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ABSTRACT 

A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor 

(ISFET) is designed and experimentally verified in order to develop the next generation ion 

concentration sensing system. Micro-Electro-Mechanical System (MEMS) fabrication 

techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are 

required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, 

Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for 

creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and 

nanomachining is highly controllable, nanochannels are precisely scratched in the area between 

the source and drain of the FET where the inversion layer is after the ISFET is activated. Thus, a 

bundle of CNTs are able to be aligned inside a single nanochannel by Dielectrophoresis (DEP) 

and the drain current is improved greatly due to CNTs‘ remarkable and unique electrical 

properties, for example, high current carrying capacity. ISFET structures with or without CNTs 

are fabricated and tested with different pH solutions. Besides the CNT-ISFET pH sensing system, 

this dissertation also presents novel AFM-based nanotechnology for learning the properties of 

chemical or biomedical samples in micro or nano level. Dimensional and mechanical property 

behaviors of Vertically-Aligned Carbon Nanofibers (VACNFs) are studied after temperature and 

humidity treatment using AFM. Furthermore, mechanical property testing of biomedical samples, 

such as microbubbles and engineered soft tissues, using AFM based nanoindentation is 

introduced, and the methodology is of great directional value in the area. 
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Chapter I. INTRODUCTION 

Along with human being‘s non-stop progress in science and technology, especially in the 

areas of micro-electro-mechanical systems (MEMS) over the last decade, nano materials are 

becoming more realistic and popular in engineering, biological, chemical, and medical fields to 

name a few. Thus, a combination of traditional MEMS fabrication techniques and advanced 

manipulation in nanoscale level is currently fast-moving in order to satisfy the contemporary 

research requirement. In this dissertation, a completely novel concept for the next generation ion 

concentration sensing system is proposed and experimentally verified. In this concept, carbon 

nanotubes (CNTs) are brought into the design and fabrication of Ion-Sensitive Field Effect 

Transistor (ISFET). Due to the unique electrical properties of CNTs, such as the excellent 

conductivity and high current carrying capacity, they possess huge potential to improve the 

performance of existing ISFETs as a pH sensor. Additionally, Atomic Force Microscopy (AFM) 

is one of the most famous tools in the nano world. Besides the surface nanomachining involved 

in developing CNT-ISFET pH sensor, this dissertation also talks about several practical 

characterizations and manipulations using AFM techniques. The characterization of physical 

properties of Vertically-Aligned Carbon Nanofibers (VACNFs), which are designed and grown 

on nanoelectrodes for sensing application, is performed by AFM to study how their physical 

behaviors change under different environmental conditions. AFM based nanoindentation 

methodology for mechanical properties testing of nano/bio samples is very critical because 

conventional methods have met their limits when dealing with these tiny and fragile samples. 

The dimensional data of VACNFs is not only used for the examination after the growth but also 

regarded as an important reference for further treatment, for example, temperature, humidity and 

etchant. Furthermore, the Young‘s Moduli of some biological samples such as soft tissue 
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scaffolds and protein microbubbles are obtained, which has a significant value and impact in the 

field. 

1.1 Micro/Nano Materials and Tools 

1.1.1 Background of Nanotechnology 

Nanotechnology is the engineering of functional systems at the molecular scale. Base on this 

definition, nanotechnology is quite diverse. It ranges from extensions of conventional device 

physics to completely new approaches based on molecular self-assembly, from developing new 

materials with dimensions in the nanoscale to direct control of matter on the atomic scale. 

Generally, nanotechnology deals with structures sized between 1 to 100 nm (1 nm = 10
-9

 m) in at 

least one dimension, and involves developing materials or devices possessing at least one 

dimension within that size. The origins of nanotechnology are traced back to 1980s. During that 

period, several remarkable research breakthroughs took place, such as the invention of the 

scanning tunneling microscope in 1981 [1] and the discovery of fullerenes in 1985 [2]. They 

were the marks that the gate of nano world was opened. Since then, nanotechnology has become 

extremely important especially in research and development—from academia to industry 

applications. Researchers have already realized that at present nanotechnology is one of the keys 

to make the world a better place and devoted themselves into the field, for example 

nanotechnology in medicine for cancer cure. Researchers from other categories, for instance 

biology and medicine, have found interactions with and benefited from nanotechnology. In 2006, 

Dr. Mihail Roco, who is the chair of the US National Science and Technology Council 

subcommittee on Nanoscale Science, Engineering and Technology and has played a leadership 

role in the US National Nanotechnology Initiative, described four generations of the 

development of nanotechnology as shown in Figure 1.1 [3]. 
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Figure 1.1: Four generations of nanotechnology development. 

Nanomaterials and nanotools are the necessary components in nanotechnology. 

Nanomaterials can be regarded as a field that takes a material science based approach to 

nanotechnology. It studies materials with morphological features on nanoscale and especially 

those that have unique properties due to their nano dimensions. In general, nanomaterials are 

divided into two forms—fullerenes and nanoparticles. In fullerenes, C60 is the first discovered, 

and Carbon Nanotube (CNT) is one of the most famous nanomaterials. Two forms of 

nanoparticles are quantum dots and chemical catalysts. One of the most important aspects of 

nanotechnology is the vastly increased ratio of surface area to volume in various nanomaterials. 

In the rest of this chapter, micro/nano materials, manipulations, devices and tools, which are 

involved in this dissertation, are introduced. 
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1.1.2 Vertically Aligned Carbon Nanofibers 

With recent increase in pathogen outbreaks in water, food and other media, new methods and 

technologies for detection and quantification are needed. These devices and systems will need to 

be fast, reliable, ultrasensitive, portable, and automated. For several decades, detection heavily 

relied on an indicator organism approach to assess the microbiological quality of drinking water. 

