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Scalable and Anonymous Group Communication

Abstract
Today's Internet is not designed to protect the privacy of its users against network surveillance, and source
and destination of any communication is easily exposed to third party observer. Tor, a volunteer-operated
anonymity network, offers low-latency practical performance for unicast anonymous communication without
central point of trust. However, Tor is known to be slow and it can not support group communication with
scalable performance. Despite the extensive public interest in anonymous group communication, there is no
system that provides anonymous group communication without central point of trust.

This dissertation presents MTor, a low-latency anonymous group communication system. We construct MTor
as an extension to Tor, allowing the construction of multi-source multicast trees on top of the existing Tor
infrastructure. MTor does not depend on an external service (e.g., an IRC server or Google Hangouts) to
broker the group communication, and avoids central points of failure and trust. MTor's substantial bandwidth
savings and graceful scalability enable new classes of anonymous applications that are currently too
bandwidth-intensive to be viable through traditional unicast Tor communication---e.g., group file transfer,
collaborative editing, streaming video, and real-time audio conferencing.

We detail the design of MTor and then analyze its performance and anonymity. By simulating MTor in
Shadow and TorPS using realistic models of the live Tor network's topology and recent consensus records
from the live Tor network, we show that MTor achieves 29% savings in network bandwidth and 73%
reduction in transmission time as compared to the baseline approach for anonymous group communication
among 20 group members. We also demonstrate that MTor scales gracefully with the number of group
participants, and allows dynamic group composition over time. Importantly, as more Tor users switch to
group communication, we show that the overall performance and bandwidth utilization for group
communication improves. Finally, we discuss the anonymity implications of MTor and measure its resistance
to traffic correlation attacks.
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ABSTRACT

SCALABLE AND ANONYMOUS GROUP COMMUNICATION

Dong Lin

Boon Thau Loo

Today’s Internet is not designed to protect the privacy of its users against network

surveillance, and source and destination of any communication is easily exposed

to third party observer. Tor, a volunteer-operated anonymity network, offers low-

latency practical performance for unicast anonymous communication without central

point of trust. However, Tor is known to be slow and it can not support group

communication with scalable performance. Despite the extensive public interest in

anonymous group communication, there is no system that provides anonymous group

communication without central point of trust.

This dissertation presents MTor, a low-latency anonymous group communication

system. We construct MTor as an extension to Tor, allowing the construction of

multi-source multicast trees on top of the existing Tor infrastructure. MTor does

not depend on an external service (e.g., an IRC server or Google Hangouts) to broker

the group communication, and avoids central points of failure and trust. MTor’s sub-

stantial bandwidth savings and graceful scalability enable new classes of anonymous

applications that are currently too bandwidth-intensive to be viable through tra-

ditional unicast Tor communication—e.g., group file transfer, collaborative editing,

streaming video, and real-time audio conferencing.

We detail the design of MTor and then analyze its performance and anonymity.

By simulating MTor in Shadow and TorPS using realistic models of the live Tor net-

work’s topology and recent consensus records from the live Tor network, we show that
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MTor achieves 29% savings in network bandwidth and 73% reduction in transmis-

sion time as compared to the baseline approach for anonymous group communication

among 20 group members. We also demonstrate that MTor scales gracefully with

the number of group participants, and allows dynamic group composition over time.

Importantly, as more Tor users switch to group communication, we show that the

overall performance and bandwidth utilization for group communication improves.

Finally, we discuss the anonymity implications of MTor and measure its resistance

to traffic correlation attacks.
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Chapter 1

Introduction

The capability to communicate anonymously facilitates democracy and the freedom

of speech [31, 51]. In authoritarian states, anonymity provides citizens with the

freedom of discussion without fear of punishment or retribution, and it allows users

to visit websites that would otherwise be blocked by government censorship. Even

in democratic countries, the ability to disassociate users’ online behavior with their

identities serves a critical purpose, since knowledge that unprotected online behavior

may be logged (and potentially later revealed) leads naturally to self-censorship—

that is, an unwillingness to access information for fear of future exposure.

Communication participants may wish to hide the fact that they are communi-

cating for a variety of reasons. The uses of anonymity include, but are not limited

to, the following scenarios:

• Whistle-blower protection. The whistle-blower may want the ability to

publish secret information, news leaks, and classified media anonymously without

fear of retribution. This includes the publishers of WikiLeaks. The famous whistle-

blower, Edward Snowden, also specifically recommended Tor to cover user tracks.
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• Circumvention from firewall blocking. Tor can be used to allow con-

stituents of repressive regimes to freely access websites and services that are oth-

erwise blocked by the firewall. For example, users in China and Iran use Tor to

access websites such as Facebook, Twitter, Google, etc.

• Privacy protection. Anonymity protects users from being associated with

any sensitive activity that may otherwise implicate or embarrass the users. These

sensitive activities include search on Google, access to health information, discus-

sion in online group, etc.

However, today’s Internet is not designed to protect the privacy of its users

against network surveillance. Even though robust cryptographic techniques are avail-

able to prevent unauthorized parties from learning the communication contents, the

fact that two parties are communicating is easily discernible. The IP packets carry

the source and destination addresses of any communication in plain text which are

used by intermediate routers to route the packet. Therefore, the participants as well

as time and duration of the communication are easily exposed to eavesdroppers.

Various techniques have been proposed to meet the demand for anonymous com-

munication on the Internet [15, 45, 7, 41, 9]. Such approaches typically route mes-

sages through intermediate relays before delivering them to the intended destination,

such that no message will carry the actual source and destination addresses at the

same time. These techniques usually vary in their anonymity guarantee, perfor-

mance, and application domain.
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1.1 Limitations of Existing Anonymity Systems

There is a strong need for anonymity systems that provide users with practical per-

formance and ease-of-use while avoiding central point of trust. A large body of

anonymity systems have been proposed with varying anonymity and performance

properties. On one end of the spectrum, there are systems that offer provably strong

anonymity guarantees [9, 10] even against well-positioned and well-provisioned ad-

versaries. But these systems incur high communication and computation costs, and

are best applied when the participants in a communication are fixed and are small

in number. On the other end of the spectrum, low-latency anonymity systems such

as Tor [15] offer the strongest practical anonymity currently available. But Tor is

currently constrained to provide anonymity only for unicast communication.

The increasing demand for practical anonymous group communication has spurred

a large crowd of commercial ventures. For example, popular anonymous applications

are available on iOS and Android devices that allow users to gossip anonymously

with their friends [44], with nearby users [60], or with all users of the system [59].

Facebook recently unveiled its own anonymous application [43] to foster anonymous

group discussion among people with similar interests. However, these solutions in-

troduce a single point of trust, since one compromised server—or one subpoena—can

break users’ anonymity. This threat is not merely academic: Whisper [59] was re-

cently reported to silently track and monitor their users’ locations [52].

Anonymous group communication can be straightforwardly achieved using tradi-

tional unicast anonymity networks (e.g., Tor) and an external facilitator. Here, group

members anonymously send their messages to the facilitator, which then “echoes”

the messages to other group members. However, such an approach incurs unnec-

essary bandwidth and latency overheads, and scales poorly with group size. More
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importantly, approaches still render users’ anonymity vulnerable to the operator of

the external facilitator.

This dissertation presents MTor, a practical anonymous group communication

system that supports dynamic group composition with scalable performance. We

construct MTor as an extension of Tor, benefiting Tor’s large user base by allow-

ing them to perform anonymous group communication and enabling new types of

anonymous applications (e.g., multi-party audio conferencing), while also benefiting

from Tor’s network infrastructure as well as its mature design and implementation.

MTor constructs multicast trees of Tor relays across group participants. Any user

can enter and leave the group communication without global coordination by join-

ing as leaves to these trees. To the best of our knowledge, MTor is the first system

providing low-latency anonymous group communication with a decentralized trust

infrastructure.

1.2 Research Questions

In comparison to existing non-anonymous multicast protocol, the design goal of

anonymity in a potentially adversarial environment imposes unique requirement on

the protocol. Specifically, the multicast protocol should 1) construct multicast tree

randomly in a decentralized manner to reduce risk of targeted attack; 2) integrate

with state-of-art technique in authentication, cryptography, anonymity, etc.; and 3)

achieve acceptable anonymity under proposed threat model. To meet these require-

ments, this dissertation explores the following research questions:

• How to build a randomized multicast tree across clients without global

coordination? Existing multicast protocols typically construct multicast tree

by having clients issue join request to a static node, which acts as rendezvous point

4



for the group. However, such approach is not suitable for anonymous communica-

tion in an adversarial environment, since it allows adversary to easily locate and

take over rendezvous point and other nodes on the tree to de-anonymize clients.

This dissertation provides a mechanism for clients to construct a randomized mul-

ticast tree in a semi-decentralized manner.

• Can we integrate anonymous group communication system with some

existing overlay network to leverage its secure implementation and ex-

isting developer community? Instead of building MTor from scratch, we

choose to build it as an extension of Tor, to benefit from Tor’s mature design,

developer community and large number of volunteer relays. This also allows us

to benefit Tor’s large user base by scaling up performance of existing multi-party

communication and enabling new types of anonymous communication (e.g. multi-

party audio conferencing). We detail the design and implementation of MTor in

the rest of the dissertation.

• What are the performance and anonymity of MTor if it is deployed on

the live Tor overlay network? In addition to measuring bandwidth savings

typically evaluated for non-anonymous multicast protocol, we also evaluate the

latency improvement experienced by end users, probability of communication dis-

ruption due to relay failure, as well as compromise rate against traffic correlation

attack. To accurately estimate MTor’s performance on live Tor network, our eval-

uation takes advantage of state-of-art Tor’s evaluation methodologies combined

with realistic models of Tor overlay network, user behavior, historical datasets of

Tor relay information, and a prototype implementation of MTor in C++.

5



1.3 Contributions

In the rest of the dissertation we address the research questions listed in Section 1.2.

This dissertation makes the following contributions:

• The semi-decentralized design of a practical communication system that enables

anonymous group communication without central point of trust in a potentially

adversarial environment. The system provides best-effort reliability guarantee and

automatically adapts to changes in group membership and underlying network.

• A multicast protocol for Tor that saves bandwidth and scales up performance for

both one-to-many and many-to-many anonymous communication.

• Definition and evaluation of compromise due to traffic analysis attack in the group

communication setting.

• A prototype implementation and detailed evaluation of MTor using techniques

from recent research and latest consensus records from live Tor network. We

compare performance of MTor with baseline approach which combines vanilla Tor

with an external service, and demonstrate how MTor enables an important class

of communication service – anonymous group communication with low-latency

delivery requirement.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 discusses research

in related areas. Chapter 3 gives an overview of MTor’s motivation and challenges.

6



Chapter 4 presents MTor’s threat model. Chapter 5 describes the design and imple-

mentation of MTor. We present performance and anonymity evaluation results in

Chapter 6 and conclude the dissertation in Chapter 7.
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Chapter 2

Related Work

The techniques presented in this dissertation expand upon prior work from the se-

curity, anonymity, and networking communities. This chapter introduces the termi-

nologies used in this dissertation, and overviews related research in these areas.

2.1 Terminology

We adopt the following definitions throughout this dissertation. In addition to tra-

ditional definition of traffic correlation attack in unicast context, we define two sub-

classes of traffic correlation attack in the group communication context. We define

anonymity metrics related to these definitions of traffic correlation attack in Sec-

tion 6.2.2.

Definition 1. (Traffic Correlation Attack) Traffic correlation attack attempts to

associate the sender with the receiver of the communication by correlating the foot-

print (e.g. time and volume) of observed traffic entering and exiting the anonymity

network.

Definition 2. (Linkage Attack) In the linkage attack, an adversary attempts to
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determine if two given clients are communicating with each other. Depending on the

design of anonymous communication system, the adversary may or may not need to

observe traffic of both clients simultaneously.

Definition 3. (Membership Identification Attack) In the membership identification

attack, an adversary attempts to find out if a given client belongs to a given group.

A necessary condition is for adversary to observe traffic entering or leaving the given

client.

Tor and other low-latency anonymity systems are known to be vulnerable to traf-

fic correlation attack. In this dissertation, we focus on improving Tor’s performance

while still providing anonymity against linkage and membership identification attack.

2.2 Tor Anonymity Network

In the following, we provide details on the mechanics of Tor that are relevant to our

proposed techniques.

Tor operates as an distributed overlay network consisting of approximately 6200

volunteer-operated relays. It is designed to provide low-latency anonymous con-

nection to TCP-based applications like web browsing, instant messaging, and ssh

connection. It uses source-based routing that tunnels messages through a number

of intermediate routers before delivering messages to the destination. Messages are

multiply encrypted, such that intermediate routers can only identify the previous

and next hops in the path. Tor is designed based on onion routing [49], with its own

improvement on security and performance.

