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Abstract—This paper presents an indoor relocalization system
using a dual-stream Convolutional Neural Network (CNN) with
both color images and depth images as the network inputs.
Aiming at the pose regression problem, a deep neural network
architecture for RGB-D images is introduced, a training method
by stages for the dual-stream CNN is presented, different depth
image encoding methods are discussed and a novel encoding
method is proposed. By introducing the range information into
the network through a dual-stream architecture, we not only
improved the relocalization accuracy by about 20% compared
with the state-of-the-art deep learning method for pose regression,
but also greatly enhance the system robustness in challenging
scenes such as large scale, dynamic, fast movement and night-
time environments. To the best of our knowledge, this is the first
work to solve the indoor relocalization problems based on deep
CNNs with RGB-D camera. The method is first evaluated on
the Microsoft 7-Scenes dataset to show its advantage in accuracy
compared with other CNNs. Large scale indoor relocalization
is further presented using our method. The experimental results
show that 0.3m in position and 4◦ in orientation accuracy could be
obtained. Finally, this method is evaluated on challenging indoor
datasets collected from motion capture system. The results show
that the relocalization performance is hardly affected by dynamic
objects, motion blur or night-time environments.

Note to Practitioners–This work was motivated by the limi-
tations of the existing indoor relocalization technology that is
significant for mobile robot navigation. By using this technology,
robots can infer where they are in a previously visited place.
Previous visual localization methods can hardly be put into wide
application for the reason that they have strict requirements for
the environments. When faced with challenging scenes such as
large scale environments, dynamic objects, motion blur caused
by fast movement, night-time environments or other appearance
changed scenes, most existing methods tend to fail. This paper
introduces deep learning into the indoor relocalization problem,
uses dual-stream CNN (depth stream and color stream) to realize
6-DOF pose regression in an end-to-end manner. The localization
error is about 0.3m and 4◦ in a large scale indoor environments.
And what is more important, the proposed system does not lose
efficiency in some challenging scenes. The proposed encoding
method of depth images can also be adopted in other Deep Neural
Networks with RGB-D cameras as the sensor.
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I. INTRODUCTION

INDOOR relocalization is a challenge task which is widely
studied in the areas of mobile robot navigation and com-

puter vision. It enables robots the capacity to infer where
they are in a previously visited place. Nowadays, commercial
RGB-D cameras are preferred in indoor robotic applications
considering their low-price, good technical support, real-time
performance and excellent sensing capability. They can provide
not only color images which contain texture and appearance
information, but also the depth of images containing range
information and structure of objects which are robust and
invariant when lighting condition varies.

Appearance based methods are most popular for the relocal-
ization task. Hand-crafted features such as Scale-Invariant Fea-
ture Transform (SIFT), Speeded Up Robust Features (SURF)
or Oriented FAST and Rotated BRIEF (ORB) are extracted
and stored first. Then images with similar appearance are
retrieved using Bag of Words (BoWs) technology. Frame-
to-frame feature correspondence and pose estimation [1] are
implemented for localization at last. This method can achieve
satisfactory precise and real-time performance when the view
is consistent. Appearance based relocalization and loop closure
detection are also widely used in visual Simultaneous Localiza-
tion And Mapping (SLAM) [2] [3]. However, they have strict
requirements for the environment that limits their applications
in practice. They would no longer be useful when appearance
changes. Both moving objects and lighting variation could lead
to appearance changes. [4] Motion blur caused by fast move-
ments of the camera could also result in failures as manually
designed features are fragile when encountering motion blur. In
addition, accurate frame-to-frame pose estimation needs small
viewpoint which limits the widespread usage of appearance
based methods.

Deep Convolutional Neural Networks (CNNs) designed for
image processing have achieved astonishing success in com-
puter vision. Object recognition and detection capabilities are
greatly improved due to the wide usage of CNNs [5] [6].
CNNs can learn different features according to various targets
and provide an end-to-end solution to perception problems.
Recently 6-DOF camera pose regression method with CNNs
(PoseNet) [7] was proposed. Unlike SLAM or appearance
based relocalization, the pose regression with CNNs does
not need to store keyframes, match features between frames
and perform pose optimization. And the storage memory
and computing time using CNNs do not increase when ex-
ploring large scale area. Therefore, it can implement large
scale relocalization without area limitation. Furthermore, its
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performance in challenging situations could be improved as
well. However, we find that PoseNet with only color images
as the input could degrade the performance when working in
some extremely challenging indoor environments.

In this paper, we present a novel dual-stream CNN ar-
chitecture with RGB-D camera which can implement indoor
relocalization even in extremely challenging environments.
Depth images are introduced in a separate stream to learn
reliable range features. Range features from depth stream and
appearance features from color stream are jointly optimized
to implement the 6-DOF camera pose regression by learning
the proposed CNN. Our main contributions in this paper are
summarized as follows:

• We present a dual-stream CNN to achieve indoor relocal-
ization in challenging environments with an end-to-end
manner. The CNN can learn localization features from
both color and depth images, and estimate camera poses
from these learned features. A network training strategy
that divides the training into three stages is proposed.
Approximately 20% improvement on localization accu-
racy is achieved compared with PoseNet.