But an increased understanding of the diversity of waterborne pathogens has concluded that the 

use of bacterial indicators may not be as universally protective as was once thought [4]. Newer 

methods involving immunofluorescence techniques and nucleic acid analysis provide valuable 

opportunities for rapid and more specific analytical methods. Particularly, electrochemical (EC) 

biosensors are attractive for detecting a wide range of species, including proteins, nucleic acids, 

small molecules and viruses because of their relative simplicity, portability, low cost and low 

power requirement. EC biosensors consist of two primary components: a recognition layer 

containing a biomolecule and an electrochemical signal transducer. They make use of 

electrochemical reactions or the surface property changes upon target binding. Advances in 

microfabrication technology have provided electrode configurations such as microelectrode 

arrays [5] and interdigitated arrays (IDA) [6], but their performance can be further enhanced by 

miniaturizing to nanoscale. Recent progress in nanofabrication technologies like electron beam 

lithography and nanoimprinting enable fabrication of one-dimensional nanostructure electrodes, 

like carbon nanofibers [7][8][9], carbon nanotube bundles [10][11], nanoscale IDA [12], silicon 

nanowires [13] and diamond nanowires [14], which are capable of high spatial and temporal 

resolutions, possibly yielding sufficient sensitivity to single molecule detection. Among various 

types of one-dimensional nanoscale electrodes, Vertically Aligned Carbon Nanofibers (VACNFs) 

have received tremendous attention because of their attractive properties such as high electrical 
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and thermal conductivities, superior mechanical strength, a wide electrochemical potential 

window, flexible surface chemistry and biocompatibility [15][16]. Compared to other carbon 

materials such as glassy carbon, carbon black, carbon microfibers, and pyrolytic graphite, the 

open-ended VACNF arrays present well-defined edgeplane structure suitable for selective 

covalent functionalization of primary amine-terminated oligonucleotide probes. Thus, the 

microchip, a 3×3 array biosensor using nanopatterned VACNF array for detection of chemical 

particles, such as E. coli O157:H7, has been achieved [17].  

Figure 1.2 illustrates the VACNFs through Scanning Electron Microscope (SEM) [17], 

where (a) as-grown forest-like VACNFs, (b) as-grown patterned VACNF arrays on 100 nm 

diameter Ni spots using e-beam lithography, (c) the surface of polished VACNFs embedded in 

SiO2 matrix, and (d) the surface of polished patterned VACNF array embedded in SiO2 matrix. 

(a) and (b) are 30° perspective views while (c) and (d) are top views. The scale bars from (a) to 

(d) are 3, 1, 2 and 1 µm, respectively.  

 

Figure 1.2: SEM images of VACNFs. 
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1.1.3 Carbon Nanotube 

Carbon Nanotubes (CNTs) closely resemble hollow graphite fibers that exist in entangled 

bundles of tens to hundreds. They come in two different forms: Multi-Walled Carbon Nanotubes 

(MWCNTs) and Single-Walled carbon nanotubes (SWCNTs).  SWCNTs and MWCNTs range in 

diameter from 1-10 nm and 10-50 nm respectively. About 70-80% of SWCNTs tend to contain 

semiconducting properties, whereas 70-80% of MWCNTs tend to contain metallic properties 

[18][19][20]. CNTs have also been known to possess remarkable electrical, mechanical, and 

thermal properties [21]. Metallic CNTs can be used as connecting wires for Micro-Electro-

Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS) because of their 

size and low resistance, while semiconducting CNTs can be used for nano transistors [22]. 

Figure 1.3 presents the CNTs with approximate sizes, and Table 1.1 gives their properties. 

 

Figure 1.3: Carbon Nanotubes (a) SWCNT and (b) MWCNT. 



7 
 

Property Item Data Potential Application 

Geometrical 

Layers Single/multiple 

Structures, probes, 

grippers/tweezers, scissors 

Aspect ratio 10-1000 

Diameter 

~ 0.4nm to 3nm (SW) 

~ 1.4 nm to >100 nm 

(MW) 

Length Several µm to cm 

Mechanical 

Young‘s 

Modulus 
~ 1TPa (steel: 0.2TPa) 

Tensile strength 45GPa (steel: 2GPa) 

Density 
~ 1.33-1.4g/cm

3
 (Al: 

2.7g/cm
3
) 

Interlayer 

friction 
Ultrasmall 

Actuators, bearings, syringes, 

switches, memories 

Electronic 

Conductivity Metallic/semiconducting 
Diodes, transistors, switches, 

logic gates 

Current carrying 

capacity 

~ 1TA/cm
3
 (Cu: 

1GA/cm
3
) 

Wires/cables 

Field emission 
Activate phosphorus at ~ 

1-3V 
Proximity/position sensors 

Electromechanical Piezoresistivity Positive/negative 
Deformation/displacement 

sensors 

Thermal 
Heat 

transmission 

>3kW/mK (diamond: 

2kW/mk) 

Circuits, sensors, thermal 

actuators 

Table 1.1: Properties of CNTs. 

1.1.4 Dielectrophoresis 

Electrophoresis is the movement of a particle with a non-zero net charge produced by the 

Coulomb force. Biological particles generally have a finite surface charge density (usually 

negative, due to the presence of acid groups on the surface) and observation of the movement of 

these particles in a uniform electric field is used both to characterize and to separate particles. 

The Coulomb force FEP on a particle is given by the product of the electric field E and the charge 

Q on the particle as shown in Equation (1.1): 

         ∫       (1.1) 
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where Q is the total charge on the particle which, if the particle has a surface charge density ζp, is 

given by the integral of this charge density over the closed surface S of the particle. In an AC 

electric field, the movement due to this force is oscillatory with zero time-average. 

The force on an induced dipole is called Dielectrophoresis (DEP). DEP is the motion of a 

particle produced by the interaction of a non-uniform electric field with the induced effective 

dipole moment of the particle. If the field is uniform, the force on each of the two poles of the 

dipole is equal and opposite and there is no movement. If the field is non-uniform, however, the 

two forces are not equal and the particle moves. Figure 1.4 shows the principle of DEP force. 

The DEP force does not require the particle to be charged, and all the particles exhibit 

dielectrophoretic activity in the presence of the electric fields. The strength of the force strongly 

depends on the electrical properties of the medium and particle, the shape and size of the particle, 

as well as the frequency and magnitude of the electric field. For a spherical particle, the full 

expansion for the time averaged DEP force is [23]: 

                   | |  (1.2) 

where εm is the dielectric constant of the medium, r is the particle radius, E is the root-mean-

square (RMS) value of the electric field, and fCM is the Clausius-Mossotti factor. Additionally, 

Equation (1.3) gives the method how to determine the Clausius-Mossotti factor: 

     
  

    
 

  
     

 
 (1.3) 

where ε
*
 is the complex dielectric constant and can be determined by Equation (1.4), ep and em 

represent the particle and medium , respectively. 