Before transmitting data to destination, the source Tor client constructs anony-

mous path (i.e. circuit) as a sequence of Tor routers. For each router on the path,

9



the client sends a CREATE cell that carries a random seed, and a mutually shared

symmetric key is generated based on the seed. These symmetric keys are later used

for encrypting DATA cells.

The source Tor client begins data transmission once it finishes constructing the

anonymous path. The data from user application is repeatedly encrypted using the

symmetric keys previously negotiated with each router on the path, applied in reverse

order. For example, suppose keys k1, k2, k3 denote the symmetric keys of the first,

second, and third routers, then data M is encrypted as {{{M}k3}k2}k1 into DATA

cell. Upon receiving a DATA cell, each router decrypts the outermost layer, extracts

IP address of the next hop in the outermost layer, and forwards the cell to the next

hop. The last router on the path delivers unencrypted data to destination.

The downstream data is encrypted in the reverse order. Upon receiving a DATA

cell, each router encrypts the cell using its symmetric key, looks up the anonymous

path associated with the DATA cell, and forwards data to the next hop in the down-

stream direction. After receiving the DATA cell, the source Tor client repeatedly

decrypts the data before forwarding cell payload to user application.

Tor is known to be slow in terms of performance [16] (though there is evidence

that its performance is improving [53]). The slowness is not attributed to fundamen-

tal design flaws in Tor, but rather, mostly attributed to a large asymmetry between

the number of clients who wish to use the network and the relays who route their

traffic. There are a large number of proposals to improve the performance of Tor,

including techniques for improving path selection [46, 57, 1, 48], providing incen-

tives for users to run relays [33, 36, 28], reducing congestion [26, 2], and modifying

Tor’s transport protocol [40] and circuit scheduling algorithm [50]. MTor may also

benefit from many of the above techniques, but additionally explores methods of

de-duplicating information by leveraging traffic aggregation in multicast trees. To
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the best of our knowledge, MTor is the first to introduce a multicast primitive for

Tor.

2.3 IP multicast and Overlay Multicast

IP multicast [11] provides efficient group communication at the network layer by

reducing message duplication on physical links. However, it requires router support

at the infrastructure level and adds complexity by requiring routers to maintain per

group state. Multicast is also susceptible to denial of service attacks, since by design,

it amplifies messages by number of receivers. As a result, IP multicast is not widely

deployed.

Unlike IP multicast, overlay multicast provides multicast service at the applica-

tion layer. As overlay multicast does not rely on router support, it allows multicast

functionality to be incrementally deployed on the existing network. The key concern

regarding overlay multicast is the performance penalty involved in disseminating

data using overlays rather than native IP multicast. A number of systems have

been proposed to provide efficient overlay multicast, including Scribe [5], Narada [8],

Overcast [24], and Yoid [17].

However, existing overlay multicast techniques do not provide anonymity for

low-latency group communication. Overcast [24] builds a single-source multicast

tree where the operator of the root knows identity of all group members. Narada [8]

forms the multicast tree by building a mesh per group containing group members

before constructing a spanning tree of mesh for each source. However, its mesh

creation and maintenance algorithms assume that all group members know about

each other. Scribe [5] is the most similar to MTor. It builds multicast tree in a fully

decentralized manner by using Pastry, a peer-to-peer location and routing substrate,
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to route packets. Multicast tree is formed by joining Pastry routes from each group

member to a rendezvous point associated with the group. However, the rendezvous

point is static after it is chosen, and the path from client to rendezvous point is fully

exposed to any observer. In comparison to these efforts, MTor provides anonymity-

aware multicast service over an existing anonymous overlay network (Tor).

2.4 Anonymous Multicast

A number of existing anonymous multicast schemes provide provable (unconditional)

anonymity guarantees, but at the cost of limited performance or requiring that the

group’s composition be static. Classic DC-nets [6, 10] provides provable anonymity

even against traffic analysis attack. But communication and computation costs have

in practice limited its performance and anonymity set size. Herbivore [20] supports

mass participation by securely dividing large networks into smaller DC-nets groups,

but guarantees anonymity only within each group, showing only scalability to 40-

node groups. Dissent [9] significantly improves the scalability and performance of

DC-nets by switching to a client/server architecture. But Dissent’s protocol halts

completely even if a single server goes offline; and its group composition cannot

change after the initial setup. Furthermore, Dissent’s performance relies heavily on

a small set of physically co-located servers with high-bandwidth and low-latency com-

munication among them, which reduces performance for geographically distributed

clients. In contrast, MTor provides wide-area anonymous group communication with

dynamic group composition and achieves better performance than that offered by

Tor.

There is also related work that examines multicast for low-latency anonymity
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networks. M2 [38] offers receiver anonymity for one-to-many multicast communica-

tion. However, M2 assumes mutually-trusting receivers, and does not protect the

identity of the sender. Therefore it is not useful for many-to-many anonymous group

communication.

Hordes [47] is a variant of Crowds [41] that leverages IP multicast for return traffic

from the receiver to the sender. Unlike MTor, Hordes uses multicast as an anonymous

transport mechanism for sending unicast messages, in a way that hides the identity

of the intended recipient. However, this approach wastes bandwidth by delivering

the majority of messages unnecessarily to unintended recipients. In contrast, MTor

saves bandwidth and provides scalability for anonymous group communication.

2.5 Relay Selection in Tor

Tor offers anonymity by routing messages through multi-hop path on an application-

layer overlay network. But doing so typically yields significantly worse performance

as compared to standard IP routing. Each intermediate relay on the anonymity

path potentially increases the latency and limits the bandwidth of the end-to-end

communication. The expected performance of Tor therefore depends on the metrics

of selected relays on the path: the throughput is determined by the relay with least

bandwidth, the latency is the sum of latencies between adjacent relays, etc.

The relay selection strategy affects both performance and anonymity of the com-

munication. To maximize anonymity, Tor client can choose relay uniformly at ran-

dom, leaving no information to adversary on which to bias probability distribution

over the candidate relays. However, such an approach tends to result in path with

poor performance.
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On the other hand, Tor client can choose to optimize relay selection for per-

formance by preferentially selecting those relays with high throughput and stable

connectivity. Such performance-aware strategy, however, imposes non-uniform dis-

tribution over candidate relays. In comparison to uniform relay selection, it leaves

opportunity for adversary to discover selected relays with higher probability. Fur-

thermore, an resourceful adversary can run relay with high bandwidth as well as low

latency to monitored target, so that his relay is more likely to be selected on the

anonymity path.

Therefore, the relay selection strategy involves trade-off between performance

and anonymity. Unlike other anonymity systems whose relay selection is controlled

by the overlay network (e.g. Crowd [41]), in Tor the sender has full control over

relay selection, which allows it to adjust position in the anonymity-vs-performance

spectrum [48, 45] to meet the requirement of different applications.

We briefly describe the default relay selection strategy in Tor. The Tor client

first fetches a list of candidate relays (i.e. consensus document) from one of the Tor

directory server, in which each relay may be marked with flags STABLE (having a

sufficiently long uptime), VALID (running a recent version of Tor), FAST (having

sufficient bandwidth), GUARD (can be the first node on the path), and EXIT (can

be the last node on the path). Those relays with EXIT flag further provide exit

policy to specify the range of IP address and port that it allows to connect to.

To achieve reasonable trade-off between performance and anonymity, Tor uses a

bandwidth-weighted relay selection strategy, where relay is selected with probability

proportional to its bandwidth. The sender repeats this strategy to select each relay

on the path.
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Chapter 3

Overview

MTor provides a group communication primitive in which any member of a multicast

group may originate messages; these messages are tunneled through anonymous Tor

circuits to all other group members. Our security goal, which we describe in more

detail below, is to prevent an adversary from (1) discerning the sender of the message

and (2) enumerating the members of the group.

We envision that any number of such groups (including zero) may exist on Tor

at any given time. To participate in a group, we assume that group members obtain

a succinct group descriptor document that contains the group’s name, its unique

group identifier (GID), and an optional certificate. (Additional fields in the group

descriptor are described in Section 5.1.) The certificate enables an access control

mechanism for multicast and is useful to enable single-source multicast streams in

which messages are only relayed if they originate from the group’s authorized source.

(Although we do not consider it here, MTor can be trivially extended to support ring

signatures [42] or other cryptographic structures that permit multiple authorized

senders for a group.) Omitting the public key enables a multicast group in which

any group member can act as both sender and receiver. Finally, the group identifier is
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G1	   G2	   G3	   G4	  

MR	  

1	   2	   3	   4	   5	  

x	   y	  

Figure 3.1: Example multicast tree.

computed as a hash over the group descriptor’s attributes in a manner that binds the

(optional) certificate to the group. We assume that the group descriptor is retrieved

anonymously by the group’s participants—i.e., it may be communicated out-of-band

or it is retrieved over a standard unicast Tor circuit.

Every hour, each member of a given group individually runs a local deterministic

algorithm that takes as input the group’s GID and the local Tor client’s cached

copy of the Tor consensus document (the list of available relays), and outputs a Tor

relay that will serve as the root of the group’s multicast tree. We call that root

the multicast root or MR. Importantly, all group members compute the same MR as

long as they have the same up-to-date Tor consensus document from one of the Tor

directory authorities.

A significant advantage of MTor is that multicast allows for aggregation of mes-

sages, which eliminates redundancy and conserves bandwidth. To illustrate, Fig-

ure 3.1 shows an example multicast tree constructed with MTor. Here, five clients
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(1-5) construct three-hop Tor circuits to the MR. As with unicast Tor circuits, clients

begin their circuits with fixed guard relays (G1-G4). In contrast to normal Tor com-

munication, MTor aggregates identical traffic that flows across a single connection

between relays. For example, consider the case in which client 3 sends a message to

the group. The message is sent via a Tor circuit to the MR, which then forwards

it to its two neighbors (relays “x” and “y”). Only one copy of the message is sent

for each connection. This preserves bandwidth, since x and y are each servicing two

downstream clients. Similarly, bandwidth is again preserved when x forwards along

the message to G1, despite the presence of clients 1 and 2 on the multicast tree.

Notably, MTor does not rely on exit relays—relays that serve as egress points in

the Tor network. In MTor, all traffic is sent within Tor. Exit relays are unnecessary

in MTor since traffic never leaves the Tor network. In a mixed Tor network that car-

ries both unicast and multicast traffic, this is a desirable feature: exit relays (which

are especially valuable since they constitute only approximately 1/3 of all relays in

the live Tor network) can be reserved for unicast traffic.

Summary of results We evaluate MTor using Shadow [27], a high-fidelity discrete-

event simulator that runs actual Tor code on a synthetic network topology. Shadow

has recently been used to evaluate Tor’s circuit scheduling algorithms [27, 26], its

vulnerability to traffic correlation attacks [30], and proposed performance enhance-

ments [29, 18]. By simulating MTor’s path selection algorithm using historical

records of Tor’s consensus documents, we evaluate the bandwidth consumption and

anonymity of MTor. Our results are encouraging: for large sized groups, MTor

achieves 62% savings in network bandwidth as compared to vanilla Tor; even for

smaller-sized group of 20 clients, MTor achieves 29% savings in network bandwidth
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and provides significantly improved client experience, decreasing the median trans-

mission time of message delivery by as much as 73%.
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Chapter 4

Threat Model and Assumptions

We adopt Tor’s threat model in which an adversary monitors or controls some frac-

tion of the network [15]. For example, the adversary may operate Tor relays, or

may monitor or control some portion of the underlying Internet. We assume the

adversary cannot monitor all communication, since Tor is not designed to protect

against global adversaries [15]. Finally, we conservatively assume that the adversary

has access to the group descriptor document and can effectively join any multicast

group.

Tor is known to be vulnerable to an adversary who can observe and correlate traf-

fic entering and exiting the anonymity network. This type of traffic correlation attack

is arguably the most serious known de-anonymization attack against Tor [21, 55] and

recent studies have demonstrated that even a moderately provisioned adversary can

de-anonymize most Tor users within a few months [30]. In this paper, we focus

on such traffic correlation attacks since, when successful, they directly identify an

anonymous communication’s endpoints and defeat Tor’s anonymity goals (i.e., to

conceal communicants’ network locations).
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We do not consider MTor’s resilience to attacks that enumerate the relays in-

volved in anonymous communication, since merely discovering which Tor relays

were involved in an anonymous communication does not reveal the participants of

that communication. We emphasize that such “path discovery” attacks are trivially

achievable in vanilla Tor by an adversary who operates a Tor relay and is chosen

as the middle relay in an anonymous circuit; here, the malicious relay immediately

learns its neighbors (i.e., the guard and the exit) and thus discovers the entire anony-

mous path. Importantly, learning the relays involved in an anonymous path does

not by itself identify the network locations of the Tor client or the destination and

thus does not break anonymity. This is in contrast to traffic correlation attacks—the

focus of our security analysis—which do reveal the communicating parties.

