42 research outputs found

    A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

    Get PDF
    A Wireless Personal Area Network (WPAN) is an ad hoc network that consists of devices that surround an individual or an object. Bluetooth® technology is especially suitable for formation of WPANs due to the pervasiveness of devices with Bluetooth® chipsets, its operation in the unlicensed Industrial, Scientific, Medical (ISM) frequency band, and its interference resilience. Bluetooth® technology has great potential to become the de facto standard for communication between heterogeneous devices in WPANs. The piconet, which is the basic Bluetooth® networking unit, utilizes a Master/Slave (MS) configuration that permits only a single master and up to seven active slave devices. This structure limitation prevents Bluetooth® devices from directly participating in larger Mobile Ad Hoc Networks (MANETs) and Wireless Personal Area Networks (WPANs). In order to build larger Bluetooth® topologies, called scatternets, individual piconets must be interconnected. Since each piconet has a unique frequency hopping sequence, piconet interconnections are done by allowing some nodes, called bridges, to participate in more than one piconet. These bridge nodes divide their time between piconets by switching between Frequency Hopping (FH) channels and synchronizing to the piconet\u27s master. In this dissertation we address scatternet formation, routing, and security to make Bluetooth® scatternet communication feasible. We define criteria for efficient scatternet topologies, describe characteristics of different scatternet topology models as well as compare and contrast their properties, classify existing scatternet formation approaches based on the aforementioned models, and propose a distributed scatternet formation algorithm that efficiently forms a scatternet topology and is resilient to node failures. We propose a hybrid routing algorithm, using a bridge link agnostic approach, that provides on-demand discovery of destination devices by their address or by the services that devices provide to their peers, by extending the Service Discovery Protocol (SDP) to scatternets. We also propose a link level security scheme that provides secure communication between adjacent piconet masters, within what we call an Extended Scatternet Neighborhood (ESN)

    Can Bluetooth Succeed as a Large-Scale Ad Hoc Networking Technology?

    Get PDF
    We investigate issues that Bluetooth may face in evolving from a simple wire replacement to a large-scale ad hoc networking technology. We do so by examining the efficacy of Bluetooth in establishing a connected topology, which is a basic requirement of any networking technology. We demonstrate that Bluetooth experiences some fundamental algorithmic challenges in accomplishing this seemingly simple task. Specifically, deciding whether there exists at least one connected topology that satisfies the Bluetooth constraints is NP-hard. Several implementation problems also arise due to the internal structure of the Bluetooth protocol stack. All these together degrade the performance of the network, or increase the complexity of operation. Given the availability of efficient substitute technologies, Bluetooth’s use may end up being limited to small ad hoc networks

    Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information

    Full text link
    We consider ad-hoc networks consisting of nn wireless nodes that are located on the plane. Any two given nodes are called neighbors if they are located within a certain distance (communication range) from one another. A given node can be directly connected to any one of its neighbors and picks its connections according to a unique topology control algorithm that is available at every node. Given that each node knows only the indices (unique identification numbers) of its one- and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at most 5n5n edges and a maximum node degree of 1010. Existing algorithms with the same promises further require neighbor distance and/or direction information at each node. We also evaluate the performance of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected network with n(1+o(1))n(1+o(1)) edges with a degree less than or equal to 66 for 1o(1)1-o(1) fraction of the nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an upper bound as well as a lower bound on node degrees.Comment: To appear in IEEE Transactions on Communication

    Distributed Topology Organization and Transmission Scheduling in Wireless Ad Hoc Networks

    Get PDF
    An ad hoc network is a set of nodes that spontaneously form a multi-hop all-wireless infrastructure without centralized administration. We study two fundamental issues arising in this setting: topology organization and transmission scheduling. In topology organization we consider a system where nodes need to coordinate their transmissions on a non-broadcast frequency hopping channel to discover each other. We devise a symmetric technique where two nodes use a randomized schedule to synchronize and connect in minimum time. This forms the basis for a topology construction protocol where a set of initially unsynchronized nodes are quickly grouped in multiple interconnected communication channels such that the resulting topology is connected subject to channel membership constraints imposed by the physical layer. In the transmission scheduling problem we consider Time Division Multiple Access (TDMA)the network operates with a schedule where at each slot transmissions can be scheduled without conflicts at the intended receivers. TDMA can provide deterministic allocations but typically relies on two restrictive assumptions: network-wide slot synchronization and global knowledge of network topology and traffic requirements. We first introduce an asynchronous TDMA communication model where slot reference for each link is provided locally by the clock of one of the node endpoints. We study the overhead introduced when nodes switch among multiple time references and propose algorithms for its minimization. We then introduce a distributed asynchronous TDMA protocol where nodes dynamically adjust the rates their adjacent links via local slot reassignments to reach a schedule that realizes a set of optimal link rates. We introduce fairness models for both links and multi-hop sessions sharing the network and devise convergent distributed algorithms for computing the optimal rates for each model. These rates are enforced by a distributed algorithm that decides the slots reassigned during each link rate adjustment. For tree topologies we introduce an algorithm that incrementally converges to the optimal schedule in finite time; for arbitrary topologies an efficient heuristic is proposed. Both topology organization and transmission scheduling protocols are implemented over Bluetooth, a technology enabling ad hoc networking applications. Through extensive simulations they demonstrate excellent performance in both static and dynamic scenarios

