83 research outputs found

    Dimensional Analysis of Acid Etching Effects on Vertically Grown Carbon Nanofibers Using Atomic Force Microscopy

    Get PDF
    This paper presents a discrete-time decentralized control scheme for trajectory tracking of a two degrees of freedom (DOF) robot manipulator. A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The weights for each neural network are adapted online by an extended Kalman filter training algorithm. The motion for each joint is controlled independently using only local angular position and velocity measurements. The stability analysis for the closed-loop system via the Lyapunov approach is included. Finally, the real-time results show the feasibility of the proposed control scheme robot manipulator

    Physiochemical and Nanomanipulation Studies of Carbon Nanomaterials

    Get PDF
    Carbon nanomaterials are, without a doubt, one of man\u27s wonder creations. Though these nanomaterials are a very recent trend, extraordinary electromechanical properties and the light weightiness of these nanomaterials attracted the attention of researchers. Although vast research has been done since the start of the US nanotechnology initiative, much effort was in the area of synthesis and characterization of the nanomaterials. However, most of the traditional macroscopic material\u27s theories fail at the nanoscale level, and since the material properties are dependent on size and structure at nanoscale level, the behavior of the carbon nanomaterials in different environments needs attention. High tensile strength and high tensile modulus with low weight make these nanomaterials ideal for light weighted structures. Thus, many space organizations like NASA are conducting research on these exciting nanomaterials. Hence, dimensional changes of carbon nanofibers in the ambient and subzero temperature ranges was quantified and statistically analyzed. Mechanical properties of the carbon nanofibers both at room temperature and in subzero temperature range was measured using AFM based nanoindentation. Inability to control the orientation of the nanomaterials and lack of material integration to substrate were the primary causes for selecting synthesis over deposition even though the former is a cumbersome process. The challenge of nanomaterials integration to substrates can be mitigated by synthesis of nanocomposites, which are hybrid materials with enhanced electromechanical properties and better substrate integration, and the challenge of orientation can be mitigated by nanopatterning i.e., creating the channels using AFM based picolithography. These methods were demonstrated in this thesis

    Design, Fabrication, Testing of CNT Based ISFET and Characterization of Nano/Bio Materials Using AFM

    Get PDF
    A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor (ISFET) is designed and experimentally verified in order to develop the next generation ion concentration sensing system. Micro Electro-Mechanical System (MEMS) fabrication techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and nanomachining is highly controllable, nanochannels are precisely scratched in the area between the source and drain of the FET where the inversion layer is after the ISFET is activated. Thus, a bundle of CNTs are able to be aligned inside a single nanochannel by Dielectrophoresis (DEP) and the drain current is improved greatly due to CNTs` remarkable and unique electrical properties, for example, high current carrying capacity. ISFET structures with or without CNTs are fabricated and tested with different pH solutions. Besides the CNT-ISFET pH sensing system, this dissertation also presents novel AFM-based nanotechnology for learning the properties of chemical or biomedical samples in micro or nano level. Dimensional and mechanical property behaviors of Vertically Aligned Carbon Nanofibers (VACNFs) are studied after temperature and humidity treatment using AFM. Furthermore, mechanical property testing of biomedical samples, such as microbubbles and engineered soft tissues, using AFM based nanoindentation is introduced, and the methodology is of great directional value in the area

    Carbon Nanotube Arrays for Intracellular Delivery and Biological Applications

    Get PDF
    Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, modify gene expression in immortalized cells, primary cells, and stem cells, and intoduces new approaches for clinical diagnostics and therapeutics. Current gene transfer technologies, including lipofection, electroporation, and viral delivery, have enabled break-through advances in basic and translational science to enable derivation and programming of embryonic stem cells, advanced gene editing using CRISPR (Clustered regularly interspaced short palindromic repeats), and development of targeted anti-tumor therapy using chimeric antigen receptors in T-cells (CAR-T). Despite these successes, current transfection technologies are time consuming and limited by the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. Moreover, many cell types cannot be consistently transfected by lipofection or electroporation (stem cells, T-cells) and viral delivery has limitations to the size of experimental DNA that can be packaged. In this dissertation, a novel coverslip-like platform consisting of an array of aligned hollow carbon nanotubes (CNTs) embedded in a sacrificial template is developed that enhances gene transfer capabilities, including high efficiency, low toxicity, in an expanded range of target cells, with the potential to transfer mixed combinations of protein and nucleic acids. The CNT array devices are fabricated by a scalable template-based manufacturing method using commercially available membranes, eliminating the need for nano-assembly. High efficient transfection has been demonstrated by delivering various cargos (nanoparticles, dye and plasmid DNA) into populations of cells, achieving 85% efficiency of plasmid DNA delivery into immortalized cells. Moreover, the CNT-mediated transfection of stem cells shows 3 times higher efficiency compared to current lipofection methods. Evaluating the cell-CNT interaction elucidates the importance of the geometrical properties of CNT arrays (CNT exposed length and surface morphology) on transfection efficiency. The results indicate that densely-packed and shortly-exposed CNT arrays with planar surface will enhance gene delivery using this new platform. This technology offers a significant increase in efficiency and cell viability, along with the ease of use compared to current standard methods, which demonstrates its potential to accelerate the development of new cell models to study intractable diseases, decoding the signaling pathways, and drug discovery