• We study the encoding methods of depth images and
propose a novel method called minimized normal +
depth (MND) encoding to solve the 6-DOF pose re-
gression problem. The MND encoding images contain
both pixel orientation information and absolute depth
information, and maintain the ability to leverage the
transfer learning at the same time. Different network
architectures with color and depth images as the input
are discussed. By taking the depth information into the
CNN, not only the relocalization accuracy is improved,
but the system robustness in some challenging environ-
ments is enhanced.

• Robustness evaluation experiments are implemented in
dynamic, night-time and fast movement environments.
Experiments on a large scale indoor dataset and public
datasets are also presented.

In the following section, we provide a review of the related
work. In section III, we give an introduction to the architecture
of the proposed CNN, present the method for pose regression
and the encoding method of depth images. Section IV address-
es three stages for network training with the dual-stream CNN.
Section V demonstrates the experimental results on different
datasets using the dual-stream CNN. In section VI, we give
a summary conclusion and the future work we would like to
investigate.

II. RELATED WORK

Relocalization is a significant technology in robotics which
could be used for search and rescue, navigation, intelligent
services and so on. Place recognition is a problem related to
relocalization. When compared with place recognition, relocal-
ization needs to solve an additional geometric transformation
problem. Relocalization could also be transferred to a loop
closure detector in SLAM [8].

A. Visual geometry relocalization
In the early years, Iterative Closest Point (ICP) [9] algo-

rithm was usually adopted for relocalization by registering
local point clouds from frames to global point clouds from
global map. Steder at el. [10] firstly, extracted 3D features of
images captured from RGB-D cameras, then place recognition
and relocalization are implemented with 3D feature points
registration using ICP. Except for feature points, high level
features such as planes [11] and lines are also used for
localization. Cupec at el. [12] extracted robust line segments
and planar surface segments as primitive features instead of
feature points to recognize places. The system performed
robustly even in some appearance changed environments. A
novel place recognition and scene registration method using
multi-planes was addressed by Fernández-Moralc at el. [13].
High-level surface normal semantic planes, color information
and other features are used. However, ICP algorithm and high-
level primitives extraction are time consuming, especially in
large scale environments.

In order to carry out scalable recognition within a short
time, Nister at el. [14] introduced Bag of visual Words (BoWs)
technology into object recognition and retrieval. Williams at
el. [15] compared different loop closure detection (namely
place recognition) approaches and found that image-to-image
method with visual words scales best in large environment.
Cummnins at el. [16] presented FAB-MAP with SURF point
features as visual words to implement place recognition and
relocalization in large scale environments. Afterwards they
improved FAB-MAP and introduced it into SLAM [17]. N-
evertheless, SURF features extraction is time consuming and
limits their wide application in robotics.

Gálvez-López at el. [18] implemented faster place recogni-
tion using bag of binary words technology with Features from
Accelerated Segment Test (FAST) and Binary Robust Indepen-
dent Elementary Features (BRIEF). By encoding images into
binary feature words and using fast extraction features, the
system achieved satisfactory real-time performance in large
scale environment. But both point features adopted are not
rotation and scale invariant, leading to invalidation of the
system in obvious appearance and viewpoint changed scenes.
Based on [18], Mur-Artal at el. [19] proposed to use binary
words consisting of ORB features which can be computed in
10ms with rotation and scale invariant. They then introduced
the proposed relocalization and loop closing technology into
ORB-SLAM [20]. However, all features used are hand-crafted
and extracted from color images which limits their application
when they are applied to extremely challenging environments.

B. CNNs based relocalization
Chen et al. [21] introduced CNNs combined with spatial and

sequential checking into place recognition for the first time.
By adopting robust features learned from CNNs, the system
can conduct large scale place recognition and improve precise
performance significantly compared with the state-of-the-art
methods via hand-crafted features. In order to enhance the
system robustness in challenging environments, such as severe
appearance and viewpoint changes, Sunderhauf et al. [22] [23]
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Fig. 1: Architecture overview of the proposed dual-stream CNN for indoor relocalization. Color images and depth images are
fed to the network separately as shown above. Each stream of the network outputs a place feature vector with the size of 2048.
A concatenation layer and a full connected layer are added to generate an information-rich feature vector with the size of 4096
which, finally converges to camera pose including position and attitude represented by quaternion.

analysed several widely used CNNs and proposed to leverage
mid-layer features to cope with appearance variation and top-
layer features to handle viewpoint variation. At the same
time, by integrating locality-invariance hashing and semantic
search space partitioning, the system achieves the real-time
performance based on CNNs for the first time.

Regression forest method was introduced into indoor relo-
calization with Kinect by Shotton at el. [24]. The forest needs
to be trained first, then 3D points in local frame could be
matched to points within a global map with pre-trained forest
which limits its applications in a small area. Precise 6-DOF
camera position is calculated with geometry optimization at
last.

