for periodical batch job scheduling in a MapReduce computing framework. Inf Sci 326:119–133Vanhoucheabcd M, Maenhout B, Tavares L (2008) An evaluation of the adequacy of project network generators with systematically sampled networks. Eur J Oper Res 187(2):511–52

    Workflow Scheduling Techniques and Algorithms in IaaS Cloud: A Survey

    Get PDF
    In the modern era, workflows are adopted as a powerful and attractive paradigm for expressing/solving a variety of applications like scientific, data intensive computing, and big data applications such as MapReduce and Hadoop. These complex applications are described using high-level representations in workflow methods. With the emerging model of cloud computing technology, scheduling in the cloud becomes the important research topic. Consequently, workflow scheduling problem has been studied extensively over the past few years, from homogeneous clusters, grids to the most recent paradigm, cloud computing. The challenges that need to be addressed lies in task-resource mapping, QoS requirements, resource provisioning, performance fluctuation, failure handling, resource scheduling, and data storage. This work focuses on the complete study of the resource provisioning and scheduling algorithms in cloud environment focusing on Infrastructure as a service (IaaS). We provided a comprehensive understanding of existing scheduling techniques and provided an insight into research challenges that will be a possible future direction to the researchers
    • …
    corecore