Since, in MTor, messages may have multiple recipients, we consider two vari-

ants of a traffic correlation attack: We consider an adversary’s ability to determine

whether a given client is participating in a multicast group. If the adversary can

monitor that client’s (encrypted) communication with its guard, then we assume

that the adversary can apply simple traffic analysis techniques to determine that

the client is a subscriber of the group. Second, we consider attacks in which the

adversary is able to identify both the receiver and sender of a multicast message;

here, the adversary must monitor both clients’ communications to correlate traffic.

We evaluate how MTor affects an adversary’s ability to perform traffic correlation

attacks in Section 6.2.

Finally, we assume a computationally-bounded adversary who cannot find col-

lisions or preimages of cryptographic hashes, decrypt messages without knowledge

of the decryption key, or forge digital signatures. Since MTor uses Tor as its back-

bone, we additionally assume that Tor’s existing transport protocol is secure (e.g.,

that keys are randomly generated, that ciphers are strong and used correctly, that
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the implementation is correct, etc.). MTor does not impose any restrictions on the

“last mile” connection between the client and the first relay (i.e., a guard or bridge)

and is compatible with Tor’s pluggable transports and obfuscated bridges (see, for

example, [58]). We therefore consider local eavesdropping attacks such as website fin-

gerprinting [22, 37, 4] orthogonal to this work, since solutions [4] and mitigations [54]

intended for vanilla Tor are also applicable to MTor.
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Chapter 5

Design

To support group communication, MTor constructs a multicast tree at the application-

layer using Tor relays as the internal nodes of the tree. The leaves of the tree are

clients, who connect through their guard relays (i.e., the clients’ guards are the par-

ents of the clients in the tree). We emphasize that MTor does not use IP multicast,

and instead uses Tor’s existing SSL/TLS transport mechanism between relays to pro-

vide link-level authentication and confidentiality. The multicast tree is constructed

in a dynamic and decentralized fashion, and does not require global coordination.

In this chapter, we describe in detail how MTor constructs and maintains multi-

cast trees to ensure correct functionality and provide efficient group communication.

5.1 Group Descriptors

Before a client can participate in a group communication, it needs to obtain a group

descriptor for that group. We envision that the group descriptor could be communi-

cated through some out-of-band mechanism—for example, via emails or a distributed

key-value store—and can be retrieved anonymously (e.g., by using Tor).
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The group descriptor contains the following attributes:

• Group name. The group name is a human-readable string (e.g., “Freedom

Radio”) that is intended to describe the group’s purpose. We do not require

that the group name be unique since the group identifier (described below) is

calculated based on the entire descriptor; however, unique group names provide

easier distinguishability between advertised groups.

• Bandwidth. The bandwidth attribute specifies a minimum bandwidth that

relays must support to be a member of the multicast tree. A conservative band-

width estimate prevents message loss, which is possible in MTor when there are

bottlenecks in the multicast tree. Message loss is discussed in greater detail in

Section 5.6.

• Certificate. When present, the optional certificate attribute contains an X.509-

encoded certificate containing a public key and validity date. The public key could

be self-signed—in which case group messages are authenticated according to a

trust-on-first-use policy—or the key could be signed by an external party, allow-

ing the use of a PKI. If a certificate is present in the group descriptor, relays that

receive group messages will verify that those messages have been properly signed

before they are forwarded. We describe the authentication mechanism, as well as

its overheads, in more detail in Sections 5.4 and 6.1.8.

• Cipher identifiers, confidentiality key, and MAC key. In contrast to

unicast Tor, MTor does not by default offer any end-to-end confidentiality guar-

antees. This is necessary to allow bandwidth savings via link aggregation and

message de-duplication. However, it also implies that any relay who is part of the
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group’s multicast tree can eavesdrop on the communication. These optional ci-

pher attributes provide a simple mechanism for secure end-to-end communication.

However, confidentiality relies on the secure dissemination of the group descriptor

file. Users who have access to the descriptor can protect the confidentiality of

their messages by encrypting them with the symmetric confidentiality key and ap-

pending a MAC. Eavesdroppers who do not have access to the descriptor cannot

learn the plaintext of the group messages. These confidentiality extensions are

used only at the endpoints (to encrypt and decrypt messages) and therefore do

not incur any additional computational cost at Tor relays.

The group descriptor file is hashed to produce a group identifier (GID) that

uniquely and concisely identifies the group. Specifically, the GID is calculated as

GID = h(group name|bandwidth|certificate|

h(cipher identifier and keys))

where h is a cryptographic hash function and | denotes concatenation. For each

Tor cell being sent via multicast to a group, we include the group identifier that

uniquely identifies its corresponding group. The group identifier is also used to

select a multicast root (MR) for the group, which is described next.

GID binding proofs The construction of the GID allows for a GID binding proof,

where a prover provides the GID, the group name, the bandwidth, the certificate (if

present), and a hash over the cipher identifier and keys (if present). Importantly,

the GID binding proof does not reveal any keys. The verifier then computes the

GID from the provided inputs and verifies that the computed GID matches the

provided GID. (We operate in the random oracle model and assume an ideal hash

function, which we approximate in our implementation using SHA hashes.) GID
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binding proofs are used to bind a certificate to a GID, and enable authenticated

group communication, as described in Section 5.4.

5.2 Multicast Root Selection

Algorithm. SelectMR(min bw,GID):
1. cur hour ←get current hour()
2. fetch the cons from cache/directory server such that:

cons ← argmin{get valid after(cons) | cons ∈ get recent cons() and
cons get valid after(cons) ≥ cur hour}

3. for relay ∈ cons: /* construct ring */
3.1 if is stable(relay) and is fast(relay) and get bandwidth(relay)≥min bw:
3.1.1 relaypos ← hash(relaydigest +GID + cons) mod 2160

3.1.2 put relay on the ring at relaypos
4. beginpos ← hash(GID) mod 2160

5. relay ← find next(beginpos, ring)
6. while true: /* search for the first active relay */
6.1 if create circuit to mr(relay) == success:
6.1.1 return relay
6.2 relay ← find next(relay, ring)

Figure 5.1: MR selection algorithm. find next(X, ring) returns the relay on the ring
whose identifier is the least greatest than X, modulo 2160.

To enable group communication, MTor forms multicast trees over the Tor relays.

Clients join a group by forming circuits to the root of the desired group’s multicast

tree—i.e., the multicast root (MR). Thus, MTor requires a mechanism for ensuring

that clients who wish to join the same group select the identical MR. More concretely,

the MR selection algorithm should meet the following criteria:

• Correctness: all clients in a given group must agree on the same MR regardless

of their startup time and location, to ensure the multicast tree spans across all

clients during group communication.
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• Anonymity: clients should select the MR without relying on global coordination,

or more generally, without disclosing their network location.

• Efficiency: MR selection should (i) introduce little or no overhead to the Tor net-

work, (ii) be stable enough for persistent group communication, and (iii) choose a

relay that has sufficient bandwidth to not be the bottleneck for group communi-

cation.

One straightforward solution is for the group initiator to register MR information

in a lookup service that all other Tor clients can access, in much the same way that

Tor hidden services register and advertise their introduction point [56]. This solution

is easy to deploy and does not introduce any overhead to the Tor network. However,

this requires exactly one client to be designated to monitor and update the MR

throughout the group communication. We desire a more flexible approach that

allows for MR-migration (that is, switching the MR from one relay to another) and

does not require the client that originated the group messaging session to stay online

for the session’s duration.

MTor uses an alternative design that leverages Tor’s existing infrastructure. In

Tor, clients periodically retrieve a consensus document that lists the available re-

lays, their public keys, network addresses, exit policy, status, and other information.

These documents are polled either from authoritative directories—which undergo a

voting protocol to form the (digitally signed) consensus—or directory caches. In ei-

ther case, clients authenticate the consensus document by verifying that it has been

signed by a majority of the directory authorities.1 As its name implies, the consensus

document should be approximately consistent among all clients. To mitigate edge

cases (e.g., in which a client retrieves the consensus moments before the directory

1Digests of the directory authorities’ public keys are hard-coded with the Tor client.
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authorities generate a new consensus), MTor selects MR from the oldest available

consensus whose valid-after attribute is larger than the current hour time. We

note that Tor directory authorities can support such consensus requests with only

minor modification.

In MTor, clients independently select the MR using a local variant of consistent

hashing. Since the MR is a central point of failure in the multicast tree, MTor

first applies a filtering process to weed out undesirable relays. Only relays that

have earned the Stable and Fast flags (respectively indicators of stability and

performance) and can provide at least the bandwidth specified in the group descriptor

are considered. The remaining Tor relays are then logically organized in a ring over

[0, 2160), with each relay’s value in the ring being equal to a hash over its digest (a

fingerprint of the relay’s public key), GID2, and consensus document used for the

MR selection.3 Note that these “rings” are computed locally for each client using

only local knowledge and a cached copy of the consensus. The client selects the MR

by finding the relay whose value in the ring is the least greater (modulo 2160) than

the GID. The client then attempts to create a unicast Tor circuit to the MR (the

mechanism for selecting relays in this circuit is described in Section 5.3). If it is

unsuccessful, then the next closest value in the ring is considered the MR, and this

process repeats until a live candidate relay is discovered. The complete MR selection

algorithm is more formally presented in Figure 5.1.

2The GID is included to evenly distribute MR of different groups across relays.
3The consensus document is included in the preimage to prevent malicious relays from generating

public keys that yield generally advantageous positions in the ring. Since each communication
session has an unpredictable consensus, this effectively “randomizes” the placement of relays in the
ring for each group. Note that malicious relays cannot easily regenerate keys to find an advantageous
position for a current or incoming communication session, since the act of regenerating its keys will
cause it to lose the Stable flag and consequently become excluded from consideration.
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5.3 Tree Formation

A client joins a multicast group by constructing a Tor circuit to the group’s MR.

The procedure for building such a circuit is similar to normal circuit construction

in Tor, with the exceptions that (1) the MR is used in place of an exit relay; (2) to

prevent certain deadlock conditions, we restrict the set of potential middle relays;

(3) each relay on the circuit must provide at least the bandwidth specified in the

group descriptor; and (4) if the any relay is already in the multicast tree (e.g., selected

by other group members), the client stops circuit construction and uses whatever is

upstream from that relay.

Relay selection A client who wishes to use group communication first either es-

tablishes a new group by creating a new group descriptor or obtains an existing

group descriptor through some out-of-band mechanism. Next, the client selects a

3-hop circuit, consisting of one of its guard relays, followed by a middle relay, and

ending with the MR. All three relays should provide at least the bandwidth speci-

fied in group descriptor. The middle relay is selected using Tor’s default bandwidth

weighting strategy, except that the client enforces that the middle relay has a higher

digest than that of the guard relay. This latter constraint prevents our distributed

tree construction algorithm from running into deadlock.4 Note that exit relays are

not necessary here since all group communication is carried over Tor’s SSL/TLS

connections, and never “exits” the anonymity network. We remark that the clients

who opt to use MTor for group communication rather than constructing multiple

unicast circuits (each of which consumes bandwidth at exit relays) are effectively

saving valuable exit relay bandwidth for non-group communication.

4As an example, consider the case where client A selects path x→ y →MR and client B selects
path y → x → MR. The algorithm might deadlock if two the clients begin path construction at
roughly the same time.

28



Tree construction After the guard, middle, and MR relays have been selected, the

client starts constructing the circuit to the MR by sending a CREATE cell with the

GID and a GID binding proof to its chosen guard. (In Tor, CREATE cells signal the

creation or extension of an anonymous circuit.) The circuit is similarly extended to

the middle and then the MR by tunneling additional CREATE cells, again including

the group identifier and a GID binding proof. However, if any relay is already in

the multicast tree (e.g., selected by other group members), the client stops circuit

construction and uses whatever is upstream from that relay. In effect, clients’ MTor

circuits may contain fewer than three hops if either the chosen guard or the middle

relay is already forwarding messages for that multicast group.

To support forwarding of multicast messages, each relay maintains a local key-

value store called the multicast forwarding table that is keyed on the group identifier

(which is communicated through CREATE cells) which contains routing information

for a group.

Upon receiving a CREATE cell, a relay looks up the included group identifier in

its multicast forwarding table, and responds as follows:

• If the relay has not previously received a CREATE cell, it replies with a CREATED

cell, mirroring Tor’s default behavior. After receiving the CREATED cell, the client

will continue its path construction towards MR via this relay.