Kendall at el. [7] proposed a novel convolutional neural
network–PoseNet to perform relocalization in large outdoor
environments with an end-to-end manner. PoseNet takes color
images as the network input and achieves spectacular perfor-
mance in relocalization. It particularly performs better in large
scale and dynamic environments compared with traditional
methods. This is the first time to solve the 6-DOF pose
regression problem with CNN. The authors improved PoseNet
and proposed Bayesian PoseNet [25] afterwards. By adding a
Dropout layer into PoseNet and multiple randomized cropping
input images, each generated position was modelled with
uncertainty and the relocalization precision was improved. Li
at el. [26] adopted PoseNet to infer 6-DOF pose in night-time

environments with depth camera.
However all of the above methods have not paid attention

to indoor complex environments and demonstrated satisfactory
performance when encountering night-time, fast movement
and dynamic environments.

C. Encoding method of depth images for CNNs

CNNs which adopt the power of convolution to learn fea-
tures from color images have demonstrated spectacular capa-
bility on object recognition and detection problems. For depth
images used in neural networks, preprocessing is necessary in
order to achieve satisfying performance. Couprie at el. [27]
introduced original depth information into CNNs to perform
semantic segmentation for indoor scenes. Compared with color
only images as the network input, it is better to use both
color and depth images as the network input for segmentation
problems. Aiming at object detection problems with RGB-
D inputs, Gupta at el. [28] addressed a novel depth image
encoding approach which takes horizontal disparity, height
above ground and angle with gravity (HHA) as three image
channels. Notice that HHA is computed from the pixels of
object in image, which means that this method is not suitable
for entire depth image encoding in 6-DOF pose regression.
Normalized depth image which encodes scaled surface normal
as three image channels is introduced by Lenz at el. [29]
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and Hinterstoisser at el. [30] to solve the detection problems.
Nevertheless, normalized depth image encoding approach pays
much attention to object structural contrast and loses the sight
of original absolute range information. In order to achieve
better performance in recognition problems with RGB-D cam-
eras, a simple and efficient encoding method that colorizes
depth images was proposed. Eitel at el. [31] transformed depth
images from single channel to three channels by applying jet
colormap. Schwarz at el. [32] rendered depth images with color
palette and achieved the colorization of depth images. Experi-
mental results demonstrate that normalized and colorized depth
images seem to carry more information than original depth
images and are more suitable as the network input. In our
paper, we propose a novel encoding approach that takes the
advantage of normalized depth images and maintains original
range information at the same time for the pose regression
problem.

III. PRELIMINARIES

In this part we will introduce the network architecture
we used in our paper first. Then we present the working
mechanism of our dual-stream CNN for indoor relocalization.
At last, a novel effective depth encoding approach for our dual-
stream CNN is proposed.

A. Network architecture

The proposed dual-stream CNN is designed to perform
robust indoor relocalization in challenging environments such
as motion blur, dynamic environments with mobile objects or
pedestrians and dark scenes. As shown in Fig. 1, each stream is
a separate CNN revised from GoogLeNet [6], which achieved
the state-of-the-art performance in ImageNet [33] Large-Scale
Visual Recognition Challenge 2014 (ILSVRC14) for object
recognition and detection.

In the dual-stream CNN, there are some inception modules
which are improved from the modules introduced in Network
in network [34]. By using inception modules, one can increase
the width of the network without increasing the computational
complexity. Compared with similar performance networks
without inception modules, the networks with inception mod-
ules can obtain faster speed, or they outperform others with
similar depth. Except for convolutional layers, full connected
layers and inception modules shown in Fig. 1, there are also
pooling layers, Rectified Linear Unit (ReLU) layers, Local
Response Normalization (LRN) layers, dropout layers and
Euclidean loss layers.

The input data composed of color images and depth images
are sliced and fed to each stream respectively. In this way,
dual-stream CNN can not only learn localization features from
color images, but also can learn them from depth images which
contain geometrical and structural information. A concatena-
tion layer is used to put all features together and another
full connected layer is added for better representations of
localization features.

B. Dual-stream CNN for pose regression
For traditional image-to-image or image-to-map pose reg-

istration in relocalization, hand-crafted point features should
be extracted and matched first, then the transformation will
be estimated by minimizing the cost function below along
with Random Sample Consensus (RANSAC) to remove feature
outliers.

min
n

∑
i=1

Wi
∥∥Xi−TXi

′∥∥2 (1)

Where T is the 4×4 transformation matrix containing rota-
tion R and translation t. Xi = (xi,yi,zi,1)T is the homogeneous
position representation of feature point. Xi

′ = (xi
′,yi
′,zi
′,1)T

is the matched point of Xi in appearance similar image or
global map. Wi is the weight of corresponding point. Feature
extraction and matching play a crucial role in place recognition
and pose estimation especially in challenging situations. Both
mismatching and failures in robust feature extraction can result
in system failure.

Compared with CNNs designed for object recognition prob-
lems, the CNNs for 6-DOF pose regression use a Euclidean
loss layer as the top layer instead of softmax classifier layers.
Euclidean loss drives the position learning by comparing the
network output to the labelled 6-DOF pose and minimizing
the least-squared cost. The Euclidean loss E is computed in
the network as shown below:

E =
1

2N

N

∑
n=1
‖x̂n− xn‖2

2 (2)

Where xn is the labelled (ground truth) vector corresponding
to the input image, x̂n is the estimated vector produced by the
CNN in an end-to-end manner, and N is the number of vectors
that the CNN produced.