      
 

  
 (1.4) 



9 
 

where ζ is the electrical conductivity, w is the angular frequency, and j is the imaginary unit. 

Furthermore, DEP forces can be either positive or negative. Positive DEP occurs if the 

polarisability of the particle is greater than the suspending medium (Re[fCM]>0), and the particle 

moves towards regions of high electric field strength. Negative DEP occurs if the polarisability 

of the particle is less than the suspending medium (Re[fCM]<0), and the particles are repelled 

from the regions of high filed strength. Consequently, non-uniform electric fields with a 

particular frequency can manipulate particles with great selectivity, which has allowed the 

separation of cells, the orientation and manipulation of nanoparticles and nanowire [20][24][25]. 

 

Figure 1.4: Principle of DEP force. 

1.1.5 Ion Selective Field Effect Transistor 

ISFET has often been used to measure ion concentrations in solutions for more than 30 years. 

The output signal of the ISFETs is usually a potential difference the magnitude of which varies 

with the change of logarithm of sensed ion activity or concentration. However, in theory, when 

the ion concentration, such as pH, changes, the drain current ID changes due to the effective 

electrical resistance of the surface inversion layer and the voltage difference VD between the 

source and drain. In practice, ID can be kept as constant by adjusting the gate voltage VG while 
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VD is also a constant. Here, the solution is used as the gate electrode instead of the traditional 

metal gate. The voltage between substrate and oxide surfaces arises due to an ions‘ sheath. 

ISFET's source and drain are constructed similar to a Metal-oxide Semiconductor Field-Effect 

Transistor (MOSFET) [26]. Although an ISFET is similar to a MOSFET, there are still some 

differences. As shown in Figure 1.5 (1 drain, 2 source, 3 substrate, 4 insulator, 5 metal contacts, 

6 reference electrode, 7 solution, 8electroactive membrane, 9 encapsulant, and 10 inversion 

layer), the metal gate is replaced by the metal of a reference electrode, whilst the target liquid in 

which this electrode is present makes contact with the bare gate insulator. Both MOSFET and 

ISFET have the same equivalent circuit. The inversion layer formed at SiO2-Si interface, and the 

electrons are supplied by the n
+
-source region while the n

+
-drain region is needed to make the 

electrons flow. Figure 1.6 is a diagram of the complete electrochemical system, together with the 

relevant electrical potentials. An equivalent ISFET gate voltage difference VG
*
 can be defined as 

the electrical potential difference between the bulk phases of the semiconductor and the gate 

material as in Equation (1.5): 

   
             (1.5) 

where, VB is an additional series polarizing potential (gate bias potential), EI is the interfacial 

membrane-solution potential difference generally given by the Nernst or Eisenmann-Nikolsky 

equations, and Vref is the reference electrode potential. Thus, the changes at the solution-

electroactive material interface are reflected in the changes of ID after VB is fixed. 
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Figure 1.5: Schematic of a composite gate, dual dielectric ISFET. 

 

Figure 1.6: Potential difference contributions of composite gate, dual dielectric ISFET. 

1.1.6 Nanoindentation 

Indentation testing is a simple method that consists essentially of touching the material of 

interest whose mechanical properties such as elastic modulus and hardness are unknown with 

another material whose properties are known. The technique has its origin in Mohs‘ hardness 

scale of 1822 in which materials that are able to leave a permanent scratch in another were 

ranked harder material with diamond assigned the maximum value of 10 on the scale. The 
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establishments of the Brinell, Knoop, Vickers, and Rockwell test all follow from a refinement of 

the method of indenting one material with another. Nanoindentation is simply an indentation test 

in which the length scale of the penetration is measured in nanometers (10
-9

 m) rather than 

microns (10
-6

 m) or millimeters (10
-3

 m) [27], and the nanoindentation technique was developed 

in the mid-1970s. Apart from the displacement scale involved, the distinguishing feature of most 

nanoindentation testing is the indirect measurement of the contact area – that is, the area of 

contact between the indenter and the specimen. In conventional indentation tests, the area of 

contact is calculated from direct measurements of the dimensions of the residual impression left 

in the specimen surface upon the removal of load. In nanoindentation tests, the size of the 

residual impression is of the order of microns and too small to be conveniently measured directly. 

Thus, it is customary to determine the area of contact by measuring the depth of penetration of 

the indenter into the specimen surface. This, together with the known geometry of the indenter, 

provides an indirect measurement of contact area at full load. For this reason, nanoindentation 

testing can be considered a special case of the more general terms: depth-sensing indentation 

(DSI) or instrumented indentation testing (IIT). 

In a traditional indentation test (macro or micro indentation), a hard tip whose mechanical 

properties are known (frequently made a very hard material like diamond) is pressed into a 

sample whose properties are unknown. The load placed on the indenter tip is increased as the tip 

penetrates further into the specimen and soon reaches a user-defined value. At this point, the load 

may be held constant for a period or removed. The area of the residual indentation in the sample 

is measured and the hardness, H, is defined as the maximum load, Pmax, divided by the residual 

indentation area, Ar, as in Equation (1.6): 

   
    

  
 (1.6) 
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For most cases, the projected area can be measured directly using light microscopy. As can 

be seen from Equation (1.6), a given load will make a smaller indent in a ―hard material than a 

soft one‖. This technique is limited due to large and varied tip shapes, with indenter rigs which 

do not have very good spatial resolution as the location of the area to be indented is very hard to 

specify accurately. Comparison across experiments, typically done in different laboratories, is 

difficult and meaningless. Nanoindentation improves on these macro and micro indentation tests 

by indenting on the nanoscale with a very precise tip shape, high spatial resolutions to place the 

indents, and by providing real-time load-displacement (into the sample surface) data while the 

indentation is in progress. Instead of other tools for imaging the indentation, an indenter with a 

geometry known to high precision (usually a Berkovich tip [28][29], which has a three-sided 

pyramid geometry) is employed. During the course of the instrumented indentation process, a 

record of the depth of penetration is made, and then the area of the indent is determined using the 

known geometry of the indenter. While indenting, various parameters, such as load and depth of 

penetration, can be measured. A record of these values can be plotted on a graph to create a load-

displacement curve such as the one shown in Figure 1.7. These curves can be used to extract 

mechanical properties of the material [30]. 