• If the relay has already received a CREATE cell from another client, it replies with

a HOLD cell, indicating that tree construction is already under progress. After

receiving the HOLD cell, the client will wait for a BEGIN cell. The source of the BEGIN

cell is described below; conceptually, it signals that the tree has been created.
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• If the relay has already received a BEGIN cell, it replies with a BEGIN cell, indi-

cating that the tree construction is completed. The client can now start group

communication.

In all cases, the relay records in its multicast forwarding table the previous hop

from which it received the CREATE cell and the next hop to which it forwards the

CREATE cell. This information represents the relay’s parent and children in the mul-

ticast tree. The table is later used to forward messages during group communication.

Lastly, exactly one MTor client will receive a CREATED cell from MR. When that

happens, the client informs MR of its role, which then multicasts a BEGIN cell across

the multicast tree, to inform all relays and clients on the multicast tree to start group

communication.

5.4 Sending and Receiving

A client can begin sending and receiving group messages once it has received the

BEGIN cell. Outgoing messages are sent via the client’s Tor circuit towards the MR.

In MTor, messages should traverse each edge in a multicast tree only once. When

a relay receives a message, it looks up its neighbors in the tree by searching its

multicast forwarding table for the records that are keyed by the group identifier.

The incoming message is then forwarded to the relay’s adjacent edges, excluding the

message’s incoming edge. Group messages percolate down the multicast tree, and

are eventually delivered by guard relays to the subscribed clients.

MTor has the potential to offer significant bandwidth savings for group commu-

nication as compared to unicast-based approach. Consider, for example, a strawman

solution based on vanilla Tor in which clients use an external service such as a bul-

letin board, IRC server, or Google Hangouts to aid in group communication. The
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service supports group communication by “echoing” incoming messages to all con-

nected clients (i.e., through their Tor connections). MTor uses significantly less

bandwidth than this unicast-based approach, since the former (i) offers the possibil-

ity of message de-duplication by aggregating data on shared links in the multicast

tree, (ii) uses a single multicast root rather than multiple exit relays, which both

frees up exit relay resources and reduces the number of relays that are involved in

the group communication, and (iii) avoids the overhead of communicating with the

external service. In Section 6.1, we empirically measure these bandwidth savings

under realistic network conditions and workloads.

Message confidentiality If the group descriptor contains a cipher identifier and en-

cryption key, then all group messages are presumed to be encrypted by the messages’

senders. Receivers use the decryption and MAC keys from the group descriptor to

respectively decrypt and authenticate messages. Our design is purposefully flexible

and allows the creator of the group to specify the symmetric key cipher and MAC al-

gorithm. Importantly, this “end-to-end” encryption of group messages is transparent

to Tor relays, since messages are encrypted/decrypted only by the group members.

Authentication and DoS prevention When the group descriptor includes a cer-

tificate, MTor provides a weak form of authenticated multicast: only clients that

have knowledge of the private key that corresponds to the certificate may send mes-

sages. Clients sign their cells, storing the signature and a timestamp (to prevent

replay) as added fields.

Recall that relays are given both the GID and a GID binding proof, and hence

relays can extract the certificate (if it exists) from the proof. Relays enforce authenti-

cation by verifying received cells’ signatures and dropping cells that fail verification.

This mitigates potential DoS attack against the Tor network by preventing both

malicious clients and relays from propagating unauthentic messages.
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A clear disadvantage of using the above authentication scheme is that it incurs

significant bandwidth and computational overheads. We propose two potential so-

lutions to reduce these overheads: First, we can reduce bandwidth overheads by

relying on short signature schemes such as ECDSA which offers equivalent security

to a 2048-bit RSA signature using only a 283-bit public key [3]. Second, for single-

source streaming multicast messages, the sender may transmit special signature cells

that contain a signed list of upcoming (yet-to-be-received) cell hashes. After receiv-

ing a signature cell, a relay verifies the signature over the hashes, and then verifies

that the cells it subsequently receives have those hash values. Since the cost of verify-

ing a forged packet is relatively low and an adversary has a very limited opportunity

of finding a collision, MTor can use truncated hash digests. For example, if hashes

are truncated to 40-bits, then a single 512-byte signature cell can hold 91 40-bit

hashes, a 283-bit ECDSA signature, plus 18-byte header, reducing the verification

and storage cost by nearly two orders of magnitude.

5.5 Churn Handling

To effectively detect and recover from link or relay failures, MTor maintains multi-

cast tree states (i.e., its upstream and downstream links) as soft-state in each relay.

The MR periodically multicasts heartbeat cell across the tree. The relay receiving

the heartbeat cell will refresh the table entry for the incoming link; and the relay

successfully sending the heartbeat message will refresh the table entry correspond-

ing to the outgoing link. If any relay fails, all downstream relays and clients will

eventually expire and discard table entries associated with the group. In addition,

the affected clients will re-construct the path to MR as described in Section 5.3.

MTor can also tolerate the failure of multicast tree root. If any client can not
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connect to MR after she has tried a pre-configured number of different paths, she can

simply select another active MR as described in Section 5.2. With high probability all

participants will again connect to an unanimous MR to form a multicast tree across

all group members. While in the rare scenario some clients may select different MRs

(e.g. the original MR goes down for a short period of time before coming online

again), the group can still recover from such inconsistency when it re-constructs

multicast tree in the next session.

To reduce the group’s vulnerability to slow relays, as well as deliberate DoS at-

tacks by malicious relays which intentionally drop cells from upstream links, each

heartbeat message provides a count of cells transmitted during the session, signed

with the signing key of the MR (signing keys are specified in Tor descriptor doc-

uments). By comparing the received number of cells with the advertised count in

the heartbeat message, the downstream clients can recognize such an attack and

optionally re-connect to the MR via a different path.

5.6 Flow Control and Message Loss

MTor ensures only best-effort delivery of multicast messages. It uses TCP to dissem-

inate messages reliably from parents to children in the multicast tree and for flow

control.

In particular, when a multicast cell arrives at a relay, it is duplicated and en-

queued on the internal output queues associated with each of the next hops. If

an output queue reaches its capacity limit, incoming cells will be dropped on that

queue; if all output queues reach their limit, then the relay blocks receiving from

its previous hop. Due to potential message dropping at the application-layer, MTor

offers best-effort, but potentially lossy multicast messaging (as do most multicast
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schemes). The use of the predetermined bandwidth attribute in the group descrip-

tor reduces the probability of loss, as relays are selected based on their ability to

handle the group’s predicted data rate.
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Chapter 6

Evaluation

In this chapter we present the evaluation results of MTor in terms of its anonymity

and network performance.

6.1 Network Performance

In this section, we measure the performance properties (i.e. bandwidth consumption,

transmission time, computation overhead and probability of unreliability) of MTor

and compare against unicast-based methods for group communication. The goals of

our evaluation are three-fold: (1) measure the bandwidth saving achieved by MTor

over unicast-based approach; (2) quantify the performance improvement as observed

by group members; and (3) study the churn handling overhead and probability of

unreliability due to relay failures.

6.1.1 Evaluation Methodology

We first describe the tools used to evaluate MTor. Specifically, we use TorPS [30],

which allows us to measure MTor’s bandwidth performance and anonymity as if it
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were deployed on the live Tor network, and Shadow, which allows us to evaluate

MTor’s transmission time performance in an simulated network.

To provide an estimate of MTor’s bandwidth consumption on the actual Tor

network, we modified the Tor Path Simulator (TorPS) [30] to simulate MTor’s tree

construction algorithm over an one-month period of September 20141, using histor-

ical records of Tor consensus documents collected by the Tor Metrics Project [53].

During the simulation the multicast tree is re-constructed every hour. The band-

width consumption is then derived from the average size of multicast trees. TorPS

simulates the actual event of relays joining and leaving the Tor network using real

relay and consensus data from Tor’s historical records, and thus models the actual

live Tor network as it existed at a specific past period in time. Using TorPS thus

allows us to obtain an accurate estimate of MTor’s performance had it been deployed

on the live Tor network.

We also modified TorPS to estimate the probability of unreliability due to relay

failure, as well as the resilience of Tor and MTor communication against traffic

correlation attacks. In Section 6.1.7, we define the probability of unreliability and

discuss MTor’s churn handling performance. In Section 6.2, we adapt the security

analysis techniques introduced by Jansen et al. [30] to measure the ability of a

malicious adversary who controls some fraction of relays on the Tor network to de-

anonymize group members.

To measure the network latency and transmission time as experienced by group

members using MTor, we have implemented a prototype of MTor in C++ by adding

approximately 1500 lines of code based on Tor version 0.2.3.25. We then emu-

lated our prototype using Shadow [27] following a standard Tor network modeling

approach [25]. Shadow is a discrete-event network simulator that runs actual Tor

1Using the September 2014 dataset, TorPS includes 6192 relays.
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code using a synthetic network stack and a topological map of the live Tor network.

Shadow allows us to simulate large-scale Tor deployments and measure performance

for different application scenarios. Shadow has recently been used to evaluate Tor’s

circuit scheduling [27, 18] and congestion management algorithms [26], as well as its

anonymity properties [30].

Because Shadow bypasses many OpenSSL encryption functions in order to allow

researchers to track cells, we do not use authenticated group messages or end-to-end

message encryption. The Shadow experiments assume public groups that anyone

can join and send/receive messages. We separately evaluate the overheads of au-

thenticated group messaging in MTor using micro-benchmarks.

6.1.2 Experimental setup

We use Shadow to simulate a Tor network of 455 relays, 1800 clients, and 500 client

destinations (which we generically refer to below as ”servers”). Relay capacities, geo-

graphic locations of relays, and link latencies between relays are configured according

to the configuration supplied with Shadow, which itself is configured using data from

Tor Metrics Portal [53] following Tor modeling best practices [25, 26]. Each server is

assigned 100 MBps bandwidth and clients are assigned unlimited bandwidth, which

is much higher than relay capacities and thus moves the performance bottleneck to

the Tor network.

To model a loaded Tor network, we include 1800 clients that fetch files from any

of the 500 servers via unicast Tor circuits. To match existing studies of behavior on

the live Tor network [32], 1350 clients behave as interactive web clients that fetch files

of 320KB in size, and sleep for up to one minute. Additionally, 300 clients repeatedly

fetch 50KB, 1MB or 5MB files, sleeping one minute in between each fetch. These
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types of clients continuously repeat a fetch-sleep cycle where they fetch files from a

randomly selected server (out of 500 servers). Finally, another 150 clients behave

as bulk clients (e.g., file sharers) that continuously fetch data from a random server

and switch to a different server after every 5MB data transmission.

We include an additional 20 group communication clients in our Shadow topology.

To support our baseline comparison, which we explain in more detail below, we

also add one additional server that serves as external facilitator to support group

communication via traditional unicast Tor circuits.

6.1.3 Performance Metrics

We evaluate the performance of MTor and Tor using four metrics: (1) the overall

network bandwidth that is consumed to transmit the data to all clients; (2) the trans-

mission time, which measures the time it takes for a receiver to receive the sender’s

complete message (time-to-last-byte); (3) the packet loss rate due to a mismatch

between bandwidth capacity and the bandwidth requirements of real-time commu-

nication applications; and (4) the probability of unreliability due to relay failure.

Network bandwidth consumption is measured as the sum of bytes transmitted on

each link in the Tor overlay network during the course of an experiment, which pro-

vides insight into the burden imposed on the Tor overlay network. The transmission

time captures the latency experienced by end users, which tends to be dominated

by bandwidth capacity for large messages. The packet loss rate estimates the packet

loss due to unsatisfactory bandwidth capacity and network congestion. Finally, the

probability of unreliability measures the impact of communication disruption due to

relays on the multicast tree becoming unavailable during communication.
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6.1.4 Modeling Group Communication Applications

To evaluate MTor’s performance properties under different communication scenar-

ios, we model three types of group communication applications. In all the MTor

experiments, clients communicate directly via the multicast tree.

• Single-source streaming. In the single-source streaming application, a single

non-anonymous server multicasts a file (e.g., representing a video or document)

of 10MB to a group of 20 anonymous clients. In our baseline scenario, all clients

connect to and receive data from the server via unicast Tor circuits. This scenario

explores the transmission time improvement from using MTor in a typical initiator-

responder scenario, where many initiators request the same data at around the

same time.

• Multi-source group streaming. In the multi-source streaming application,

we consider a group of 20 anonymous clients communicating with each other.

When measuring the performance of MTor, the traffic is transmitted via the mul-

ticast tree. Since vanilla Tor does not support anonymous group communication,

as our baseline for comparison, we consider a scenario in which all clients con-

nect to an external service that “echoes” messages to all other connected clients.

Tor clients connect to this external service, which we call the facilitator, through

unicast Tor circuits. (This is effectively the strawman solution proposed in Sec-

tion 5.4.)