In the dual-stream CNN for pose regression, camera pose is
a labelled vector composed of position p = (px, py, pz)

T and
orientation represented by unit quaternion q = (qa,qb,qc,qd)

T.
Therefore the Euclidean loss Ep is computed as below:

E = Ep +λEq (3)

Where Ep is the positional Euclidean loss, Eq is the orien-
tational Euclidean loss and λ is the balancing weight between
these two parts. For the reason that orientation represented by
unit quaternion and position measured in meters have obvious
different measurement units, a weight λ is introduced as a
necessary and significant factor to balance the costs Ep and
Eq in order to achieve favorable results.

Assume that each image has real robust feature represen-
tations {y1,y2, ...,yn} to be learned. {ŷ1, ŷ2, ..., ŷn} are feature
representations our CNN has learned. With an inner product
layer x = ∑

4096
i=1 (Wi ∗ yi + bi) as the input of Euclidean layer,

the feature representation and corresponding weights can be
learned by minimizing the cost below:

min
4096

∑
i=1

Wi ‖ŷi− yi‖2 (4)
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Fig. 2: Selected network layers for different network inputs. (a) Images captured in normal situation as network inputs. Both
color images and depth images are in good quality. (b) Images captured at night-time as network inputs. Color images are
mostly black and can hardly be recognized even by our humans. Notice that all network weights we used here are the same and
pre-trained from images in normal situations.

From the cost above, we can see that the dual-stream CNN
will try to learn the real localization features and automatically
weight them. This demonstrates a great advantage over the
methods using hand-crafted features.

The full connected layer we added after the concatenation
layer in our dual-stream CNN plays an active role in balancing
the weights of learned features between color inputs and range
inputs. As shown in Fig. 2, the concatenation layer connects
2048 color features learned from color images and 2048 range
features from depth images separately. When we use the
images captured from normal situations, the mean value of
texture features from color images is about 0.20, and the mean
value of range features is about 0.10. By adding full connected
layers and re-weighting all features, the mean value of range
features is increased from 0.10 to 0.20. This improves the role
of features from depth image as shown in Fig. 2(a). For night-
time images, all the color images are mostly black and full
of noise. However, their depth images still contain abundant
structural range information. As shown in Icp-6 and Icp-9 in
Fig. 2(b), the number of bright areas in the color stream are
obvious more than that in the depth stream. This represents that
the features learned from the color images are more noticeable
than the features learned from the depth images. In this way,
as shown in the concatenation layer in Fig. 2(b), the mean
value of texture features from color images is about 0.08 and
that from depth images is about 0.04, which has bad impact
for relocalization performance and makes the results uncertain.
Fortunately, the full connected layer can re-balance features

and decrease the mean value of color texture features from
0.08 to 0.04 which reduces their weights. The network is
smart enough to weight different features according to different
situations, i.e. it strengthens the weights of texture features
in normal situations and weakens the weights of structural
features in challenging situations such as night-time. In this
way, by combining the texture features from color images and
the structural range features from depth images and weighting
them automatically, the dual-stream CNN can cope with many
extremely challenging environments.

C. Encoding methods for depth images
In the dual-stream CNN, depth images from RGB-D cam-

eras are introduced for a separate stream CNN to learn
structural range features in order to enhance the system
performance. However, the convolutional layers in CNNs are
particularly designed for color images in which pixel channels
mainly represent light intensity. In contrast, the pixel value
of depth images represents scaled distance between the optic
centre of camera and objects in the environment. We can hardly
achieve satisfied performance with raw depth images used as
the inputs of CNNs directly. Necessary preprocessing for depth
images ought to be taken before feeding them into CNNs.

The simplest preprocessing method for depth images is to
rescale pixel values from 0–10000 to 0–255. The processing
result of this method is the single layer grayscale image (one
channel) that is shown in Fig. 3(b). To leverage the transfer
learning from the network weights pretrained on ImageNet
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Fig. 3: Different encoding methods of depth images. (a) Color image. (b) Single layer scaled depth image. (c) Triple-layer scaled
depth image. (d) Normalized depth image with computed normal parameters as three image channels. (e) Colorized image using
jet color map. (f) Minimized normal+depth(MND) image.

or Places [35], we can also duplicate the grayscale image
shown in Fig. 3(b) and create three copies of the depth layer.
Then triple-layer scaled depth image (three channels) could
be obtained that is shown in Fig. 3(c). As shown above, the
appearance of processed images between these two methods
has no significant difference. Another famous encoding method
is to use surface normals as three channels of images [29]
[30]. The unit surface normals [nx,ny,nz] should be computed
from depth image first, then they are rescaled from 0–1 to 0–
255. The normalized image is shown in Fig. 3(d). Colorization
of depth images is also an easy but efficient way for depth
encoding [31] [32]. Each pixel intensity value in depth image
corresponds to three channel values (red, green and blue
separately). Fig. 3(e) is a colorized jet map, as the intensity
value increases from 0 to 255, the color changes from blue to
green, then yellow to red.