1.1.7 Atomic Force Microscopy 

Scanning Probe Microscopy (SPM) is a large and growing collection of techniques for 

investigating the properties of a sample, at or near the sample surface. The SPM instrument has a 

sharp probe with radius of curvature typically in the nanometers or tens of nanometers that is in 

near-contact, intermittent contact, or perpetual contact with the sample surface. Since an SPM is 

used to investigate sample properties at or near the sample surface, that is immediately beneath 

the surface (typically several nanometers deep) and immediately above the surface (typically- 
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Figure 1.7: Schematic of load-displacement curve for an instrumented indentation. 

-several tens of nanometers high). In SPM techniques, the sharp probe (tip) is scanned across a 

sample surface, or the surface is scanned beneath the tip as shown in Figure 1.8. Interactions 

between the tip and sample are detected and mapped. Different techniques sense different 

interactions, which can be used to describe surface topography, adhesion, elasticity, electrostatic 

charge, etc. The small size of the probe is the key to the SPM‘s high resolution. The most 

common SPM images are topography images, in which the third dimension, Z, for any given 

X/Y coordinates, is the relative height of the sample surface. In other types of SPM images, the 

third dimension is a measure of the relative strength of a detectable interaction between the probe 

and sample, such as amplitude and phase. In some instances, the signal from the SPM‘s detector 

is mapped directly, for example, the deflection of the probe cantilever, or the current through a 

conductive tip. SPM also can be used for non-imaging techniques, or nano-manipulation, in 

which the probe is used to modify the sample surface. 
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Figure 1.8: SPM diagram. 

The earliest, widely-adopted SPM technique was Scanning Tunneling Microscopy (STM). 

STM was developed by G. Binnig and H. Rohrer in the early 1980s at IBM Research – Zurich, 

and that was a development which earned them the Nobel Prize for Physics in 1986 [31]. In STM, 

a bias voltage is applied between a sharp, conducting tip and the sample. When the tip 

approaches the sample, electrons ―tunnel‖ through the narrow gap, either from the sample to the 

tip or vice versa, depending on the bias voltage. Changes of only 0.1nm in the separation 

distance cause an order of magnitude difference in the tunneling current, giving STM remarkably 

high precision. Figure 1.9 shows the basic STM schematic. 
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Figure 1.9: STM schematic. 

STM can image a sample surface in either constant current or constant height mode. In 

constant height mode, the tip remains in a constant plane above the sample, and the tunneling 

current varies depending on topography and local surface properties. The tunneling current 

measured at each location constitutes the image. The sample surface, however, must be relatively 

smooth in order for the system to acquire useful information. In constant current mode, a 

feedback loop is used to adjust the height of the tip in order to hold the tunneling current at a 

setpoint value. The scanner height measured at each location is then used to map the surface 

topography. Because the feedback response requires time, constant current mode is typically 

slower than constant height mode. However, greater variations in height can be accommodated. 

For electron tunneling to occur, both the sample and tip must be conductive or semi-conductive. 
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Therefore, STM cannot be used on insulating materials. This is one of the significant limitations 

of STM, which led to the development of the other SPM methods. 

Atomic Force Microscopy (AFM) can resolve features as small as an atomic lattice, for either 

conductive or non-conductive samples. AFM provides high-resolution and three-dimensional 

information, with little sample preparation. The technique makes it possible to image in-situ, in 

fluid, under controlled temperature and in other controlled environments. The first atomic force 

microscope was invented by G. Binnig, C. F. Quate, and Ch. Gerber in 1986 [32], and the first 

commercially available atomic force microscope was introduced in 1989. At present, AFM is 

one of the foremost tools for imaging, measuring, and manipulating matter at the nanoscale. The 

potential of AFM has already extended to applications in life science, materials science, 

electrochemistry, polymer science, biophysics, nanotechnology, and biotechnology. 

In AFM, as shown in Figure 1.10, a sharp tip at the free end of a cantilever (the ―probe‖) is 

brought into contact with the sample surface. The tip interacts with the surface, causing the 

cantilever to bend. A laser spot is reflected from the cantilever onto a position-sensitive 

photodiode detector. As the cantilever bends, the position of the laser spot changes. The resulting 

signal from the detector is the deflection, in volts. The difference between the deflection value 

and the user-specified Setpoint is called the ―error signal‖. 

Figure 1.11 shows the force interaction as the tip approaches a sample. At the right side of 

the curve, the tip and sample are separated by large distance. As they approach, tip and sample 

atoms first weakly attract each other. This zone of interaction is known as the ―non-contact‖ 

regime. Closer still, in the ―intermittent contact‖ regime, the repulsive van der Waals force 

predominates. When the distance between tip and sample is just a few angstroms, the forces 

balance, and the net force drops to zero. When the total force becomes positive (repulsive), the 
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atoms are in ―contact‖ regime. The various AFM imaging modes can be generally described by 

their function within these three domains. 

 

Figure 1.10: AFM principles. 

The tip-sample interaction is complicated by additional forces, including strong capillary and 

adhesive forces that attract the tip and sample. The capillary force arises when water, often 

present when imaging in the ambient environment, wicks around the tip, holding the tip in 

contact with the surface. As long as the tip is in contact with the sample, the capillary force 

should be constant because the fluid between the tip and the sample is virtually incompressible.  

The total force that the tip exerts on the sample is the sum of the capillary, adhesive and van der 

Waals forces. The van der Waals force counters almost any force that attempts to push the atoms 
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closer together. When the cantilever pushes the tip against the sample, the cantilever bends rather 

than forces the tip closer to the sample atoms. The deflection, therefore, can be used as a reliable 

indicator of surface topography. 

 

Figure 1.11: Zones of interaction as AFM tip approaches a sample. 