• Audio conferencing. Our third use-case considers a group of 20 anonymous
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clients doing real-time voice-over-IP communication. We assume VoIP is per-

formed using Internet Low Bitrate Codec (iLBC) [19] at 1666 Bps, which is ex-

tremely robust to packet loss2. Again, for our baseline configuration, all clients

that rely on vanilla Tor connect to a facilitator using dedicated circuits.

To model audio conferencing as a real-time application, each client queues a 1666-

byte message per second for transmission to other clients. The old message is

dropped if it is not sent before the new message gets queued. For both MTor

and baseline experiments, we simulate the audio conferencing for 30 minutes to

measure the message loss rate and transmission time distribution.

Limitation In our evaluation of group communication applications, we focus on

the characteristics of the data transmission at the transport layer, such as overall

network bandwidth consumption and transmission time distribution. To evaluate

the impact of network congestion on real-time group communication applications,

we additionally simulate the packet loss event in audio conferencing application,

where old message is dropped if it is not sent before the new message gets queued.

It is important to note that we do not emulate an actual audio conferencing

application – application layer behaviors such as iLBC codec, message ordering, re-

transmission etc. are omitted in our Shadow experiments. The absolute performance

of audio conferencing application may vary when these implementation details are

introduced. Nonetheless, we expect our evaluation results to be useful in understand-

ing the relative performance advantage of MTor over unicast-based approaches. A

realistic deployment and evaluation of these group communication applications over

MTor on live Tor network is deferred to future work.

2iLBC is a mandatory standard for VoIP over Cable and is also used by Google Voice and Skype.
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6.1.5 Impact on the Bandwidth Consumption
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Figure 6.1: Network bandwidth consumption by MTor and the baseline approach
via unicast Tor for small groups of up to 20 clients (top row) and large groups of up
to 1000 clients (bottom row), for the multi-source group streaming application. We
evaluate the bandwidth consumption with respect to 1MB worth of group messages
that are collectively transmitted by the group’s members. (a,d) The overall network
bandwidth consumption for small and large groups. (b,e) The average network
bandwidth consumed per client, for small and large groups. (c,f) The network
bandwidth consumption ratio of MTor to Tor for small and large groups.

MTor offers the potential for significant bandwidth savings due to message de-

duplication. To investigate how the Tor network could benefit from these savings

(i.e., by having to forward less traffic), we focus in this section on the multi-source

group streaming scenario. Recall that in the baseline setup, each client connects to an

external service via unicast Tor circuits. We simulate data transmissions from each

client to every other client in the group, and evaluate the resulting load on the Tor

network as a function of the group’s size. Our evaluation is based on paths produced
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by our modified TorPS path simulator. We evaluate the bandwidth consumption

when clients collectively transmit 1MB of messages to the group members (i.e., each

client receives 1MB worth of message contents); as we show below, the overhead of

sending 1MB to the group varies considerably between vanilla Tor and MTor.

Although we fix our experiments in this section on a 1MB-sized conversation, we

remark that transmitting more data merely induces a linear increase in the amount

of network bandwidth consumed for both MTor and baseline experiments.

Figure 6.1 shows the network bandwidth consumption that results from MTor and

Tor as the number of clients increases from 1 to 1000. Tor’s bandwidth consumption

is derived theoretically as 4×client#×1MB, since 1MB data is transmitted along

3-hop Tor circuits to the facilitator for each client in the group. To measure MTor’s

bandwidth costs, we simulate tree construction 720 times and compute the average

number of links in the resulting multicast trees; the bandwidth is then computed as

the average number of links times 1MB. These figures demonstrate the bandwidth

savings MTor could achieve for small (top row) and large (bottom row) group sizes.

We make the following observations: bandwidth consumption in Tor increases

linearly with the number of clients by a factor of 4, whereas in MTor bandwidth

consumption is sublinear. The advantage of using MTor increases with group size;

MTor reduces the bandwidth cost by approximately 62% over vanilla Tor for a large

group with 1000 members (Figures 6.1a and 6.1d). The bandwidth savings in MTor

is due to two factors: (i) in MTor, clients’ paths are shorter (consisting of two hops

from the client to the MR) since they do not include links from exits to the sender;

and (ii) MTor removes unnecessary cell duplication when links are shared.

Figures 6.1b and 6.1e further highlight the benefits of cell de-duplication. Here,

the figures plot the bandwidth that is consumed in the Tor network, averaged across

the clients, as the size of the group increases. For Tor, each group member consumes
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a fixed amount of 4MB bandwidth for each 1MB data transmitted, since no de-

duplication occurs and each client receives the sender’s communication via its own

3-hop Tor circuit. For MTor, when the size of group is 10, each client consumes

on average 2.8MB bandwidth for each 1MB data transmitted. As the size of group

increases to 1000, each client consumes on average only 1.5MB bandwidth, much

closer to the theoretical lower bound of 1MB bandwidth necessary to serve a client.

This is a direct result of de-duplication: links in the multicast tree are used by more

than one client, providing the opportunity for bandwidth savings. As more clients

join the group, these opportunities increase. For example, if a new client joins and

its guard is already part of the group’s multicast tree, then the only additional

bandwidth cost due to that client is the cost of sending a copy of group message

from the guard to the client.

Figures 6.1c and 6.1f plot the savings in network bandwidth consumption when

MTor is used in place of Tor for group communication, and highlight our earlier

results. MTor offers increasingly efficient group communication as the size of the

group increases. The savings increase from 29% for a group of 10 members to 62%

for a group of 1000 members.

Discussion We note that bandwidth saving in MTor is primarily due to three factors:

(1) each MTor client requires at most 3 links to connect to MR, whereas Tor always

requires a separate 4-link path for each connection; (2) as number of clients increases

it becomes more likely that a new client picks a guard node that is already in the

multicast tree, in which case it adds only one link in the overlay network; and (3)

MTor avoids the use of external facilitator to forward data.
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Figure 6.2: Cumulative distribution of transmission time (determined using Shadow)
of (a) 10MB files from one sender to the group during single-source streaming, (b)
10MB files from each client to the group during multi-source streaming, and (c) 1666-
byte message per second from each client to the group during audio conferencing.

6.1.6 Impact on Transmission Time

We next consider performance from the perspective of group members. Here, we

emulate Tor and MTor in Shadow simulator. We use transmission time to capture

the delay experienced by end users to receive a message, since it encompasses both

network congestion as well as queuing delay at the sender, receiver, and the inter-

mediate relays. In other words, transmission time is an intuitive notion of a user’s

experience, which captures the bandwidth capacity between sender and receivers.

Figure 6.2 compares the transmission time distribution offered by vanilla Tor (us-

ing our baseline configuration) and MTor for each of our applications. We remark

that the performance improvement from using MTor is largely attributed to reduced

network congestion in the Tor network, instead of avoiding performance bottlenecks

at the server: although the server in the baseline setup handles one order of mag-

nitude more traffic than clients, it is configured with 100 MBps bandwidth, much

higher than the bandwidth of relays in the experiment.

Single-source streaming Figure 6.2a shows the cumulative distribution of trans-

mission time to transmit a 10MB file from a single server to 20 anonymous clients. In

both MTor and Tor experiments, 20 files are received and their time-to-last-byte are
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measured. Our Shadow experiments show that MTor provides observably improved

transmission time and a much shorter tail than Tor for carrying out single-source

streaming.

For this small group of 20 clients, MTor reduces the median transmission time by

22% from 86.7 seconds to 67.6 seconds. In the 99th percentile, the time is reduced

by 43% from 317.3 seconds to 183.9 seconds. Overall, MTor reduces the latency for

55% of clients.

Multi-source group streaming Figure 6.2b shows the cumulative distribution of

transmission time to transmit 10MB file during anonymous group communication.

Since each client sends a copy of file to every other 19 clients, in total 390 copies of

10MB files are received by clients.

We observe that MTor significantly improves transmission time over vanilla Tor

in doing anonymous multi-source group communication. For a small group of 20

clients, MTor reduces the median transmission time by 41.5% from 2773 seconds to

1328 seconds. In the 99th percentile, the time is reduced by 55% from 5074 seconds

to 2285 seconds. Overall, MTor reduces the latency for 55% of clients.

In the baseline experiment, for every message that it receives, the external facil-

itator must transmit 19 copies (via 19 circuits) to the other group members. MTor

improves performance by (i) using message de-duplication, (ii) avoiding potentially

congested exit relays, and (iii) eliminating the need to forward messages through

facilitators.

Audio conferencing Figure 6.2c shows the cumulative distribution of transmission

times for the real-time audio conferencing application. Each client in the group at-

tempts to send a 1666-byte message per second. To deliver real-time audio messages

in a timely fashion, clients favor newer “audio samples” and drop unsent messages

if a new 1666-byte message is available.
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We make the following observations: MTor successfully delivers 100% of the mes-

sages, while vanilla Tor delivers only 93% of all messages. At the 50 percentile, MTor

reduces the transmission time by 73% from 1.1 to 0.3 seconds. The slowest message

takes 2.5 seconds to be delivered in MTor, whereas it is 53 seconds in Tor. The result

shows that MTor enables anonymous group communication with real-time delivery

requirements, while Tor’s message loss rate and long-tail distribution of transmission

time would considerably reduce the user experience for these applications.

Discussion MTor is able to offer shorter transmission time because it imposes a

much lower burden on the sender: in vanilla Tor, the sender must duplicate each

outgoing message for each client’s connection, since each client connects to the sender

with its own anonymous path. In MTor, the sender only needs to send a single copy

of each message, relying instead on the multicast tree to propagate it to the receivers.

As the number of receivers grows, this asymmetry becomes more pronounced.

The encouraging results suggest that MTor can significantly improve transmission

time over Tor for both small and large-sized group communication. Such improve-

ment is particularly useful when anonymous real-time communication is desired.

6.1.7 Churn Handling Evaluation

In this section we evaluate the efficiency of the churn handling mechanism described

in Section 5.5.

Suppose the heartbeat cell is sent by MR every h seconds, the timer expires

after t seconds if not refreshed by heartbeat cell, and the construction of a new path

from client to MR takes p seconds. If any relay fails, the downstream clients will

be disconnected from MR for t + p seconds, during which each client detects timer
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Figure 6.3: MTor’s probability of unreliability due to relay failure

expiration and reconnects to MR via a 2-hop circuit. Since each cell has 512 bytes,

the heartbeat cells will consume 512/t Bps of bandwidth per link.

To quantify the unreliability due to network churn, we define the probability of

unreliability as the percentage of the time that any client in the group is disconnected

from the MR. We note that this is a conservative measure of unreliability, since it

assumes the disconnection of any client will impact all other clients in the group.

As part of our experimental setup, we assume that the heartbeat cell is sent

every h = 3 seconds, and the timer expires after t = 9 seconds. As evaluated

using the Torflow utility [39], the construction of a 3-hop path takes roughly p = 6

seconds. Under this setup, the heartbeat message consumes only 170 Bps bandwidth

per link. Figure 6.3 shows the probability of unreliability for groups of size 10 to

1000, estimated via simulation in our TorPS variant over the one month period of

September 2014. Recall that TorPS uses historical data from the live Tor network

to simulate network churn. We remark that for a group of size 1000, the probability

of unreliability is only 0.37% — that is, less than 15 seconds of communication will

be disrupted during an hour-long communication session.

47



6.1.8 Authentication Microbenchmarks

Neither Shadow nor TorPS allows us to measure the computational overhead of the

message authentication scheme described in Section 5.4, since neither simulator per-

forms actual cryptographic operations. Instead, we next describe microbenchmarks

that allow us to estimate the rate at which clients can generate signatures and relays

can verify them.

We use OpenSSL version 1.0.1’s benchmarking capability to measure the overhead

of signing and verifying 283-bit ECDSA signatures, as well as the cost of computing

SHA2 hashes. Our “client” runs a MacBook Pro with quad-core 2.2GHz Intel Core

i7 processor and is able to generate 1604 signatures and 267K hashes per second.

Measurements for our “relay” are taken from a commodity server with a quad-core

2.67GHz Xeon X3450 processor; the relay is able to verify 752 signatures per second

and can perform 375K hashes per second. All measurements are pinned to a single

core.

As described in Section 5.4, we can fit 91 hashes into a single signature cell when

the hashes are truncated to 40-bits. Based on the measurements above, the client can

send 95409 authenticated cells per second (equivalently 49 MBps). The amortized

verification rate for the relay is 58507 cells per second; our relay is able to forward

30 MBps of authenticated group communication data, per dedicated core.

6.2 Anonymity Performance

Tor is known to be vulnerable against traffic correlation attacks in which an adversary

who observes traffic entering and leaving the anonymity network can correlate that

traffic to identify pairs of communicating parties. Prior work has shown that traffic

correlation is an effective means of de-anonymizing Tor users, and can be performed
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at low cost using statistical sampling techniques [35]. Arguably, it is the most serious

threat against Tor users’ anonymity [21, 55], as it directly exposes the identities of

the communicating parties and can be carried out either by network operators or

relay operators.

