392 research outputs found

    Parametric Schedulability Analysis of Fixed Priority Real-Time Distributed Systems

    Get PDF
    Parametric analysis is a powerful tool for designing modern embedded systems, because it permits to explore the space of design parameters, and to check the robustness of the system with respect to variations of some uncontrollable variable. In this paper, we address the problem of parametric schedulability analysis of distributed real-time systems scheduled by fixed priority. In particular, we propose two different approaches to parametric analysis: the first one is a novel technique based on classical schedulability analysis, whereas the second approach is based on model checking of Parametric Timed Automata (PTA). The proposed analytic method extends existing sensitivity analysis for single processors to the case of a distributed system, supporting preemptive and non-preemptive scheduling, jitters and unconstrained deadlines. Parametric Timed Automata are used to model all possible behaviours of a distributed system, and therefore it is a necessary and sufficient analysis. Both techniques have been implemented in two software tools, and they have been compared with classical holistic analysis on two meaningful test cases. The results show that the analytic method provides results similar to classical holistic analysis in a very efficient way, whereas the PTA approach is slower but covers the entire space of solutions.Comment: Submitted to ECRTS 2013 (http://ecrts.eit.uni-kl.de/ecrts13

    Schedulability Analysis and Optimization for the Synthesis of Multi-Cluster Distributed Embedded Systems

    Get PDF
    Abstract 1 We present an approach to schedulability analysis for the synthesis of multi-cluster distributed embedded systems consisting of timetriggered and event-triggered clusters, interconnected via gateways. We have also proposed a buffer size and worst case queuing delay analysis for the gateways, responsible for routing inter-cluster traffic. Optimization heuristics for the priority assignment and synthesis of bus access parameters aimed at producing a schedulable system with minimal buffer needs have been proposed. Extensive experiments and a real-life example show the efficiency of our approaches. 1

    A hierarchical scheduling model for component-based real-time systems

    Get PDF
    In this paper, we propose a methodology for developing component-based real-time systems based on the concept of hierarchical scheduling. Recently, much work has been devoted to the schedulability analysis of hierarchical scheduling systems, in which real-time tasks are grouped into components, and it is possible to specify a different scheduling policy for each component. Until now, only independent components have been considered. In this paper, we extend this model to tasks that interact through remote procedure calls. We introduce the concept of abstract computing platform on which each component is executed. Then, we transform the system specification into a set of real-time transactions and present a schedulability analysis algorithm. Our analysis is a generalization of the holistic analysis to the case of abstract computing platforms. We demonstrate the use of our methodology on a simple example

    Schedulability Analysis of Task Sets with Upper- and Lower-Bound Temporal Constraints

    Get PDF
    Increasingly, real-time systems must handle the self-suspension of tasks (that is, lower-bound wait times between subtasks) in a timely and predictable manner. A fast schedulability test that does not significantly overestimate the temporal resources needed to execute self-suspending task sets would be of benefit to these modern computing systems. In this paper, a polynomial-time test is presented that is known to be the first to handle nonpreemptive self-suspending task sets with hard deadlines, where each task has any number of self-suspensions. To construct the test, a novel priority scheduling policy is leveraged, the jth subtask first, which restricts the behavior of the self-suspending model to provide an analytical basis for an informative schedulability test. In general, the problem of sequencing according to both upper-bound and lower-bound temporal constraints requires an idling scheduling policy and is known to be nondeterministic polynomial-time hard. However, the tightness of the schedulability test and scheduling algorithm are empirically validated, and it is shown that the processor is able to effectively use up to 95% of the self-suspension time to execute tasks.Boeing Scientific Research LaboratoriesNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 2388357
    • …
    corecore