In this dissertation, all the AFM-related work is implemented with Agilent 5500 SPM 

(Agilent Technologies Inc., Santa Clara, CA, USA). Figure 1.12 presents its major components. 

This system offers multiple AFM operational techniques, including contact AFM, intermittent 

contact AFM (Acoustic AC, Magnetic AC, Top Magnetic AC), Current Sensing AFM, Force 

Modulation Microscopy, Lateral Force Microscopy, Dynamic Lateral Force Microscopy, 

Magnetic Force Microscopy, Electrostatic Force Microscopy, and Kelvin Force Microscopy. 

There are two A-type scanners, which are most typically used with the Agilent 5500 SPM and 

need the video system on. The small multi-purpose scanner provides scans up to 9 microns 
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square and is capable of atomic-level resolution imaging; while the large one provides scans up 

to 90 microns square and includes closed-loop positioning, in which ultra-precise positioning and 

more accurate z-position and force control are available. Besides the scan sizes, the large scanner 

also differs from the small one in the vertical servo range, approximately 6 - 9 µm for the large 

scanner versus 2.4 µm for the small one. With these system options, users are able to image, 

measure, and manipulate different samples under various environments, such as vacuum, air, and 

liquid. 

 

Figure 1.12: Major components of Agilent 5500 SPM. 
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1.2 Organization of Dissertation 

The remaining chapters of the dissertation are organized as follows: In Chapter II, literature 

reviews will be given to introduce some related work done by other researchers. The 

methodology of VACNFs‘ dimensional measurement is introduced and the results are 

statistically analyzed in Chapter III. Chapter IV describes how to determine the mechanical 

properties of nano/biomedical samples using AFM-based nanoindentation. The development of 

CNT-ISFET system for pH sensing is discussed in Chapter V. Then, recommendations for future 

work are proposed in Chapter VI. At last, a conclusion of the dissertation is given in Chapter VII. 

  



22 
 

Chapter II. LITERATURE REVIEW 

One of the major limitations in the development of ultra-sensitive electrochemical biosensors 

based on one-dimensional nanostructures is the difficulty involved with reliably fabricating 

nanoelectrode arrays (NEAs). P. Arumugam proposed a simple, robust and scalable wafer-scale 

fabrication method to produce multiplexed biosensors [17]. Each sensor chip consists of nine 

individually addressable arrays that uses electron beam patterned VACNFs as the sensing 

element. To ensure nanoelectrode behavior with higher sensitivity, VACNFs were precisely 

grown on 100 nm Ni dots with 1 µm spacing on each micro pad. Pretreatments by the 

combination of soaking in 1.0 M HNO3 and electrochemical etching in 1.0 M NaOH 

dramatically improved the electrode performance indicated by the decrease of redox peak 

separation in cyclic voltammogram (ΔEp) to ~100 mV and an approximately 200% increase in 

steady-state currents. The electrochemical detection of the hybridization of DNA targets from E. 

coli O157:H7 onto oligonucleotide probes were successfully demonstrated. The 9 arrays within 

the chip were divided into three groups with triplicate sensors for positive control, negative 

control and specific hybridization. It has been proved that the proposed method has the potential 

to be scaled up to 10×10 arrays, which is ideal for detecting a myriad of organisms. In addition, 

such sensors can be used as a generic platform for many electroanalysis applications. However, 

although SEM images of VACNF were shown to prove the growth, 3D size information needs to 

be collected to verify the repeatability of this fabrication method. Furthermore, to learn the 

dimensional change of VACNFs under different treatments, such as temperature, relative 

humidity and etchants, is important for various applications. For example, the behavior of 

dimension and mechanical properties under extreme temperatures will directly determine the 

performance of VACNFs as sensing elements when used in the outer space. 
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There has been considerable recent interest in the mechanical characterization of thin film 

systems and small volumes of material using depth-sensing indentation tests with either spherical 

or pyramidal indenters. Usually, the principal goal of such testing is to extract elastic modulus 

and hardness of the specimen material from experimental readings of indenter load and depth of 

penetration. These readings give an indirect measure of the area of contact at full load, from 

which the mean contact pressure, and thus hardness, may be estimated. The test procedure, for 

both spheres and pyramidal indenters, usually involves an elastic-plastic loading sequence 

followed by an unloading. The validity of the results for hardness and modulus depends largely 

upon the analysis procedure used to process the raw data. Such procedures are concerned not 

only with the extraction of modulus and hardness, but also with correcting the raw data for 

various systematic errors that have been identified for this type of testing. The forces involved 

are usually in the millinewton (10
-3

 N) range and are measured with a resolution of a few 

nanonewtons (10
-9

 N). The depths of penetration are on the order of microns (10
-6

 m) with a 

resolution of less than a nanometer (10
-9

 m). 

At the beginning of the 20
th

 century, indentation tests were first performed by Brinell, using 

spherical and smooth balls from ball bearings as indenters to measure the plastic properties of 

material [33][34]. The Brinell test was quickly adopted as an industrial test method soon after its 

introduction and prompted the development of various macro and micro indentation tests [35]. 

Traditional indentation testing involves optical imaging of the indent, which clearly imposes a 

lower limit on the length scale of the indentation. During the past two decades, the scope of 

indentation testing has been extended down to the nanometer range. This has been achieved 

principally through the development of instruments capable of continuously measuring load and 

displacement throughout an indentation [36][37][38]. In recently developed systems, loads as 
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small as a nano Newton (nN) and displacements of about 0.1 nm can be accurately measured. On 

the other hand, the recognition in the early 1970s that elastic modulus could potentially be 

measured from an indentation load-displacement curve [39] greatly promoted the development 

of instrumented indentation testing methodologies. In recent years, the study of the mechanical 

properties of materials on the nanoscale has received much attention, as these properties are size-

dependent [40][41]. These studies have been motivated partly by the development of 

nanocomposites and the application of nanometer thick films for miniaturization of engineering 

and electronic components [42], and partly by newly available methods of probing mechanical 

properties in small volumes [34][37][38]. The nanoindenter is maturing as an important tool for 

probing the mechanical properties of small-volume materials. Indentation load-displacement data 

contains a wealth of information. From the load-displacement data, many mechanical properties 

such as hardness and elastic modulus can be determined without imaging the indentations 

[34][37]. The nanoindenter has also been used to estimate the fracture toughness of ultrathin 

films [43][44][45], which cannot be measured by conventional indentation tests. With a 

tangential force sensor, nanoscratch and wear tests can be performed at ramping loads 

[46][47][48][49][50][51][52]. AFM is not only ideal for imaging nanometer-scale indents, 

providing useful information about nanoindentation deformation and cracking, but also capable 

to carry out nanoindentation for various biomedical samples 

[53][54][55][56][57][58][59][60][61][62], many of which are not able to be indented except for 

using AFM. When an indentation system is used in conjunction with an AFM, in situ imaging 

can be obtained [40]. Therefore, it is believed, with the rapid development of instruments and 

analytical procedures, more material properties will be measured or estimated by the 

nanoindentation technique in the near future. 