In this section, we evaluate how the use of MTor for group communication affects

an adversary’s ability to de-anonymize users through traffic correlation. The goal of

this section is to validate that MTor performs comparably to Tor in anonymity.

6.2.1 Adversary Model and Goals

Rank Bandwidth (MBps) Largest family member

1 327 bolobolo1

2 207 torpidsUAitlas

3 190 PrivacyRepublic0019

4 189 orion

5 155 AccessNow14

Table 6.1: Tor families with top observed bandwidth on September 30th, 2014. The
total observed bandwidth of all relays is 13 GB/s

We conservatively assume that an adversary is able to perfectly correlate traffic—

i.e., if it observes Tor cells belonging to the same flow at two different points in the

network, then the adversary can discern with perfect accuracy that those packets

do indeed belong to the same Tor circuit. Hence, our results should be interpreted

as a conservative measure of anonymity: real-world adversaries may not have the

computational resources to perfectly correlate traffic flows.

Further, we assume an adversary that runs relays in the Tor network and uses

these relays to observe traffic, correlate flows, and de-anonymize users. In particular,

we provision the adversary with an observed bandwidth budget of 131MBps, 327MBps

or 656MBps, which it may use to operate one or more relays in the Tor network,
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such that the combined bandwidth of his relays does not exceed his bandwidth

budget. The adversary must fix his selection of relays and is not allowed to change

which relays it controls during the course of an experiment. We parameterize the

adversary’s bandwidth budget to consider MTor’s security against adversaries of

varying strength. As shown in Table 6.1, our bandwidth budgets conservatively

model adversaries that have up to twice the observed bandwidth of the largest Tor

families as of September 30th, 2014. (A Tor family consists of relays that report that

they are administered by the same entity.) These bandwidth budgets respectively

correspond to 1%, 2.5%, and 5% of the total observed bandwidth reported by all

relays as of September 30th, 2014.

To carry out a traffic correlation attack in vanilla (unicast) Tor, the adversary

needs to control both sides of a circuit (i.e., the guard and exit relay) to observe

(and later correlate) the source and destination of communication.

We conservatively assume that the adversary’s guard relay exhibits enough up-

time to obtain the Guard and Stable flags. We additionally assume that the

adversary’s exit relay does not have the Guard flag but does have an exit policy

that allows communication to all addresses and ports; this increases its chance of

being selected as an exit. All of the adversary’s relays have sufficient bandwidth to

obtain the Fast flag.

6.2.2 Anonymity Metrics

We consider an unicast connection as compromised if the adversary observes traffic

at both ends (i.e. guard and exit relay in Tor) of the anonymous connection. The

definition of compromise in a group communication setting is less clear since there
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are potentially many receivers for a given message. In our anonymity evaluation, we

consider two types of compromise w.r.t. attacks defined in Section 2.1:

• Linkage. We say two clients in the same communication group are linked (i.e.,

correlated) if the adversary observes each of their guard traffic. The adversary does

not need to view their guard traffic simultaneously; observing their guard traffic

even at different points during the group communication is sufficient to allow the

adversary to determine that the two clients belong to the same communication

group, since traffic belonging to the same group may be identified by inspecting

the messages’ GID.

• Membership identification. An adversary who controls a client’s guard can

determine whether that client is participating in a given group by examining the

binding proofs (which contain a group’s unique GID).

In our anonymity analysis, we conservatively assume that two given clients are

linked if both guards are compromised at least once over the period of simulation;

and a client is identified as group member if its guard is compromised. Notice that,

by definition, linkage ≤ membership identification in terms of their probability of

occurrence.

To measure susceptibility to traffic correlation attacks, we adopt the following

security metrics from Johnson et al. [30] since we believe they are the most relevant

to users of Tor:

• Compromise rate: the probability distribution on the fraction of paths that

are compromised (w.r.t. linkage or membership identification) for a given user (in

a given period); and
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• Time to first compromise: the probability distribution on the time until the

first path compromise (w.r.t. linkage or membership identification).

6.2.3 Experimental Setup

We envision that most users will continue to use vanilla Tor as their primary means of

anonymous communication: that is, they will continue to use unicast communication

to browse web, send emails, etc. Simultaneously, a smaller percentage of Tor users

will use MTor to participate in group communication.

User Model For the unicast Tor users, we adopt the user models introduced by

Johnson et al. [30] that are intended to reflect the behavior of actual users of the live

Tor network. These user models consist of a sequence of Tor streams and the times

at which they occur. Here, streams include DNS resolution requests in addition to

TCP connections to specific destinations. Johnson et al. construct these models by

using client applications on the live Tor network and tracing the behavior of the

local Tor client. We use models consisting of Tor users who use (i) Gmail/Google

Chat, (ii) Google Calendar/Docs, (iii) Facebook, and (iv) perform web searches.3

For MTor clients, we consider a large “webcasting” scenario in which 5000 MTor

clients participate in the same group and receive multicast messages from a single

sender. These webcasting sessions last for an hour, after which time the clients all

leave the group and join a new group webcasting session with (w.h.p.) a new MR.

This process repeats for the duration of the simulation.

Attacker configurations We first determine the bandwidth allocation between

3We remark that in MTor, all traffic is sent within the Tor network. Unlike vanilla Tor, MTor
does not use exit policies since exit relays are not used. Consequently, selecting the relay path to
the MR in MTor is not affected by the group members’ choice of application—this is in contrast
to standard unicast Tor where the choice of application (or more specifically, the destination port
of egress traffic) influences relay selection, since a compatible exit relay must be chosen. This has
an interesting effect on anonymity: unlike vanilla Tor, MTor’s susceptibility to traffic correlation
attacks is independent of its users’ choice of application.
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Figure 6.4: Probability of observing traffic (y-axis) for various bandwidth allocation
strategies between the guard and exit (x-axis), using Tor consensus data from April
2014 through September 2014.

guard and exit relays that maximizes the adversary’s ability to de-anonymize ordi-

nary unicast Tor users. We tested guard-to-exit bandwidth ratios of 1:1, 2:1, 5:1,

10:1 and 50:1 using the TorPS path simulator. Figure 6.4 shows the compromise

rate with varying bandwidth allocation ratios between guard and exit relays. A 5:1

ratio maximizes the probability of compromising both sides of at least one stream

during the simulation period (blue line), which we adopt in the rest of this section.

This confirms an earlier result by [30].

Since exit relays are not used by MTor, adversaries who attempt to de-anonymize

group communication will spend their entire bandwidth budget in controlling guard

relays. Recall that an adversary succeeds in linkage and membership identification

correlation attacks by controlling the guard relay(s) used by a group’s clients.

To assign selection weights to adversary relay given its controlled bandwidth,

we use the fact that observed bandwidth that relays report in their consensus are

correlated with their consensus weights. We use linear regressions on the relays in the

consensus document during the simulation period to convert observed bandwidth of

adversary’s relays to consensus weight, where we use observed bandwidth as predictor
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Figure 6.5: Cumulative distribution of the fraction of streams that allow the adver-
sary to perform membership identification (i.e., the compromise rate for membership
identification correlation attacks). The adversary’s bandwidth budget is shown in
the figures’ legends.

and consensus bandwidth as descriptor. We use separate regressions for guard relays

and exit relays, which result in correlations of determination of r2 = .55 and r2 = .63,

respectively.

6.2.4 Evaluation Results

For both unicast Tor and MTor clients, we use TorPS to conduct 5000 Monte Carlo

simulations of six months’ client activity spanning the period from April 2014 to

September 2014. We use the output of these simulations to evaluate the compromise

rate and time to first compromise for Tor and MTor, for the linkage and membership

identification attacks described above.

The adversary’s ability to perform membership identification attack in MTor is

depicted in Figure 6.5. The figure shows the cumulative distribution over the fraction

of streams that an adversary is able to compromise (i.e., determine that the client

is a member of the group). Our results indicate that an adversary who continuously

contributes 131MBps of guard bandwidth to the network fails to identify more than
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Figure 6.6: Time to first compromise with an adversary budget of (a) 131MBps,
(b) 327MBps, and (c) 656MBps.

58% of the MTor clients during the simulation’s six-month window. For 90% of the

clients, the adversary is able to successfully determine group membership for only

approximately 12% of the clients’ multicast groups. (Recall that MTor clients change

groups every hour.) MTor fares worse against more well-provisioned adversaries,

although we note that even against an adversary who would constitute the largest

contributor to Tor (the 327MBps case), 70% of clients have fewer than 12% of their

streams compromised.

Figure 6.6 plots the cumulative distribution of the time to first compromise for

MTor and Tor. A direct comparison between MTor and Tor is not possible, since

the latter uses unicast workloads (web browsing, etc.) while the former is based

on group communication. Generally, however, we expect MTor to provide greater

resistance to linkage attacks than vanilla Tor for most clients: In vanilla Tor, exit

relays are chosen independently for each new circuit, while the choice of guard relays

persists across circuits.4 An adversary who controls an exit relay can therefore wait

until his relay is chosen. In contrast, MTor avoids the use of exit relays, requiring

the adversary to control the guard relays of the two clients it is attempting to di-

rectly link. Adversaries who are not sufficiently lucky to operate the guards must

4The Tor Project is currently investigating how often Tor guard relays should be rotated [12, 14].
In the current version of Tor, a client rotates guards between 30 and 60 days (uniformly chosen).
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wait potentially months before clients select other guards. This trend is observ-

able in Figure 6.6 for all tested attacker strengths: albeit with different underlying

workloads, the adversary is more quickly able to perform linkage correlation attacks

against Tor than it is against MTor.

Against our 131MBps adversary, approximately 69% of clients were not identi-

fied as being a group member within 100 days. Against an adversary who would

constitute the largest contributor to Tor (the 327MBps case), roughly 40% of clients

were not identified in that same period. We note that these results should be con-

sidered conservative measures of the anonymity offered by MTor, since in practice,

most users would presumably not continuously participate in a group for such a long

duration.

Comparing Figures 6.6a, 6.6b, and 6.6c, we observe that the time-to-first com-

promise increases roughly linearly with the adversary’s provisioned bandwidth bud-

get, for both membership identification and linkage attacks. This is due to Tor’s

bandwidth-weighted relay selection policy: clients choose relays proportional to how

much bandwidth they contribute to the network, thus increasing the adversary’s

bandwidth budget by a constant factor also increases the probability that clients

will select its relays by roughly the same factor.
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Chapter 7

Summary

In this chapter we summarize the dissertation and provide a few promising directions

for future work.

7.1 Discussion

Incremental deployment MTor requires changes to both Tor clients and relays.

Importantly, however, since MTor works alongside standard unicast Tor, it does not

require that all clients and relays support anonymous multicast communication. A

straightforward approach to incrementally deploying MTor involves the introduction

of a new Tor flag, MTor, that is assigned to relays by the Tor directories if those

relays support group communication. Once a sufficiently large number of relays

advertise the MTor flag in their descriptors (hence offering diverse options for relay

selection), MTor-capable clients can then choose amongst those relays when selecting

and building a path to the MR.

Growth of the Tor network MTor offers bandwidth savings due in part to its de-

duplication of messages. If the Tor network expands to include more relays with the
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Stable and Fast flags, then the probability that clients using MTor will select the

same relays in their paths to the MR will decrease, thus providing fewer opportunities

for de-duplication. One possible approach to counter this effect is to adopt the

MTor flag described above, and assign it only to a fixed number of relays such that

the opportunities for de-duplication also remain fixed. An alternative approach is

to bias the selection of the middle relay in MTor circuits by incorporating the GID

into the relay selection process; here, the intended effect is to cause clients to select

relays that are more likely already participating in the multicast tree.

Fortunately, our TorPS simulation using recent consensus data from the live Tor

network indicates that opportunities for de-duplication do exist in current Tor (see

Section 6.1.5). And, independent of de-duplication, MTor offers other bandwidth

savings. Since it handles message distribution within the Tor network, MTor (i) elim-

inates the need to burden exit relays and, more importantly, (ii) reduces network

bandwidth consumption by removing at least two hops between clients in the same

group. The latter holds since in the worst case in MTor, traffic traverses a 2-hop

path to the MR and a 2-hop path down to another group member; in contrast, a

client using vanilla Tor and an external facilitator must send traffic via a 3-hop path

to the facilitator, which then forwards the traffic via a 3-hop path to the client.

Adjusting guard rotation Recent work proposes replacing Tor’s current guard

design—which now consists of using three guards that are discarded after between 30

and 60 days of use—with a single fixed guard that is maintained for nine months [14].