From Fig. 3(d), we can see that all pixels on the wall have
the same color even though they have different depth values.
On the contrary, the wall pixels with discriminative depth
hierarchies in colorized image are labeled with different colors
as shown in Fig. 3(e). However, the box on the right part of
Fig. 3(e) shows little difference on structure and the box in Fig.
3(d) is easy to distinguish. In a word, the normalized images
pay more attention to relative structural information, so the
objects in the normalized images could be easily distinguished.
Nevertheless, the normalized images do not contain absolute
range information, which is contained in original depth images
and colorized images.

In this paper, we propose to use the minimized normal
and depth images (MND) to encode depth images. The MND
uses rescaled nx

′, ny
′ and depth d as three channels of image

separately. For scaled surface normal [nx
′,ny

′,nz
′] , we have

nx
′2 + ny

′2 + nz
′2 = 2552. Therefore normalized depth images

can be represented by nx
′ and ny

′ which is called minimized
normal representation. The third channel we use in our ap-
proach is the scaled original depth value. As shown in Fig.
3(f), the pixels of wall with similar normal and the pixels of
box with similar depth both have more obvious local contrast
when using our MND encoding method. The advantage of
this method is that processed depth images retain both relative
structural information and absolute range information and the
networks maintain the ability to leverage the transfer learning
at the same time.

Another problem we need to consider when using depth
images for CNNs is the input size. The dual-stream CNN we
use in our paper requires an input image with a size of 224×
224. The raw depth image captured from Kinect One is 960×
540 and that captured from Kinect 360 or Xtion is 640×480.
In our system, original images are resized to 455× 256 or
341×256, and then randomly cropped to a size of 224×224.
We have also tried to resize original depth images to 224×224
directly and maintain all information from depth, but found that
the relocalization performance was not as good as expected.

In addition, invalid depth data is inevitable when using
RGB-D sensors (Kinect v1, Kinect v2, Xtion and et al.). We
briefly treat invalid depth data with zeros and let the network
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learn to handle this data. There could be some more elegant
ways to explore for invalid depth data, such as using spatial
or temporal interpolation techniques. This is left for our future
research.

IV. TRAINING MECHANISM FOR DUAL-STREAM CNN
The selection of training mechanism is very important for

system performance. For traditional CNNs, we can train them
in an end-to-end way and optimize the network weights di-
rectly. For our dual-stream CNN for relocalization, traditional
training methods can hardly ensure the convergence of the
dual-stream CNN. In this work, the dual-stream CNN training
for relocalization is divided into three stages.

A. Training separate streams
The first training stage for our dual-stream CNN is a separate

stream training stage. Different from the network architecture
shown in Fig. 1, the network in this stage does not have the
concatenation layer and the additional full connected layer. The
stream with color images as inputs is called color stream, and
the stream with depth images as inputs is called depth stream.
The Euclidean Loss layer is appended to the end of both color
stream and depth stream. Therefore, the network in this stage
has two pose outputs, one is produced by 2048 textural features
from the stream with color images as inputs, another one is
generated by 2048 range features from the stream with depth
images as inputs. The network here has one input and two
outputs and the two streams can be trained simultaneously.
Both streams take transfer learning from the same network
weights pretrained on the dataset Places [35] used for training
place classifiers. Although the purpose of two channels are
different, both streams in our network can converge in a short
time with desirable performance by using transfer learning.
Different Euclidean balancing weights are adopted for the
color stream and the depth stream while training. For color
stream, we use 1 for positional Euclidean loss weight and
λ for orientational Euclidean loss weight. Weights for depth
stream are 1.2 time weights for color stream, i.e. the positional
Euclidean weight is 1.2 and the orientational Euclidean weight
is 1.2λ . The depth stream is endowed with heavier weights for
the reason that depth images are not affected by light intensity
or motion blur and are more robust than color images to some
extent.

B. Fine tuning full connected layer
After the separate stream training stage, the network can

learn many preliminary position features from depth images
and color images respectively. In this stage, we recovery the
network architecture as shown in Fig. 1. The concatenation
layer and full connected layer are brought back to the network
to re-weight preliminary features learned from two streams.

The network weights obtained from stage one are used for
transfer learning. We only perform fine tuning operation on the
full connected layer while the weights of other layers are kept
invariant. This is done by setting all learning rates to zeros in
the network except for the last full connected layer. By fine

TABLE I: Relocalization performance comparison with differ-
ent depth image encoding methods using PoseNet. The unit for
position error is meter (m), and the unit for orientation error
is degree (◦).

Input Median position error Median orientation error

RGB 0.55m 5.13◦

Single depth 0.57m 3.83◦

Triple-depth 0.52m 3.36◦

Normalized depth 0.49m 3.02◦

Colorized depth 0.48m 3.10◦

MND 0.46m 2.85◦

tuning the full connected layer, the relocalization performance
of the system is improved greatly compared with single color
stream or single depth stream. Additionally, for the reason
that only the full connected layer is fine tuned, the number
of iteration in this stage is only about 10000 to 15000 which
means a short time is required.