25 
 

The discovery of C60 in 1985 [63] had an impact which extended way beyond the confines of 

academic chemical physics, and marked the beginning of a new era in carbon science 

[64][65][66][67]. Carbon nanotubes (CNTs) were discovered by the electron microscopist Sumio 

Iijima, of the NEC laboratories in Japan, in 1991 [68]. These molecular carbon fibers consist of 

tiny cylinders of graphite, closed at each end with caps which contain precisely six pentagonal 

rings. Since then, CNTs have captured the imagination of physicists, chemists and materials 

scientists alike. Physicists have been attracted to their extraordinary electronic properties, 

chemists to their potential as ‗nanotest-tubes‘ and materials scientists to their amazing stiffness, 

strength and resilience. On a more speculative level, nanotechnologists have discussed possible 

nanotube-based gears and bearings. Nanotubes of the kind described by Iijima in 1991 invariably 

contain at least two graphitic layers, and generally have inner diameters of around 4 nm. In 1993, 

Iijima and Toshinari Ichihashi of NEC, and Donald Bethune and colleagues of the IBM Almaden 

Research Center in California independently reported the synthesisof single-walled nanotubes 

[69][70]. This proved to be an extremely important development since the single-walled tubes 

appeared to have structures which approximate to those of the ―ideal‖ nanotubes [71]. CNTs, a 

type of fullerene, have potential in fields such as nanotechnology, biology, electronics, optics, 

materials science and architecture. Over the years, new applications have taken advantage of 

their unique electrical properties, extraordinary strength, and efficiency in heat conduction 

[72][73][74][75]. Applications of CNTs to which we need pay more attention in this dissertation 

include interconnects and transistors. Metallic CNTs have aroused research interest for their 

applicability as very-large-scale integration (VLSI) interconnects because of their high thermal 

stability, high thermal conductivity and large current carrying capacity [76][77]. Semiconducting 

CNTs have been used to fabricate field effect transistors (CNTFETs), which shows promise due 
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to their superior electrical characteristics over silicon based MOSFETS. Since the electron mean 

free path in SWCNTs can exceed 1 micrometer, long channel CNTFETs exhibit near-ballistic 

transport characteristics, resulting in high speed devices. CNT devices are projected to operate in 

the frequency range of hundreds of Gigahertz. Recent work detailing the advantages and 

disadvantages of various forms of CNTFETs have also shown that tunneling CNTFET offers 

better characteristics comparing with other CNTFET structures. This device has been found to be 

superior in terms of sub threshold slope – a very important property for low power applications 

[78][79][80]. 

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is a transistor used for 

amplifying or switching electronic signals. The basic structure of a MOSFET is formed by 

adding two heavily doped n
+
 regions to the MOS capacitor on p-type Si. MOSFET is also called 

Insulated Gate FET (IGFET), it is the most commonly used FET. The MOS transistor is also 

called a surface field effect transistor since it depends on control of current through a thin 

channel at the surface of the semiconductor. When an inversion region is formed under the gate, 

current can flow from drain and source. MOSFET began to dominate integrated circuits in both 

unit volume and sales dollars in the 1970s. Kahng and Atalla demonstrated the first Si MOSFET 

in 1960 [81]. In 1964, Snow et al. [82] showed that sodium ion drift in thermally grown SiO2 

was the principal cause of the threshold voltage instability, and Kerr et al. [83] found that 

phosphorus silicate glass getters sodium in SiO2. Balk suggested in 1965 that hydrogen could 

anneal out the interface traps by tying up the dangling Si and SiO2 bonds [84]. Later it was found 

that HCl added to oxygen during oxidation incorporates chlorine and apparently immobilizes 

sodium in SiO2. In 1966, Sarace et al. [85] developed the polycrystalline Si gate which served as 

a self-aligning diffusion mask for the source and drain. This structure gave a self-aligned gate 
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electrode and greatly simplified manufacturing processes and increased yield. With these 

technological advances, Intel developed the first large-volume MOS integrated circuit in 1970. 

This was a three-transistor, Si-gate, 1-kbit dynamic random-access memory (DRAM). Today 

DRAM chips have hundreds of millions of MOSFETs. 

Ion-Sensitive Field Effect Transistor (ISFET) is used for measuring ion concentrations in 

solution. When the ion concentration (for example, the concentration of H
+
) changes, the current 

through the transistor will change accordingly. The ISFET is in fact nothing else than a 

MOSFET with the gate connection separated from the chip in the form of a reference electrode 

inserted in an aqueous solution which is in contact with gate oxide [86][87]. The ISFETs towards 

pH sensing application have been explored and commercialized [86][87][88][89]. However, 

CNT-ISFET structures for pH sensing applications have not been reported yet. With the 

nanomaterials and nanotechnology that we have at present, it is time to develop the next 

generation CNT-ISFET based ion concentration sensing system. 
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Chapter III. DIMENSIONAL CHARACTERIZATION OF VACNFs USING AFM 

3.1 Fabrication of VACNFs 

The intensively sensitive fabrication process of VACNF NEAs includes six major steps done 

on a four inch silicon <100> wafer that was previously coated with 500 nm of silicon dioxide. 