The policy change directly targets Tor’s susceptibility to traffic correlation attack

by requiring the adversary to wait longer if it does not control a particular target

user’s guard relay; that is, it forces the adversary to get lucky early on. If adopted,

such a policy will also significantly improve MTor’s anonymity properties, since the
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findings are directly applicable: a prerequisite of both linkage and membership iden-

tification attacks is that the adversary controls the user’s guard relay, and a longer

guard rotation period means that the adversary must wait longer for its relays to be

chosen as guards. Fortunately, the Tor Project seems prone to move towards this

longstanding, single-guard model [13].

7.2 Conclusion

This dissertation presents the design and implementation of MTor, which to the

best of our knowledge is the first system that provides low-latency anonymous group

communication with a decentralized trust infrastructure. MTor gracefully scales

with the size of the communication group by constructing multicast trees on top of

the Tor overlay network, and allows dynamic group composition without relying on

global coordination.

We performed comprehensive analysis of MTor’s bandwidth consumption, la-

tency, unreliability, and anonymity performance using recently proposed simulation

techniques with realistic models of the Tor topology and historical datasets of Tor

relay information. Our results are encouraging: the bandwidth consumption and

latency performance scale gracefully as additional clients join the group communi-

cation. We show that MTor achieves significant performance improvements that

enable new forms of anonymous group communication (e.g., anonymous VoIP) while

providing anonymity that is comparable to that provided by vanilla Tor.
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7.3 Future Directions

Our long term goal is to integrate MTor into Tor ecosystem to enable scalable anony-

mous group communication for Tor’s hundreds of thousands of daily users. The work

presented in this dissertation is the first step towards this goal.

In this section, we discuss some open questions and future directions in order to

make MTor into reality, or more generally, to enable anonymous group communica-

tion in adversarial environment.

7.3.1 Sybil Attack Mitigation

Multi-source anonymous group communication with dynamic membership presents

a unique challenge to message de-multiplexing: it is infeasible to affix verifiable iden-

tity information of sender to messages, making it hard to aggregate messages securely

per-source at receiver. On the other hand, to work in a potentially adversarial envi-

ronment, it is necessary for group communication protocol to prevent Sybil attacks,

in which misbehaving sender may create unlimited anonymous Sybil identities or

spoof identities of other clients to disrupt group communication.

To enable secure message de-multiplexing in multi-source anonymous group com-

munication, one possible solution is to de-multiplex messages based on the hash

value of identities of relays each message has traversed. More specifically, each relay

updates message’s de-multiplex key by hashing it with its own identity before for-

warding the message to its neighbors, such that the calculation of the de-multiplex

key is effectively distributed across relays on the path from source to destination. As

part of future work, we hope to verify that the solution does prevent Sybil attacks

without introducing unexpected vulnerability for user’s anonymity.
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7.3.2 Denial-of-Service Attack Mitigation

While multicast primitive enables efficient group communication, it also opens oppor-

tunity for DoS (flooding) attack since it amplifies messages by design. To mitigate

DoS attack, MTor provides authenticated multicast, where relays verify received

messages’ signature and drop messages that fail verification. However, such ap-

proach incurs undesirable computation overhead for each forwarded message even

when there is no DoS attack.

Ideally, we would like to mitigate DoS attack in anonymous communication in

such a way that (1) blocks attack traffic at the relay closest to the source to minimize

its impact, and (2) incurs no computation or bandwidth overhead when there is no

DoS attack.

One promising idea is to use Pushback [23] to dynamically push message authen-

tication functionality from receiver to the relay closest to attacker when unauthen-

ticated messages are detected, and turn off message authentication at intermediate

relays if they have not seen unauthenticated messages for a pre-configured period of

time. As part of future work, we plan to fulfill the design detail, implement it in

MTor and verify its effectiveness against DoS attack.

7.3.3 Secure Congestion Control

While message authentication can prevent unauthenticated messages from impact-

ing network, it is not useful against insider attack where attacker can also send

authenticated messages. For example, some misbehaving clients may keep sending

messages regardless of their allocated share of bandwidth. For MTor to work in an

adversarial environment, we need a mechanism to enforce fair bandwidth allocation
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among anonymous clients without requiring them to coordinate with each other or

with any global authority.

However, the requirement of anonymity presents unique challenge to enforcing

congestion control. Unlike non-anonymous multicast system, MTor can not track

the amount of bandwidth consumed by clients. One promising solution is to push

rate limit from multicast root to clients such that each relay enforces the rate limit

it received from upstream relays. We leave the design and evaluation of secure

congestion control to future work.
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Appendix A

MTor Pseudocode

The implementation of MTor includes an addition of 1000 lines of C++ code based

on Tor-0.2.3.25. In this chapter we provide code snippets to outline the implementa-

tion of MTor. Please refer to [34] for complete implementation and evaluation suit.

In file main.c:

1 /∗∗ Perform regular maintenance tasks. This function gets run once per

2 ∗ second by second elapsed callback().

3 ∗/

4 void run scheduled events()

5 {

6 ... /∗ Tor code ∗/

7

8 /∗∗ increase channel package window and deliver window∗/

9 channel increase window();

10 }

In file config.c:

1 static config var t option vars[] = {

2

3 ... /∗ configuration options from Tor ∗/

4

5 /∗ default MTor port used by application ∗/

6 VPORT(MulticastPort, LINELIST, 9050),

7
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8 /∗ default bandwidth limit for MTor application∗/

9 V(MulticastBandwidth, MEMUNIT, ”5 MB”),

10 }

In file command.c:

1 /∗ Process a <b>cell</b> that was just received on <b>conn</b>. ∗/

2 void

3 command process cell(cell t ∗cell, or connection t ∗conn)

4 {

5 ... /∗ Tor code ∗/

6

7 switch (cell−>command) {

8 case CELL MULTICAST BEGIN:

9 case CELL MULTICAST HOLD:

10 case CELL MULTICAST DATA:

11 ++stats n multicast cells processed;

12 command process multicast cell(cell, conn);

13 break;

14

15 ... /∗ Tor code ∗/

16 }

17 }

18

19 /∗∗ Process a ’multicast data’ <b>cell</b> that just arrived from

20 ∗ <b>conn</b>.

21 ∗/

22 static void

23 command process multicast cell(cell t ∗cell, or connection t ∗conn)

24 {

25 circuit t ∗circ, ∗channel;

26 circid t origin circ id;

27 edge connection t ∗edge conn;

28

29 /∗ Multicast this cell to all interfaces except the incoming one∗/

30 origin circ id = cell−>circ id;

31 if (server mode(get options()))

32 channel multicast cell(cell−>channel id, cell, origin circ id, conn);

33

34 cell−>circ id = origin circ id;

35 channel = channel get by channelid(cell−>channel id);

36

37 for (circ=channel; circ; circ=circ−>next multicast) {

38 switch (cell−>command) {

39 case CELL MULTICAST DATA:

40 if (CIRCUIT IS ORIGIN(circ)) {

41 circuit receive multicast data(cell, circ);

42 }

43 break;

44 case CELL MULTICAST BEGIN:

45 channel set state(cell−>channel id, CHANNEL STATE OPEN);

46 if (CIRCUIT IS ORIGIN(circ)) {
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47 /∗ Like if we have received cell created ∗/

48 if (circ−>state == CIRCUIT STATE BUILDING) {

49 origin circuit t ∗origin circ = TO ORIGIN CIRCUIT(circ);

50 circuit receive multicast begin(origin circ);

51 }

52 /∗ Like if we have received relay command begin ∗/

53 for (edge conn = TO ORIGIN CIRCUIT(circ)−>p streams; edge conn;

54 edge conn = edge conn−>next stream) {

55 entry connection t ∗entry conn = EDGE TO ENTRY CONN(edge conn);

56 if (entry conn−>channel id != cell−>channel id)

57 continue;

58 edge conn−> base.state = AP CONN STATE OPEN;

59 /∗ handle anything that might have queued ∗/

60 if (connection edge package raw inbuf(edge conn, 1, NULL) < 0) {

61 /∗ (We already sent an end cell if possible) ∗/

62 connection mark for close(TO CONN(edge conn));

63 continue;

64 }

65 }

66 }

67 break;

68 case CELL MULTICAST HOLD:

69 channel set state(cell−>channel id, CHANNEL STATE HOLD);

70 break;

71 }

72 }

73 }

In file or.h:

1 /∗∗ Type for sockets listening for Multicast requests∗/

2 #define CONN TYPE AP MULTICAST LISTENER 16

3

4 /∗ A Multicast SOCKS proxy connection from the user application to

5 ∗ the onion proxy. ∗/

6 #define CONN TYPE AP MULTICAST 17

7

8 /∗∗ The circuit is used for Tor Multicast. ∗/

9 #define CIRCUIT PURPOSE MULTICAST 20

10

11 /∗ Types for channel states ∗/

12 #define CHANNEL STATE NONE 0

13 #define CHANNEL STATE BUILDING 1

14 #define CHANNEL STATE HOLD 2

15 #define CHANNEL STATE OPEN 3

16

17 /∗ Types for multicast cell ∗/

18 #define CELL MULTICAST BEGIN 100

19 #define CELL MULTICAST HOLD 101

20 #define CELL MULTICAST DATA 102

21

22 typedef struct cell t {

65



23 ... /∗ original cell t fields ∗/

24

25 /∗∗ Identify a multicast channel∗/

26 channelid t channel id;

27 };

28

29 typedef struct entry connection t {

30 ... /∗ original cell t fields ∗/

31

32 /∗∗ Identify a multicast channel∗/

33 channelid t channel id;

34 };

35

36 typedef struct circuit t {

37 ... /∗ original cell t fields ∗/

38

39 channelid t channel id;

40 uint8 t channel state;

41

42 /∗ Next circuit in linked list of all circuits

43 ∗ with the same channel id. ∗/

44 struct circuit t ∗next multicast;

45

46 /∗ Next circuit in linked list of circuits

47 ∗ with the different channel id. ∗/

48 struct circuit t ∗next channel;

49 };

50

51 typedef struct or options t {

52 ... /∗ original cell t fields ∗/

53

54 /∗ How much bandwidth, on average, are we willing

55 ∗ to use for multicast connection in a second? ∗/

56 uint64 t MulticastBandwidth;

57

58 /∗ Ports to listen on for Multicast SOCKS connections. ∗/

59 config line t ∗MulticastPort lines;

60 };

In file circuituse.c:

1 /∗∗ Find an open circ that we’re happy to use for <b>conn</b> and return 1. If

2 ∗ there isn’t one, and there isn’t one on the way, launch one and return

3 ∗ 0. If it will never work, return −1.

4 ∗/

5 static int

6 circuit get open circ or launch(entry connection t ∗conn,

7 uint8 t desired circuit purpose,

8 origin circuit t ∗∗circp)

9 {

10 ... /∗ original Tor code ∗/

11
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12 /∗ Add newly created circuit to associated channel ∗/

13 if (circ && conn−>channel id > 0) {

14 TO CIRCUIT(circ)−>channel id = conn−>channel id;

15 channel search and append(conn−>channel id,

16 TO CIRCUIT(circ));

17 }

18 ... /∗ original Tor code ∗/

19 }

In file connection or.c:

1 /∗ Pack the cell t host−order structure <b>src</b> into network−order

2 ∗ in the buffer <b>dest</b>.

3 ∗/

4 void

5 cell pack(packed cell t ∗dst, const cell t ∗src)

6 {

7 char ∗dest = dst−>body;

8 set uint16(dest, htons(src−>circ id));

9 ∗(uint8 t∗)(dest+2) = src−>command;

10

11 /∗ Add field channel id ∗/

12 set uint32(dest+3, htonl(src−>channel id));

13 memcpy(dest+7, src−>payload, CELL PAYLOAD SIZE);

14 }

15

16 /∗ Unpack the network−order buffer <b>src</b> into a host−order

17 ∗ cell t structure <b>dest</b>.