    A survey on Bluetooth multi-hop networks

    Get PDF
    Bluetooth was firstly announced in 1998. Originally designed as cable replacement connecting devices in a point-to-point fashion its high penetration arouses interest in its ad-hoc networking potential. This ad-hoc networking potential of Bluetooth is advertised for years - but until recently no actual products were available and less than a handful of real Bluetooth multi-hop network deployments were reported. The turnaround was triggered by the release of the Bluetooth Low Energy Mesh Profile which is unquestionable a great achievement but not well suited for all use cases of multi-hop networks. This paper surveys the tremendous work done on Bluetooth multi-hop networks during the last 20 years. All aspects are discussed with demands for a real world Bluetooth multi-hop operation in mind. Relationships and side effects of different topics for a real world implementation are explained. This unique focus distinguishes this survey from existing ones. Furthermore, to the best of the authors’ knowledge this is the first survey consolidating the work on Bluetooth multi-hop networks for classic Bluetooth technology as well as for Bluetooth Low Energy. Another individual characteristic of this survey is a synopsis of real world Bluetooth multi-hop network deployment efforts. In fact, there are only four reports of a successful establishment of a Bluetooth multi-hop network with more than 30 nodes and only one of them was integrated in a real world application - namely a photovoltaic power plant. © 2019 The Author

    MFACE: A Multicast Backbone-Assisted Face Traversal Algorithm for Arbitrary Planar Ad Hoc and Sensor Network Topologies

    Get PDF
    Face is a well-known localized routing protocol for ad hoc and sensor networks which guarantees delivery of the message as long as a path exists between the source and the destination. This is achieved by employing a left/right hand rule to route the message along the faces of a planar topology. Although face was developed for the unicast case, it has recently been used in combination with multicasting protocols, where there are multiple destinations. Some of the proposed solutions handle each destination separately and lead thus to increased energy consumption. Extensions of face recovery to the multicast case described so far are either limited to certain planar graphs or do not provide delivery guarantees. A recently described scheme employs multicast face recovery based on a so called multicast backbone. A multicast backbone is a Euclidean spanning tree which contains at least the source and the destination nodes. The idea of backbone assisted routing it to follow the edges of the backbone in order to deliver a multicast message to all spanned destination nodes. The existing backbone face routing scheme is however limited to a certain planar graph type and a certain backbone construction. One of the key aspects of the multicast face algorithm MFACE we propose in this work is that it may be applied on top of any planar topology. Moreover, our solution may be used as a generic framework since it is able to work with any arbitrary multicast backbone. In MFACE, any edge of the backbone originated at the source node will generate a new copy of the message which will be routed toward the set of destination nodes spanned by the corresponding edge. Whenever the message arrives at a face edge intersected by a backbone edge different from the initial edge, the message is split into two copies, both handling a disjoint subset of the multicast destinations which are defined by splitting the multicast backbone at that intersection point

    A Novel Family of Geometric Planar Graphs for Wireless Ad Hoc Networks

    Get PDF
    International audienceWe propose a radically new family of geometric graphs, i.e., Hypocomb, Reduced Hypocomb and Local Hypocomb. The first two are extracted from a complete graph; the last is extracted from a Unit Disk Graph (UDG). We analytically study their properties including connectivity, planarity and degree bound. All these graphs are connected (provided the original graph is connected) planar. Hypocomb has unbounded degree while Reduced Hypocomb and Local Hypocomb have maximum degree 6 and 8, respectively. To our knowledge, Local Hypocomb is the first strictly-localized, degree-bounded planar graph computed using merely 1-hop neighbor position information. We present a construction algorithm for these graphs and analyze its time complexity. Hypocomb family graphs are promising for wireless ad hoc networking. We report our numerical results on their average degree and their impact on FACE routing. We discuss their potential applications and some open problems
    corecore