The steps of the fabrication process as well as the corresponding SEM images are shown in 

Figure 3.1 and Figure 3.2 [17], respectively. The main steps include (a) metal deposition for 

micro pads, contact pads and electrical interconnects; (b) nanopatterning of Ni catalyst dots; (c) 

directional growth of CNFs; (d) silicon dioxide deposition for electrical isolation and mechanical 

support; (e) chemical mechanical polishing (CMP) to expose CNF tips, and (f) a wet etch with 

7:1 HF to expose contact pads. 

 

Figure 3.1: Procedures of fabricating VACNFs. 
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Figure 3.2: SEM images of VACNF fabrication steps. 

In Figure 3.2, Top row shows the importance of PECVD chamber conditioning on CNF 

growth: (a) final run in ―warm chamber‖; (b) initial run in ―cold chamber‖; (c) Effect of high 

thermal ramps (~200 °C/min) resulting in multiple fibers from single nanopot. Bottom row 

illustrates SEM images of patterned arrays after re-exposing VACNF tips by Reactive Ion 

Etching (d), (e) and CMP (f). The dots are 100nm in diameter and 1µm in spacing. 

3.1.1 Deposition of Metal 

Using optical lithography patterning, 30 chips are able to be patterned onto the four inch 

wafer. Each chip contains nine contact pads that are attached by electrical interconnects to a 

single 3×3 set of arrays. Each of the nine arrays and the contact pads measures 200 µm × 200 µm 

and 2 cm × 2 cm respectively. Electrically, the underlying oxide isolates the pads. Using a 1-µm-

thick Shipley 3612 resist and microlithography, the pads and interconnects are patterned. An 

inspection under a microscope is made and then the patterns are metalized using a liftoff 

technique. The process of electron beam evaporation is then used to deposit a 200-nm-thick Cr 
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film and then the wafer is immersed in acetone for one hour. Once removed from the acetone, 

the wafer is sprayed with methanol and isopropyl alcohol and blown dry with N2. 

3.1.2 Nanopatterning 

Catalyst dots are then added to the wafer via a process called electron beam lithography 

patterning. There are approximately 39,000 catalyst dots that measure 100 nm in diameter on 

each micropad. The process begins with spinning a 400 nm thick layer of poly methyl 

methacrylate onto the wafer and then baking it at 180 degrees Celsius for 90 seconds and then 

exposed at 100 keV, 2 nA, 1950 μC/cm
2
. After immersing the exposures into a solution of half 

methyl isobutyl ketone and half Isopropyl Alcohol (IPA) for two minutes, and then IPA for thirty 

seconds, the exposures are developed. The wafer is then blown dry with N2 and examined under 

a microscope and again the pattern is metalized using a liftoff technique. The process of electron 

beam evaporation is then used to deposit a 10-nm-thick film of Cr trailing with a 30-nm-thick 

layer of Ni catalyst. The wafer is then submerged in acetone for one hour. After the time elapsed, 

the wafer is removed and sprayed with IPA and N2 to blow dry. 

3.1.3 Growth of VACNFs 

The next step is to grow the VACNFs on the nickel dots that are created in nanopatterning. 

The growth is DC-biased Plasma-Enhanced Chemical Vapor Deposition (PECVD) growth. At a 

processing pressure of 6.3 mbar, plasma power of 180W and 700 degrees Celsius, 125 sccm 

C2H2 feedstock and 444 sccm NH3 diluent are initiated. Then a five minute thermal annealing at 

600 degrees Celsius is carried out following with 250 sccm NH3. To attain the growth 

temperatures and thermal anneal needed, a 60 degree Celsius per minute incline is used. Each 

individual CNF is vertically arranged to freely stand on the surface with Ni catalyst on each tip. 

To check and affirm the process is done correctly, a fifteen-minute deposition is conducted. 
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Average results include a height of 1.5 µm, 100 nm base diameter, and 70 nm tip diameter. The 

uniformity of the growth is then checked by SEM. 

3.1.4 Deposition of Silicon Dioxide 

PECVD of silicon dioxide is managed next. To passivate the sidewalls of each individual 

fiber, a 3 micron SiO2 layer is deposited onto the wafers using a pressure of 3 Torr, temperature 

of 400 degrees Celsius and RF power of 1000 W. The process includes a parallel plate, dual RF, 

PECVD using a mixture of 6000 sccm of O2 and 2-3 ml/min of tetraethlyorthosilicate (TEOS). A 

highly conformal coating of SiO2 is created on the newly created fibers and interconnects. 

3.1.5 Chemical Mechanical Polishing 

By CMP, existing of stock removal and final polish, the overrun oxide and a portion of the 

VACNF‘s are removed. This process involves removing the existing material with 0.5 µm 

alumina (pH 4) at 10 ml/min, 60-rpm platen, 15-rpm carrier, and 15 psig down force at 150 

nm/min, re-exposure of VACNF tips and surface planarization. A 0.1 µm alumina (pH 4) at 10 

ml/min, 60-rpm platen, 15-rpm carrier, and 25 psig down force is operated for final polish at 

20nm/min. The wafer is cleaned by immersing it into a solution composed of water, hydrogen 

peroxide, and ammonium hydroxide at a ratio of 80:2:1 respectively and then spin-dried. The 

aim to re-expose the VACNF tips is carried out as well as the planarization of the surface. 

3.1.6 Wet Etch 

To expose the contact pads, a careful etching using silicon dioxide is achieved. Optical 

lithography, using 2.5 µm thick Shipley 3012 resist, is again used to remove SiO2 from the 

contact pads for electrical connections to the potentiostat. The Shipley resist is baked at 125 

degrees Celsius for 120 seconds and immediately immersed in Shipley EC11 to be exposed and 

developed. The wafer is then rinsed using DI water and inspected via a microscope. Then to set 
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the resist, the wafer is baked at 125 degrees Celsius for 180 seconds. Then using a 7:1 diluted HF 

solution, the oxide is carefully etched off of the contact pads at approximately 15 Å per second. 

For 15 minutes, the resist is then stripped off of the wafer using EKC 830 resist stripper. The 

wafer is then rinsed with DI water, blown dry with N2 and diced into 30 individual chips sized 

approximately 14 mm
2
. 