    Carbon-Based Nanomaterials for (Bio)Sensors Development

    Get PDF
    Carbon-based nanomaterials have been increasingly used in sensors and biosensors design due to their advantageous intrinsic properties, which include, but are not limited to, high electrical and thermal conductivity, chemical stability, optical properties, large specific surface, biocompatibility, and easy functionalization. The most commonly applied carbonaceous nanomaterials are carbon nanotubes (single- or multi-walled nanotubes) and graphene, but promising data have been also reported for (bio)sensors based on carbon quantum dots and nanocomposites, among others. The incorporation of carbon-based nanomaterials, independent of the detection scheme and developed platform type (optical, chemical, and biological, etc.), has a major beneficial effect on the (bio)sensor sensitivity, specificity, and overall performance. As a consequence, carbon-based nanomaterials have been promoting a revolution in the field of (bio)sensors with the development of increasingly sensitive devices. This Special Issue presents original research data and review articles that focus on (experimental or theoretical) advances, challenges, and outlooks concerning the preparation, characterization, and application of carbon-based nanomaterials for (bio)sensor development

    Nanoscale Carbon-Based Electrochemical and Temperature Sensors

    Get PDF
    Nanoscale sensors are required to study the interesting and complex physical, chemical, and biological phenomenon which occurs in microdomains. Carbon-based nanostructures (CNS) have been utilized in nanosensors with applications in many fields due to their versatility and unique properties. Several manufacturing processes can be used to produce CNSs though they often are expensive and require time-consuming purification and micro-assembly processes to integrate them into larger structures. Here, novel silica-based structures are explored as unique templates on which to form CNSs that are easily integrated into sensors which can directly interface with standard laboratory equipment. The high electrical conductivity of CNSs enables the structures to be modified through an electrodeposition process to produce a chemical and a physical sensor. Specifically, this work describes the design, fabrication, and characterization of a nanoscopic thermocouple and electrochemical sensor. The thermocouple developed through this research uses a novel manufacturing method and set of materials to overcome the reduction in thermoelectric performance associated with small sensor sizes. The electrochemical sensor presented in this work overcomes challenges associated with other nanoscale sensors by allowing a working and reference electrode to be located within 50 nm of each other, minimizing the overall sensor footprint. This work presents a novel and efficient method of preparing unique carbon-based sensors

    DEVELOPING NANOPORE ELECTROMECHANICAL SENSORS WITH TRANSVERSE ELECTRODES FOR THE STUDY OF NANOPARTICLES/BIOMOLECULES

    Get PDF
    This study concerns development of a technology of utilizing metallic nanowires for a sensing element in nanofluidic single molecular (nanoparticle) sensors formed in plastic substrates to detect the translocation of single molecules through the nanochannel. We aimed to develop nanofluidic single molecular sensors in plastic substrates due to their scalability towards high through and low cost manufacturing for point-of-care applications. Despite significant research efforts recently on the technologies and applications of nanowires, using individual nanowires as electric sensing element in nanofluidic bioanalytic devices has not been realized yet. This dissertation work tackles several technical challenges involved in this development, which include reduction of nanowire agglomerates in the deposition of individual nanowires on a substrate, large scale alignment/assembly of metallic nanowires, placement of single nanowires on microelectrodes, characterization of electrical conductance of single nanowire, bonding of a cover plate to a substrate with patterned microelectrodes and nanowire electrodes. Overcoming the abovementioned challenges, we finally demonstrated a nanofluidic sensor with an in-plane nanowire electrode in poly(methyl methacrylate) substrates for sensing single biomolecules. In the first part of this study, we developed the processes for separation and large-scale assembly of individual NiFeCo nanowires grown using an electrodeposition process inside a porous alumina template. A method to fabricate microelectrode patterns on plastic substrates using flexible stencil masks was developed. We studied electrical and magnetic properties of new composite core-shell nanowires by measuring the electrical transport through individual nanowires. The core-shell nanowires were composed of a mechanically stable FeNiCo core and an ultrathin shell of a highly conductive Au gold (FeNiCo-Au nanowires). In the second part of this study, we simulated the effects of the nanopore geometry on the current drop signal of the translocation through a nanopore via finite element method using COMSOL. Using the above techniques, we developed for the fabrication and alignment of the microelectrodes and nanowires, we studied the optimum conditions to integrate the transverse nanoelectrode with the nanochannel on plastic substrates. The main challenge was to find the conditions to embed the micro-/nanoelectrodes into the nanochannel substrate as well as the nanochannel cover sheet