C. Fine tuning overall dual-stream CNN
In order to achieve the best performance for indoor relocal-

ization, we fine tune the overall dual-stream CNN in the final
stage. The network pretrained in the second stage is taken for
transfer learning in the third stage. All learning rates set to
zeros in the second training stage are set back to the same
value in the first training stage. Base learning rate should be
smaller than that in the first two stages, which is 0.8 times in
our paper. This stage needs about 20000 iterations to converge.
Position features and their weights are adjusted slightly. The
system performance is further improved compared with that in
the second stage.

V. EXPERIMENTAL EVALUATION
In this section, we evaluate the relocalization performance

of our proposed dual-stream CNN. We first compare different
depth encoding methods and select the best one for 6-DOF
pose regression with CNN. Then the architectures to take
the advantage of both color images and depth images are
discussed. A large scale relocalization experiment is presented.
Following that, the quantitative experiments based on Mi-
crosoft 7-scenes benchmark dataset is given by comparing with
PoseNet [7]. At last, the experiments on extremely challenging
situations with our system is presented. The dual-stream CNN
is designed using Caffe [36], and all experiments are performed
on a desktop equipped with Nvidia GeForce Titan X GPU card
and Intel Core i7-4790 4.0GHz CPU.

A. Range images encoding methods

In this part, we compare the proposed MND depth encoding
method with other popular encoding methods. The dataset
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called Second Floor here is collected in the second floor of
our network building using Kinect One. The scale of the
second floor is about 40m× 30m. For the reason that we do
not have motion capture system covering the whole floor, we
use the state-of-the-art SLAM algorithm–ORB SLAM [20] to
label collected images. The labelled result is also used as the
groundtruth. The training dataset contains about 4300 frames
and the test dataset contains about 5460 frames.

For the network training, we only perform the separate
stream training in the process and take the relocalization
results from color stream and depth stream, respectively. The
stochastic gradient descent (SGD) is adopted as the training
solver. Learning rate policy is step with 80 epochs as step
size. The base learning rate is 0.00001, the gamma is 0.94
and the momentum is 0.9. Both streams take transfer learning
and the number of training iteration is about 30000. For color
stream, the positional weight is 1 and the orientational weight
λ is 250. For depth stream, the positional weight is 1.2 and the
orientational weight λ is 300. We found that it is important
to give the depth stream a little bigger weight to make our
system robust.

The relocalization results from the depth stream with dif-
ferent encoding depth images and color stream are shown in
Table. I. We can see from the table that the depth stream
performs better than the color stream in orientation. Nor-
malized depth images and colorized depth images have no
significant difference in relocalization as the network inputs,
but both are better than single depth and triple-depth. From
our experiments, the normalized encoding performs better
in position and the colorized encoding performs better in
orientation. Our proposed MND method which includes both
structural and range information achieves the best performance
in indoor relocalization since the MND has the most significant
local contrast among all the depth encoding methods.

B. Network architecture for RGB-D images

After selecting the MND encoding as our depth preprocess-
ing method, we will further discuss the network architecture
taking both color images and depth images as input. The
same dataset (Second Floor) as used above, is used here.
As shown in Table II, four different CNNs are presented
with RGB-D images as inputs. We first feed color+single-
depth images (4 layers as inputs) and color+MND depth (6
layers as inputs) to PoseNet, respectively. The results show that
PoseNet with color+single-depth as inputs performs better in
relocalozation than that with color+MND depth. So we know
that the localization performance of CNNs can not be improved
with the network width if we can not find the right way. Then
the dual-stream CNN taking color and MND depth as inputs is
used to perform indoor relocalization. The performance of the
dual-stream CNN is much better than PoseNet due to the mix
of color and depth images. As mentioned above, we divide
the network training into three stages. After fine tuning the
full connected layer, we also fine tune the whole network
in the third training stage. This step further improves the
relocalization performance in both position and orientation.
In addition, we also try to concatenate the full connected

Fig. 5: Cumulative histograms of relocalization error with
different network architectures for RGB-D images as input.

layers after Icp-3 (regression 1) and the full connected layers
after Icp-6 (regression 2) respectively, and fine tune the new
concatenated networks. The relocalization precision for these
two concatenated networks is 1.19m, 5.76◦and 1.07m, 4.04◦,
respectively. So concatenating the final features is optimal in
our network.

The cumulative histograms of indoor relocalization error
produced by the above four approaches are plotted in Fig.
5. The dual-stream CNN after fine tuning the whole network
performs best among them in all the aspects.

2D relocalization trajectory with Second Floor dataset is
shown in Fig. 4. Fig. 4(a) shows the groundtruth trajectory
of the training dataset and the test dataset. The dashed line
represents the trajectory of training dataset. The solid line
represents the goundtruth trajectory of test dataset. Fig. 4(b)
shows the groundtruth trajectory and predicted poses of the test
dataset, and we put them in the 2D floor plan of our building
in order to show them clearly. Some images of the scenes are
given. The dots represent the predicted positions from our dual-
stream CNN. As shown in Fig. 4, most predicted camera poses
are almost the same with the groundtruth. However, there are
also a few predicted poses which have considerable error. This
could be improved by extending our network to a Bayesian
dual-stream CNN, which can model the uncertainty of poses
and remove noisy data points, but the Bayesian dual-stream
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TABLE II: Results of different network architectures with RGB-D images as input. The first row in the table shows the result
of PoseNet [7] with color image (3 layers) as input. The second row shows the result of PoseNet with color image and single
scaled depth image (4 layers) as input. The third one shows the result of PoseNet with color image and colorized depth image
(6 layers) as input. The forth row and the fifth row both use the dual-stream CNN for indoor relocalization. The difference is
that last two full connected layers are fine tuned for the third row and the whole network is fine tuned for the forth row.

