This paper considers the problem of active object recognition using touch
only. The focus is on adaptively selecting a sequence of wrist poses that
achieves accurate recognition by enclosure grasps. It seeks to minimize the
number of touches and maximize recognition confidence. The actions are
formulated as wrist poses relative to each other, making the algorithm
independent of absolute workspace coordinates. The optimal sequence is
approximated by Monte Carlo tree search. We demonstrate results in a physics
engine and on a real robot. In the physics engine, most object instances were
recognized in at most 16 grasps. On a real robot, our method recognized objects
in 2--9 grasps and outperformed a greedy baseline.Comment: Accepted to International Conference on Intelligent Robots and
Systems (IROS) 201