66,020 research outputs found

    Scheduled Perception for Energy-Efficient Path Following

    Get PDF

    Energy and bursty packet loss tradeoff over fading channels: a system-level model

    Get PDF
    Energy efficiency and quality of service (QoS) guarantees are the key design goals for the 5G wireless communication systems. In this context, we discuss a multiuser scheduling scheme over fading channels for loss tolerant applications. The loss tolerance of the application is characterized in terms of different parameters that contribute to quality of experience (QoE) for the application. The mobile users are scheduled opportunistically such that a minimum QoS is guaranteed. We propose an opportunistic scheduling scheme and address the cross-layer design framework when channel state information (CSI) is not perfectly available at the transmitter and the receiver. We characterize the system energy as a function of different QoS and channel state estimation error parameters. The optimization problem is formulated using Markov chain framework and solved using stochastic optimization techniques. The results demonstrate that the parameters characterizing the packet loss are tightly coupled and relaxation of one parameter does not benefit the system much if the other constraints are tight. We evaluate the energy-performance tradeoff numerically and show the effect of channel uncertainty on the packet scheduler design

    Active End-Effector Pose Selection for Tactile Object Recognition through Monte Carlo Tree Search

    Full text link
    This paper considers the problem of active object recognition using touch only. The focus is on adaptively selecting a sequence of wrist poses that achieves accurate recognition by enclosure grasps. It seeks to minimize the number of touches and maximize recognition confidence. The actions are formulated as wrist poses relative to each other, making the algorithm independent of absolute workspace coordinates. The optimal sequence is approximated by Monte Carlo tree search. We demonstrate results in a physics engine and on a real robot. In the physics engine, most object instances were recognized in at most 16 grasps. On a real robot, our method recognized objects in 2--9 grasps and outperformed a greedy baseline.Comment: Accepted to International Conference on Intelligent Robots and Systems (IROS) 201

    Active End-Effector Pose Selection for Tactile Object Recognition through Monte Carlo Tree Search

    Full text link
    This paper considers the problem of active object recognition using touch only. The focus is on adaptively selecting a sequence of wrist poses that achieves accurate recognition by enclosure grasps. It seeks to minimize the number of touches and maximize recognition confidence. The actions are formulated as wrist poses relative to each other, making the algorithm independent of absolute workspace coordinates. The optimal sequence is approximated by Monte Carlo tree search. We demonstrate results in a physics engine and on a real robot. In the physics engine, most object instances were recognized in at most 16 grasps. On a real robot, our method recognized objects in 2--9 grasps and outperformed a greedy baseline.Comment: Accepted to International Conference on Intelligent Robots and Systems (IROS) 201

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications
    • …
    corecore