Network architecture Scale
Train/
Test Input Median position error Median orientation error

PoseNet 40×30×5m
4300/
5460 RGB (3) 0.55m 5.13◦

PoseNet 40×30×5m
4300/
5460 RGB+single-depth (4) 0.42m 2.77◦

PoseNet 40×30×5m
4300/
5460 RGB+MND depth (6) 0.68m 3.51◦

Dual-stream CNN
(Fine tuning full connected layers) 40×30×5m

4300/
5460 RGB-MND depth (3+3) 0.33m 1.83◦

Dual-stream CNN
(Fine tuning whole network) 40×30×5m

4300/
5460 RGB-MND depth (3+3) 0.27m 1.65◦

Fig. 4: Predicted trajectory using our method in our network building. The red trajectory (dashed line) is used for training, the
blue one (solid line) is the ground truth of test dataset. The green one (dots) is the pose predicted by the dual-stream CNN.

will cost more time.

C. Quantitative analysis

In this part, we compare our dual-stream CNN with PoseNet.
We also transform the dual-stream CNN to a Bayesian dual-
stream CNN and compare it with the Bayesian PoseNet [25].
The transformation is very similar with that from PoseNet
to Bayesian PoseNet. The Dropout layers are added to color
stream and depth stream separately, the network inputs are

randomly cropped from preprocessed images for 30 times, and
the final result takes the average of all 30 network outputs.

We take the public Microsoft 7-Scenes dataset as benchmark
to compare the system performance in indoor relocalization.
As shown in Table III, PoseNet with color images and Posenet
with depth images have no significant difference in indoor relo-
calization, sometimes the former with texture features performs
better, sometimes the latter with range features performs better.
Our proposed dual-stream CNN which takes both color images
and depth images together achieves better performance than
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TABLE III: Quantitative analysis. Comparison with PoseNet and Bayesian PoseNet based on the public 7-Scenes dataset
downloaded from Microsoft Research. Here the median relocalization error is used to represent the system performance. The
scale for Fire, Heads, Chess, Pumpkin, Office, Redktichen, Stairs dataset is 2.5×1×1m, 2×1×0.5m, 3×2×1m, 2.5×2×1m,
2.5×2×1.5m, 4×3×1.5m, 2.5×2×1.5m and 2.7×1.8×1.1m respectively. The training/test numbers for above 7-scenes dataset
are 2000/2000, 1000/1000, 4000/2000, 4000/2000, 6000/4000,7000/5000 and 2000/1000 respectively.

Dataset
PoseNet

(RGB-D)

PoseNet

(RGB+MND)

PoseNet

(RGB)

PoseNet

(MND)

Dual-stream

(RGB-MND)

Bayesian

PoseNet

(RGB)

Bayesian

PoseNet

(MND)

Bayesian

Dual-stream

(RGB-MND)

Fire 0.56m, 13.57◦ 0.58m, 17.06◦ 0.52m, 12.54◦ 0.55m, 16.76◦ 0.51m, 12.88◦ 0.42m, 12.65◦ 0.46m, 16.83◦ 0.43m, 12.52◦

Heads 0.39m, 15.25◦ 0.33m, 15.10◦ 0.38m, 13.46◦ 0.34m, 14.77◦ 0.30m, 12.73◦ 0.27m, 13.06◦ 0.26m, 14.77◦ 0.25m, 12.72◦

Chess 0.36m, 6.91◦ 0.38m, 7.65◦ 0.39m, 8.05◦ 0.45m, 9.68◦ 0.36m, , 7.79◦ 0.29m, 7.33◦ 0.32m, 9.02◦ 0.28m, 7.05◦

Pumpkin 0.51m, 8.43◦ 0.48m, 8.16◦ 0.58m, 9.20◦ 0.52m, 8.68◦ 0.45m, 8.30◦ 0.49m, 8.57◦ 0.37m, 8.19◦ 0.36m, 7.53◦

Office 0.63m, 12.56◦ 0.61m, 13.22◦ 0.56m, 9.39◦ 0.54m, 12.54◦ 0.48m, 9.68◦ 0.38m, 8.73◦ 0.36m, 11.72◦ 0.30m, 8.92◦

Redkitchen 0.94m, 18.21◦ 0.73m, 13.30◦ 0.87m, 11.40◦ 0.63m, 12.46◦ 0.58m, 10.49◦ 0.75m, 10.62◦ 0.51m, 11.65◦ 0.45m, 9.80◦

Stairs 0.53m, 11.94◦ 0.63m, 13.79◦ 0.54m, 13.71◦ 0.63m, 14.40◦ 0.48m, 13.21◦ 0.47m, 13.71◦ 0.59m, 14.01◦ 0.42m, 13.06◦