    Advances in Nano Neuroscience: From Nanomaterials to Nanotools

    Get PDF
    During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues in vitro and in vivo

    Design, development and characterization of nanostructured electrochemical sensors

    Get PDF
    This is a publication-based thesis which focuses on the study of electrochemical microbiosensors for glucose detection. It investigates applications of a series of microfabricated gold electrodes based on several nanostructures in electrochemical biosensing technologies, embracing three major methodologies: direct electro-catalytic detection, enzymatic detection and dual-enzyme cascade detection. The study is described over five main chapters with a sixth providing a summary of the material presented and perspectives for the future. Chapter 1 provides an introduction to the field of the electrochemical biosensors with a specific focus on the chosen nanostructures and miniaturized systems, as well as a brief history of the biosensor. Chapter 2 presents results published in ACS Applied Nanomaterials, 2019, 2, 9, 5878-5889. It demonstrates the enzyme free detection of glucose via a direct electro-catalytic reaction. The miniaturized band array electrodes with specific width, length and inter-electrode-distance were integrated with homogeneously distributed copper foam nano dendrites. Such foam deposits presented for the first time at the micro scale were achieved using the in-situ hydrogen bubble template method. The resulting very high electroactive surface area of the porous foam deposits was one of the major advantages in terms of achieving superior performance from each micro band foam electrode towards glucose detection. Moreover, both sensors also showed a strong resistance to the poisoning effects of chloride ions and displayed excellent stability over a period of three months.Chapter 3 presents the first of t wo sets of results for the enzymatic detection of glucose, results published in Elsevier Electrochimica Acta, 2019, 293, 307-317. Chapter 4 then presents the second set of results on this topic which is published in and Elsevier Electrochimica Acta, 2019, 298, 97-105. The aim of these two chapters is to discuss the effect of miniaturization on the enzymatic biosensor performance which was studied in the presence of a carbon quantum dot (CQD) and gold nanoparticle nanohybrid system. CQDs, are a new class of carbon-based materials and have been used here for the first time as a matrix component integrated onto microfabricated gold electrode surfaces for enzyme immobilization and further miniaturization. The biosensors developed were studied by electrochemistry to investigate the analytical performance of each device. By scaling down the surface area of the biosensor, a 13-times increase in sensitivity was achieved towards glucose. Moreover both sensors-planar, micro disk array- exhibited excellent reproducibility, reusability and operational stability in terms of the performance of biosensors. Chapter 5 presents results published in RSC Analyst, 2020 (DOI: 10.1039/C9AN01664C). It demonstrates the operation of a dual-enzyme cascade which was constructed onto a micro band array electrode based on glucose oxidase and horseradish peroxidase enzymes. To achieve a very high surface area, a porous gold-foam was electrodeposited onto surface and then a second electrodeposition layer of chitosan and multi walled carbon nanotube nano-bio-composite. The micro band cascade scheme developed exhibited the highest sensitivity towards glucose detection in comparison to other systems reported in the literature. Chapter 6 provides an insight into the field of electrochemical biosensing with the support of the achievements presented in this thesis. Thus, by taking advantage of the available system, this chapter discusses the possible future applications of the electrochemical biosensors. The thesis then ends with section 7 which presents some Appendices

    High Aspect Ratio-Nanostructured Surfaces as Biological Metamaterials

    Get PDF
    Materials patterned with high-aspect-ratio nanostructures have features on similar lengthscales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells’ ability to sense and respond to external forces, influencing cell fate and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in non-animal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell – nanostructure interface. Here, we consider how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems and discuss remaining research questions
    • …
    corecore