18 ∗/

19 static void

20 cell unpack(cell t ∗dest, const char ∗src)

21 {

22 dest−>circ id = ntohs(get uint16(src));

23 dest−>command = ∗(uint8 t∗)(src+2);

24

25 /∗ Add field channel id ∗/

26 dest−>channel id = ntohl(get uint32(src+3));

27 memcpy(dest−>payload, src+7, CELL PAYLOAD SIZE);

28 }

In file circuitlist.c:

1 /∗ Allocate a new or circuit t, connected to <b>p conn</b> as

2 ∗ <b>p circ id</b>. If <b>p conn</b> is NULL, the circuit is unattached. ∗/

3 or circuit t ∗

4 or circuit new(channelid t channel id,

5 circid t p circ id, or connection t ∗p conn)

6 {

7 ... /∗ original Tor code ∗/

8

9 /∗ Add newly created circuit to its associated channel ∗/

10 if (channel id > 0) {
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11 TO CIRCUIT(circ)−>channel id = channel id;

12 channel search and append(channel id, TO CIRCUIT(circ));

13 }

14 ... /∗ original Tor code ∗/

15 }

16

17 /∗ Increase delivery window and package window for all channels∗∗/

18 void

19 channel increase window()

20 {

21 if (global channellist == NULL)

22 return;

23

24 const or options t ∗options = get options();

25 uint64 t multicast bandwidth = options−>MulticastBandwidth;

26 int multicast window increment = multicast bandwidth / CELL NETWORK SIZE;

27 int multicast window max = 10∗multicast window increment;

28

29 circuit t ∗head, ∗circ;

30 edge connection t ∗edge conn;

31 for (head=global channellist; head; head=head−>next channel) {

32 for (circ=head; circ; circ=circ−>next multicast) {

33 if (!circ−>marked for close &&

34 circ−>purpose == CIRCUIT PURPOSE MULTICAST) {

35 /∗ Increase circuit window ∗/

36 circ−>package window += multicast window increment∗2;

37 circ−>deliver window += multicast window increment ∗2;

38 if (circ−>package window > multicast window max ∗2)

39 circ−>package window = multicast window max ∗2;

40 if (circ−>deliver window > multicast window max ∗2)

41 circ−>deliver window = multicast window max ∗2;

42

43 /∗ Increase stream window ∗/

44 for (edge conn = TO ORIGIN CIRCUIT(circ)−>p streams;

45 edge conn; edge conn = edge conn−>next stream) {

46 edge conn−>package window += multicast window increment;

47 edge conn−>deliver window += multicast window increment;

48 if (edge conn−>package window > multicast window max)

49 edge conn−>package window = multicast window max;

50 if (edge conn−>deliver window > multicast window max)

51 edge conn−>deliver window = multicast window max;

52 }

53 /∗ Start reading from edge as if we received sendme cell ∗/

54 circuit resume edge reading(circ, NULL);

55 }

56 }

57 }

58 }

59

60 /∗ Get channel by <b>channel id</b>. ∗/

61 circuit t ∗

62 channel get by channelid(channelid t channel id)
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63 {

64 circuit t ∗circ;

65 for (circ=global channellist; circ; circ = circ−>next channel) {

66 if (circ−>channel id == channel id) {

67 return circ;

68 }

69 }

70 return NULL;

71 }

72

73 /∗ Append <b>next</b> to global channellist. Return 1 if there

74 ∗ exists circ with the same channel ID. ∗/

75 int

76 channel search and append(channelid t channel id, circuit t ∗next)

77 {

78 tor assert(channel id > 0);

79 circuit t ∗circ;

80 for (circ=global channellist; circ; circ = circ−>next channel) {

81 if (!CIRCUIT IS ORIGIN(circ) &&

82 circ−>channel id == channel id) {

83 break;

84 }

85 }

86 if (circ == NULL) {

87 next−>next channel = global channellist;

88 global channellist = next;

89 next−>channel state = CHANNEL STATE BUILDING;

90 return 0;

91 }

92 else {

93 next−>next multicast = circ−>next multicast;

94 circ−>next multicast = next;

95 next−>channel state = circ−>channel state == CHANNEL STATE OPEN?

96 CHANNEL STATE OPEN : CHANNEL STATE HOLD;

97 }

98 return 0;

99 }

In file relay.c:

1 /∗ Deliver the cell to edge connections associated with the channel ∗/

2 int

3 circuit receive multicast data(cell t ∗cell, circuit t ∗circ)

4 {

5 int reason;

6 edge connection t ∗edge conn;

7 for (edge conn = TO ORIGIN CIRCUIT(circ)−>p streams; edge conn;

8 edge conn = edge conn−>next stream) {

9 entry connection t ∗entry conn = EDGE TO ENTRY CONN(edge conn);

10 if (entry conn−>channel id != cell−>channel id)

11 continue;

12 connection edge process relay cell(cell, circ, edge conn);
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13 }

14 return 0;

15 }

16

17 /∗ Multicast cell to all circuits which have the <b>channel id</b> ∗/

18 int

19 channel multicast cell(channelid t channel id,

20 cell t ∗cell, circid t circid,

21 or connection t ∗conn)

22 {

23 circuit t ∗circ, ∗channel;

24 or connection t ∗or conn=NULL;

25 cell direction t cell direction;

26

27 channel = channel get by channelid(channel id);

28

29 for (circ=channel; circ; circ=circ−>next multicast) {

30 if (circ−>marked for close) {

31 tor fragile assert();

32 continue;

33 }

34 if (cell−>command == CELL MULTICAST HOLD &&

35 circ−>channel state == CHANNEL STATE HOLD)

36 continue;

37 if (circ−>n circ id) {

38 cell−>circ id = circ−>n circ id;

39 or conn = circ−>n conn;

40 cell direction = CELL DIRECTION OUT;

41 if (or conn != conn || cell−>circ id != circid) {

42 append cell to circuit queue(circ, or conn, cell,

43 cell direction, 0);

44 }

45 }

46 if (!CIRCUIT IS ORIGIN(circ) &&

47 TO OR CIRCUIT(circ)−>p circ id) {

48 cell−>circ id = TO OR CIRCUIT(circ)−>p circ id;

49 or conn = TO OR CIRCUIT(circ)−>p conn;

50 cell direction = CELL DIRECTION IN;

51 if (or conn != conn || cell−>circ id != circid) {

52 append cell to circuit queue(circ, or conn, cell,

53 cell direction, 0);

54 }

55 }

56 }

57 return 0;

58 }

59

60 /∗ Create and multicast a cell with specified commands in header fields ∗/

61 int

62 channel multicast command(channelid t channel id, uint8 t cell command,

63 uint8 t relay command, circid t circid,

64 or connection t ∗conn, const char ∗payload,
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65 size t payload len)

66 {

67 cell t cell;

68 relay header t rh;

69 circuit t ∗circ, ∗channel;

70 or connection t ∗or conn=NULL;

71 cell direction t cell direction;

72

73 memset(&cell, 0, sizeof(cell t));

74 cell.command = cell command;

75 cell.channel id = channel id;

76

77 memset(&rh, 0, sizeof(rh));

78 rh.command = relay command;

79 rh.stream id = 0;

80 rh.length = payload len;

81 relay header pack(cell.payload, &rh);

82 if (payload len)

83 memcpy(cell.payload+RELAY HEADER SIZE, payload, payload len);

84 return channel multicast cell(channel id, &cell, circid, conn);

85 }

86

87

88 /∗∗ If <b>conn</b> has an entire relay payload of bytes on its inbuf (or

89 ∗ <b>package partial</b> is true), and the appropriate package windows aren’t

90 ∗ empty, grab a cell and send it down the circuit.

91 ∗

92 ∗ Return −1 (and send a RELAY COMMAND END cell if necessary) if conn should

93 ∗ be marked for close, else return 0.

94 ∗/

95 int

96 connection edge package raw inbuf(edge connection t ∗conn, int package partial,

97 int ∗max cells)

98 {

99 ... /∗ original Tor code ∗/

100

101 /∗ Call channel multicast command instead if it is a multicast circuits ∗/

102 if (circ−>channel id > 0 && conn−> base.state == AP CONN STATE OPEN) {

103 channel multicast command(circ−>channel id, CELL MULTICAST DATA,

104 RELAY COMMAND DATA, 0, NULL,

105 payload, length)

106 }

107 else {

108 connection edge send command(conn, RELAY COMMAND DATA,

109 payload, length)

110 }

111 ... /∗ original Tor code ∗/

112 }

113

114

115 /∗∗ Check if the package window for <b>circ</b> is empty (at

116 ∗ hop <b>layer hint</b> if it’s defined).

71



117 ∗

118 ∗ If yes, tell edge streams to stop reading and return 1.

119 ∗ Else return 0.

120 ∗/

121 static int

122 circuit consider stop edge reading(circuit t ∗circ, crypt path t ∗layer hint)

123 {

124 /∗ Stop reading all circuits with the same channel id

125 ∗ if it is a multicast circuit ∗/

126 if (circ−>channel id > 0) {

127 if (circ−>package window <= 0) {

128 for (conn = TO ORIGIN CIRCUIT(circ)−>p streams; conn;

129 conn=conn−>next stream)

130 connection stop reading(TO CONN(conn));

131 return 1;

132 }

133 return 0;

134 }

135 ... /∗ original Tor code ∗/

136 }

137

138 static int

139 set channel blocked on circ(channelid t channel id, int block) {

140 circuit t ∗channel, ∗circ;

141 edge connection t ∗edge = NULL;

142 channel = channel get by channelid(channel id);

143

144 if (block == 0) {

145 for (circ=channel; circ; circ=circ−>next multicast) {

146 if (circ−>n circ id) {

147 if (circ−>n conn cells.n > CELL QUEUE LOWWATER SIZE) {

148 // can not unblock this channel

149 return 0;

150 }

151 }

152

153 if (!CIRCUIT IS ORIGIN(circ) && TO OR CIRCUIT(circ)−>p circ id) {

154 or circuit t ∗orcirc = TO OR CIRCUIT(circ);

155 if (orcirc−>p conn cells.n > CELL QUEUE LOWWATER SIZE) {

156 // can not unblock this channel

157 return 0;

158 }

159 }

160 }

161 }

162

163 for (circ=channel; circ; circ=circ−>next multicast) {

164 if (circ−>marked for close) {

165 tor fragile assert();

166 continue;

167 }

168 circ−>streams blocked on channel = block;
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169

170 if (CIRCUIT IS ORIGIN(circ)) {

171 edge = TO ORIGIN CIRCUIT(circ)−>p streams;

172 for (; edge; edge = edge−>next stream) {

173 connection t ∗conn = TO CONN(edge);

174 edge−>edge blocked on circ = block;

175

176 if (block) {

177 if (connection is reading(conn))

178 connection stop reading(conn);

179 } else {

180 if (!connection is reading(conn))

181 connection start reading(conn);

182 }

183 }

184 }

185 }

186

187 return 0;

188 }

189

190 static int

191 set streams blocked on circ(circuit t ∗circ, or connection t ∗orconn,

192 int block, streamid t stream id)

193 {

194 if (circ−>channel id > 0) {

195 return set channel blocked on circ(circ−>channel id, block);

196 }

197 ... /∗ original Tor code ∗/

198 }

In file connection ap multicast.c:

1 /∗ Process new bytes that have arrived on conn−\>inbuf. ∗/

2 int

3 connection multicast process inbuf(edge connection t ∗conn, int package partial)

4 {

5 switch (conn−> base.state) {

6 case AP CONN STATE SOCKS WAIT:

7 if (connection multicast handshake process socks(EDGE TO ENTRY CONN(conn)) <0) {

8 return −1;

9 }

10 return 0;

11 case AP CONN STATE OPEN:

12 if (connection edge package raw inbuf(conn, package partial, NULL) < 0) {

13 connection mark for close(TO CONN(conn));

14 return −1;

15 }

16 return 0;

17 }

18 tor fragile assert();

19 return −1;
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20 }

21

22 /∗ Read another step of the socks handshake out of conn−>inbuf. ∗/

23 static int

24 connection multicast handshake process socks(entry connection t ∗conn)

25 {

26 socks request t ∗socks;

27 int sockshere;

28 const or options t ∗options = get options();

29 int had reply = 0;

30 connection t ∗base conn = ENTRY TO CONN(conn);

31

32 socks = conn−>socks request;

33 sockshere = fetch from buf socks(base conn−>inbuf, socks,

34 options−>TestSocks, options−>SafeSocks);

35

36 if (socks−>replylen) {

37 had reply = 1;

38 connection write to buf((const char∗)socks−>reply, socks−>replylen,

39 base conn);

40 socks−>replylen = 0;

41 if (sockshere == −1) {

42 /∗ An invalid request just got a reply, no additional

43 ∗ one is necessary. ∗/

44 socks−>has finished = 1;

45 }

46 }

47 return connection multicast handshake rewrite and attach(conn);

48 }

49

50

51 /∗ Locate the multicast root for the group and connect to it via a circuit ∗/

52 int

53 connection multicast handshake rewrite and attach(entry connection t ∗conn)

54 {

55 socks request t ∗socks = conn−>socks request;

56

57 /∗ Find multicast root given user−specified group ID∗/

58 const node t ∗node = locate rendezvous point(socks−>gid);

59 conn−>chosen exit name = tor strdup(hex str(node−>identity, DIGEST LEN));

60 conn−>channel id = getNextChannelId();

61 conn−>want onehop = 0;

62

63 /∗ Construct a circuits connecting to multicast root ∗/

64 return connection ap handshake attach circuit(conn);

65 }
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