Average 0.56m, 12.41◦ 0.53m, 12.61◦ 0.55m, 11.10◦ 0.52m, 12.75◦ 0.45m, 10.72◦ 0.44m, 10.67◦ 0.41m, 12.31◦ 0.35m, 10.22◦

Fig. 6: Challenging scenes for indoor relocalization with the dual-stream CNN. The images in the first row are color images. The
second row is the scaled depth image and the third row is the MND depth image. (a) Motion blur produced by fast movement.
(b) Dynamic scenes with pedestrian or other moving objects. (c) Night-time or dimly indoor environments.
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TABLE IV: Indoor relocalization results in challenging scenes with different methods. Our system shows about 30%–70%
improvement in precise compared with PoseNet in these challenging but everyday situations.

Dataset Scale Train/
Test Network architecture Input Median position error Median orientation error

Normal 4×4×1m 5540/
766 PoseNet RGB 0.36m 6.08◦

Normal 4×4×1m 5540/
766 Dual-stream CNN RGB-MND depth (3+3) 0.26m 4.32◦

Fast movement 4×4×1m 5540/
357 PoseNet RGB 0.52m 13.03◦

Fast movement 4×4×1m 5540/
357 Dual-stream CNN RGB-MND depth (3+3) 0.31m 9.00◦

Dynamic 4×4×1m 5540/
964 PoseNet RGB 0.44m 9.82◦

Dynamic 4×4×1m 5540/
964 Dual-stream CNN RGB-MND depth (3+3) 0.32m 8.62◦

Night-time 4×4×1m 3473/
656 PoseNet RGB 1.24m 29.10◦

Night-time 4×4×1m 3473/
656 Dual-stream CNN RGB-MND depth (3+3) 0.39m 7.48◦

Fig. 7: Cumulative histogram of relocalization error for challenging indoor test datasets with the dual-stream CNN. The dual-
stream CNN shows significant advantages over PoseNet especially in the challenging situations.

PoseNet. So does Bayesian dual-stream CNN when compared
with Bayesian PoseNet. When comparing our dual stream
CNN with PoseNet, both position accuracy and orientation
accuracy have gained more than 15% improvement as shown
in table II and table III.

D. Qualitative analysis based on challenging datasets includ-
ing fast movement, night-time, dynamic scenes

This part introduces the advantage of our dual-stream CNN
in indoor relocalization when encountering challenging situa-
tions which other methods can hardly deal with.

All the datasets are collected in our Robot Arena lab
equipped with a motion capture system which can provide
the groundtruth. For night-time scenes, we use Asus Xtion
to collect RGB-D images. For other datasets, we use Kinect
Xbox one. Notice that all the training datasets are collected in
normal environments which means there are no fast movement
of camera, moving objects and dark scenes when collecting the

training dataset. The dual-stream CNN will infer the original
lighting, shape, texture from images when appearance changes,
and then estimate the camera poses.

Fig. 6 shows the color images, depth images and MND
depth images in three challenging scenes. Fast movement of
the camera, dynamic scenes including pedestrians or other
moving objects, night-time scenes are really challenging for
visual localization, but they happen everyday and everywhere
in our life. From the figure we can see that the color images in
these situations are in particularly bad quality. On the contrary,
the depth images maintain all range features without much
information loss. Our dual-stream CNN combining textural,
structural and range features outperforms PoseNet significantly
when encountering these challenging situations. From Table
IV, we can see that there are approximately 27%–68% and
12%–64% improvements to position precision and orientation
precision, respectively, with our system when compared with
PoseNet. The cumulative histograms of indoor relocalization
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error in these situations are plotted in Fig. 7. Our system
performs especially well when faced with fast movement of
the camera and night-time scenes on account of introducing
the depth stream.

We have also tried to use SLAM technology with hand-
crafted features to perform localization in these challenging
environments, but found that most camera poses will be lost
in dynamic and motion blur situations, and the algorithm will
completely lose efficacy in night-time environments.

VI. CONCLUSIONS

In this paper, we have presented a novel dual-stream CNN
for 6-DOF pose regression which shows spectacular perfor-
mance in large scale indoor relocalization. A novel depth
encoding method that takes the minimized normal and depth
(MND) as processed depth image is addressed. Compared with
other encoding methods such as normalized depth or colorized
depth, our MND encoding approach presents comparable per-
formance in relocalization. Moreover, by introducing depth
information with a separate stream, our network could learn
both texture features from color images and structural range
features from depth images. In this way, the relocalization
precision is improved compared with PoseNet, and the system
robustness is greatly enhanced when faced with challenging en-
vironments such as fast movement, dynamic objects and night-
time which other algorithms demonstrate poor performance.
However, when Kinect is faced with direct sunlight, the depth
images will be in bad quality, the localization performance will
degrade and be in greater uncertainty. Although our network
can implement localization in many challenging situations, the
localization accuracy produced by our model is not as good as
geometric method in normal scenes. In the future, we would
like to use features learned from the dual-stream CNN instead
of hand-crafted features in SLAM to expand to the application
of visual localization.
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