569 research outputs found

    Efficient service discovery in wide area networks

    Get PDF
    Living in an increasingly networked world, with an abundant number of services available to consumers, the consumer electronics market is enjoying a boom. The average consumer in the developed world may own several networked devices such as games consoles, mobile phones, PDAs, laptops and desktops, wireless picture frames and printers to name but a few. With this growing number of networked devices comes a growing demand for services, defined here as functions requested by a client and provided by a networked node. For example, a client may wish to download and share music or pictures, find and use printer services, or lookup information (e.g. train times, cinema bookings). It is notable that a significant proportion of networked devices are now mobile. Mobile devices introduce a new dynamic to the service discovery problem, such as lower battery and processing power and more expensive bandwidth. Device owners expect to access services not only in their immediate proximity, but further afield (e.g. in their homes and offices). Solving these problems is the focus of this research. This Thesis offers two alternative approaches to service discovery in Wide Area Networks (WANs). Firstly, a unique combination of the Session Initiation Protocol (SIP) and the OSGi middleware technology is presented to provide both mobility and service discovery capability in WANs. Through experimentation, this technique is shown to be successful where the number of operating domains is small, but it does not scale well. To address the issue of scalability, this Thesis proposes the use of Peer-to-Peer (P2P) service overlays as a medium for service discovery in WANs. To confirm that P2P overlays can in fact support service discovery, a technique to utilise the Distributed Hash Table (DHT) functionality of distributed systems is used to store and retrieve service advertisements. Through simulation, this is shown to be both a scalable and a flexible service discovery technique. However, the problems associated with P2P networks with respect to efficiency are well documented. In a novel approach to reduce messaging costs in P2P networks, multi-destination multicast is used. Two well known P2P overlays are extended using the Explicit Multi-Unicast (XCAST) protocol. The resulting analysis of this extension provides a strong argument for multiple P2P maintenance algorithms co-existing in a single P2P overlay to provide adaptable performance. A novel multi-tier P2P overlay system is presented, which is tailored for service rich mobile devices and which provides an efficient platform for service discovery

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    An evaluation of EpiChord in OverSim

    Get PDF
    EpiChord is a Distributed Hash Table (DHT) algorithm which supports data storage/retrieval in large scale distributed systems. It removes the typicalO(logn)-state-per-node restriction imposed by the majority of other DHT topologies by employing a reactive routing state maintenance strategy that amortizes network maintenance costs into lookup queries. Under ideal condition, EpiChord’s lookup performance can approach O(1) hops – with maintenance costs comparable to traditional multi-hop DHTs. This paper presents an implementation of EpiChord in OverSim, and validates the performance of our model against the performance reported in the original EpiChord paper. We also present some adjustments to the algorithm to remove a discrepancy and then compare our modified results with the original ones. Finally, we present additional results showing the EpiChord algorithm is stable over time and performs well for larger networks

    Scalable and Anonymous Group Communication

    Get PDF
    Today\u27s Internet is not designed to protect the privacy of its users against network surveillance, and source and destination of any communication is easily exposed to third party observer. Tor, a volunteer-operated anonymity network, offers low-latency practical performance for unicast anonymous communication without central point of trust. However, Tor is known to be slow and it can not support group communication with scalable performance. Despite the extensive public interest in anonymous group communication, there is no system that provides anonymous group communication without central point of trust. This dissertation presents MTor, a low-latency anonymous group communication system. We construct MTor as an extension to Tor, allowing the construction of multi-source multicast trees on top of the existing Tor infrastructure. MTor does not depend on an external service (e.g., an IRC server or Google Hangouts) to broker the group communication, and avoids central points of failure and trust. MTor\u27s substantial bandwidth savings and graceful scalability enable new classes of anonymous applications that are currently too bandwidth-intensive to be viable through traditional unicast Tor communication---e.g., group file transfer, collaborative editing, streaming video, and real-time audio conferencing. We detail the design of MTor and then analyze its performance and anonymity. By simulating MTor in Shadow and TorPS using realistic models of the live Tor network\u27s topology and recent consensus records from the live Tor network, we show that MTor achieves 29% savings in network bandwidth and 73% reduction in transmission time as compared to the baseline approach for anonymous group communication among 20 group members. We also demonstrate that MTor scales gracefully with the number of group participants, and allows dynamic group composition over time. Importantly, as more Tor users switch to group communication, we show that the overall performance and bandwidth utilization for group communication improves. Finally, we discuss the anonymity implications of MTor and measure its resistance to traffic correlation attacks

    Congestion avoidance in overlay networks through multipath routing

    Get PDF
    Overlay networks relying on traditional multicast routing approaches use only a single path between a sender and a receiver. This path is selected based on latency, with the goal of achieving fast delivery. Content is routed through links with low latency, ignoring slower links of the network which remain unused. With the increasing size of content on the Internet, this leads to congestion, messages are dropped and have to be retransmitted. A multicast multipath congestion-avoidance routing scheme which uses multiple bottleneck-disjoint paths between senders and receivers was developed, as was a linear programming model of the network to distribute messages intelligently across these paths according to two goals: minimum network usage and load-balancing. The former aims to use as few links as possible to perform routing, while the latter spreads messages across as many links as possible, evenly distributing the traffic. Another technique, called message splitting, was also used. This allows nodes to send a single copy of a message with multiple receivers, which will then be duplicated by a node closer to the receivers and sent along separate paths only when required. The model considers all of the messages in the network and is a global optimisation. Nevertheless, it can be solved quickly for large networks and workloads, with the cost of routing remaining almost entirely the cost of finding multiple paths between senders and receivers. The Gurobi linear programming solver was used to find solutions to the model. This routing approach was implemented in the NS-3 network simulator. The work is presented as a messaging middleware scheme, which can be applied to any overlay messaging network.Open Acces

    Performance Optimization and Dynamics Control for Large-scale Data Transfer in Wide-area Networks

    Get PDF
    Transport control plays an important role in the performance of large-scale scientific and media streaming applications involving transfer of large data sets, media streaming, online computational steering, interactive visualization, and remote instrument control. In general, these applications have two distinctive classes of transport requirements: large-scale scientific applications require high bandwidths to move bulk data across wide-area networks, while media streaming applications require stable bandwidths to ensure smooth media playback. Unfortunately, the widely deployed Transmission Control Protocol is inadequate for such tasks due to its performance limitations. The purpose of this dissertation is to conduct rigorous analytical study of the design and performance of transport solutions, and develop an integrated transport solution in a systematical way to overcome the limitations of current transport methods. One of the primary challenges is to explore and compose a set of feasible route options with multiple constraints. Another challenge essentially arises from the randomness inherent in wide-area networks, particularly the Internet. This randomness must be explicitly accounted for to achieve both goodput maximization and stabilization over the constructed routes by suitably adjusting the source rate in response to both network and host dynamics.The superior and robust performance of the proposed transport solution is extensively evaluated in a simulated environment and further verified through real-life implementations and deployments over both Internet and dedicated connections under disparate network conditions in comparison with existing transport methods

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network
    • …
    corecore