6 research outputs found

    A Novel Method for Extrinsic Calibration of Multiple RGB-D Cameras Using Descriptor-Based Patterns

    Full text link
    This letter presents a novel method to estimate the relative poses between RGB-D cameras with minimal overlapping fields of view in a panoramic RGB-D camera system. This calibration problem is relevant to applications such as indoor 3D mapping and robot navigation that can benefit from a 360∘^\circ field of view using RGB-D cameras. The proposed approach relies on descriptor-based patterns to provide well-matched 2D keypoints in the case of a minimal overlapping field of view between cameras. Integrating the matched 2D keypoints with corresponding depth values, a set of 3D matched keypoints are constructed to calibrate multiple RGB-D cameras. Experiments validated the accuracy and efficiency of the proposed calibration approach, both superior to those of existing methods (800 ms vs. 5 seconds; rotation error of 0.56 degrees vs. 1.6 degrees; and translation error of 1.80 cm vs. 2.5 cm.Comment: 6 pages, 7 figures, under review by IEEE Robotics and Automation Letters & ICR

    Indoor Relocalization in Challenging Environments With Dual-Stream Convolutional Neural Networks

    Get PDF
    This paper presents an indoor relocalization system using a dual-stream convolutional neural network (CNN) with both color images and depth images as the network inputs. Aiming at the pose regression problem, a deep neural network architecture for RGB-D images is introduced, a training method by stages for the dual-stream CNN is presented, different depth image encoding methods are discussed, and a novel encoding method is proposed. By introducing the range information into the network through a dual-stream architecture, we not only improved the relocalization accuracy by about 20% compared with the state-of-the-art deep learning method for pose regression, but also greatly enhanced the system robustness in challenging scenes such as large-scale, dynamic, fast movement, and night-time environments. To the best of our knowledge, this is the first work to solve the indoor relocalization problems based on deep CNNs with RGB-D camera. The method is first evaluated on the Microsoft 7-Scenes data set to show its advantage in accuracy compared with other CNNs. Large-scale indoor relocalization is further presented using our method. The experimental results show that 0.3 m in position and 4° in orientation accuracy could be obtained. Finally, this method is evaluated on challenging indoor data sets collected from motion capture system. The results show that the relocalization performance is hardly affected by dynamic objects, motion blur, or night-time environments

    Efficient 3D Segmentation, Registration and Mapping for Mobile Robots

    Get PDF
    Sometimes simple is better! For certain situations and tasks, simple but robust methods can achieve the same or better results in the same or less time than related sophisticated approaches. In the context of robots operating in real-world environments, key challenges are perceiving objects of interest and obstacles as well as building maps of the environment and localizing therein. The goal of this thesis is to carefully analyze such problem formulations, to deduce valid assumptions and simplifications, and to develop simple solutions that are both robust and fast. All approaches make use of sensors capturing 3D information, such as consumer RGBD cameras. Comparative evaluations show the performance of the developed approaches. For identifying objects and regions of interest in manipulation tasks, a real-time object segmentation pipeline is proposed. It exploits several common assumptions of manipulation tasks such as objects being on horizontal support surfaces (and well separated). It achieves real-time performance by using particularly efficient approximations in the individual processing steps, subsampling the input data where possible, and processing only relevant subsets of the data. The resulting pipeline segments 3D input data with up to 30Hz. In order to obtain complete segmentations of the 3D input data, a second pipeline is proposed that approximates the sampled surface, smooths the underlying data, and segments the smoothed surface into coherent regions belonging to the same geometric primitive. It uses different primitive models and can reliably segment input data into planes, cylinders and spheres. A thorough comparative evaluation shows state-of-the-art performance while computing such segmentations in near real-time. The second part of the thesis addresses the registration of 3D input data, i.e., consistently aligning input captured from different view poses. Several methods are presented for different types of input data. For the particular application of mapping with micro aerial vehicles where the 3D input data is particularly sparse, a pipeline is proposed that uses the same approximate surface reconstruction to exploit the measurement topology and a surface-to-surface registration algorithm that robustly aligns the data. Optimization of the resulting graph of determined view poses then yields globally consistent 3D maps. For sequences of RGBD data this pipeline is extended to include additional subsampling steps and an initial alignment of the data in local windows in the pose graph. In both cases, comparative evaluations show a robust and fast alignment of the input data

    Scene structure registration for localization and mapping

    Get PDF
    International audienceImage registration, and more generally scene registration, needs to be solved in mobile robotics for a number of tasks including localization, mapping, object recognition, visual odometry and loop-closure. This paper presents a flexible strategy to register scenes based on its planar structure, which can be used with different sensors that acquire 3D data like LIDAR, time-of-flight cameras, RGB-D sensors and stereo vision. The proposed strategy is based on the segmentation of the planar surfaces from the scene, and its representation using a graph which stores the geometric relationships between neighbouring planar patches. Uncertainty information from the planar patches is exploited in a hierarchical fashion to improve both the robustness and the efficiency of registration. Quick registration is achieved in indoor structured scenarios, offering advantages like a compact representation, and flexibility to adapt to different environments and sensors. Our method is validated with different sensors: a hand-held RGB-D camera and an omni-directional RGB-D sensor; and for different applications: from visual-range odometry to loop closure and SLAM
    corecore