3.2 Dimensional Measurement of VACNFs 

3.2.1 Experimental Setup  

In order to accurately determine the height and diameter of the VACNFs grown on 100 nm 

Ni dots, an Atomic Force Microscope is employed. The AFM used in the experiment is the 

Agilent 5500-ILM highly sensitive microscope as shown in Figure 3.3, which illustrates the 

experimental setup: the scan target is a single chip which contains 1 × 9 contact pads and a 3 × 3 

set of nanoelectrode arrays. Each of these electrode arrays has a 200 µm × 200 µm area. The 

scanning will be done under Acoustic AC imaging mode, which is intermittent contact or non-

contact, and the schematic is shown in Figure 3.4. The AFM probe, Tap190Al-G (BudgetSensors, 

Innovative Solutions Bulgaria Ltd.) has a resonant frequency of 190 kHz and a spring constant of 

48 N/m. During intermittent contact, the tip is brought close to the sample so that it lightly 

contacts the surface at the bottom of its travel, causing the oscillation amplitude to drop. Hence, 

we may completely ignore the influence of the cantilever tip during the size measurement as it 

cannot change anything of the target shape without contacting. 

In Figure 3.3, (a) shows the main structure for the measurement, (b) shows the sample holder 

where the chip is attached using a magnetic disk, (c) shows probe properly situated on AFM nose 

assembly, and (d) uses the video system to align the laser. In Figure 3.4, (a) (1) AC applied to the 
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nose cone, (2) the base body of the cantilever beam, (3) the cantilever with its probe; (b) & (c) 

the cantilever driven to oscillate in sinusoidal motion. 

 

Figure 3.3: Experimental setup for scanning and measuring VACNFs. 

 

Figure 3.4: AFM probe motion under Acoustic AC mode. 
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3.2.2 Imaging and Measurement 

Before measuring the size of the VACNFs and the cavities on the nanoelectrode arrays, they 

should be located and observed by the microscope video system. Thus, to scan the arrays in a 9 

µm ×9 µm area with the small scanner becomes possible. After locating the fibers and cavities, 

the image can be zoomed into 2 µm ×2 µm, which encloses the identified fiber tips and cavities 

to obtain clear scan image and guarantee more accurate measurements. When a fiber or cavity 

appears clear in a scan topography image, a straight line can be drawn in any direction in 

topography image to cross the target. At the same time, the vertical information all the way along 

the line to complete a measurement can be obtained. This procedure is repeated until sufficient 

data is obtained for a particular array, and then starts on another array. Take Array 1 for instance: 

Figure 3.5 illustrates a topography scan in a 9 µm × 9 µm area. As we can see, under this scale 

only cavities are obvious. But it is enough as fiber tips can be found surrounding the cavities 

after zoom-in. Figure 3.6 (a) shows the zoom-in topography into 2 µm × 2 µm. Besides a cavity, 

there are four fiber tips surrounding the cavity. For a better view, a 3-Dimensional (3D) image of 

the zoom-in topography is generated as shown in Figure 3.6 (b). These cavities are caused by the 

chemical TEOS, which is applied during the step of PECVD oxide deposition. Thus, the 

measurement can be done by drawing lines crossing the cavities and the fiber tips. Figure 3.7 

illustrates how to obtain the height and diameter of a fiber tip and the depth and diameter of a 

cavity from a cross-section image. 
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Figure 3.5: A 9 µm × 9 µm topography of Array 1 in Chip 1. 

 

Figure 3.6: Zoom-in topography (a) 2 µm × 2 µm of Array 1 in Chip 1, (b) 3D image. 

(a) (b) 
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Figure 3.7: Cross-section information for measurement: (a) fiber and (b) cavity. 

Table 3.1 gives the measurement results in detail by obtaining 10 measurements of fiber size 

consisting of diameter (abbreviated as Dia.) and height (abbreviated as Ht.) for each array in 

Chip 1, and the mean values are shown in Figure 3.8. Besides the fibers, 5 measurements of the 

cavities for each array in Chip 1 are also completed, and their mean values are shown in Figure 

3.9. Additionally, the same measurement procedure is repeated for the fibers in Chip 2, which 

was fabricated the same way as Chip 1. Table 3.2 gives the measurement results in detail and the 

mean values are presented in Figure 3.10. After the mean values of the diameter and height of 

the fibers in each array on both Chip 1 and Chip 2 are obtained, in order to describe the size 

more accurately and scientifically, statistical analysis is employed. 
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Chip 1 Array 1 Array 2 Array 3 

Measure # Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) 

1 121.43 11 159.64 8.2 164.52 6.8 

2 133.18 6.3 139.68 8.1 156.68 5.1 

3 129.26 10.7 123.72 6.5 141.01 8.1 

4 121.43 5.8 123.72 9.6 164.51 5.4 

5 137.1 9.6 137.09 8 152.78 9.1 

6 144.93 6 160.6 6.2 133.56 8.4 

7 125.34 6.7 148.85 7.7 144.93 10.2 

8 148.85 7 156.68 7.5 125.34 10.3 

9 137.09 10.2 166.72 9.9 144.99 6.3 

10 117.51 6.7 146.34 6.6 117.71 6.4 

 
Array 4 Array 5 Array 6 

Measure # Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) 

1 164.53 8.8 144.93 10.9 144.94 7.4 

2 168.45 7.6 164.53 8.9 156.75 7.3 

3 129.26 6.7 168.44 8.8 148.85 8.4 

4 156.68 5.8 160.64 8.4 129.28 8 

5 152.53 5.7 161.43 6.1 143.65 6.1 

6 155.65 8 153.72 7.5 139.65 7.4 

7 163.63 8.2 157.59 7.2 167.59 6.6 

8 151.66 6.8 146.06 10 119.72 8.1 

9 141.02 9.7 164.54 6.6 152.77 6.8 

10 144.93 8.2 148.93 9.3 164.56 6.6 

 
Array 7 Array 8 Array 9 

Measure # Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) 

1 135.69 8 139.7 7.6 141.02 7.4 

2 143.7 9.1 143.74 7.8 141.02 5.6 

3 127.71 6.4 147.67 9.7 129.28 7.1 

4 119.75 7.3 151.67 10.9 125.34 7.4 

5 121.43 8.2 141.01 9.3 148.85 6 

6 117.54 7.8 144.93 7.1 137.12 6.4 

7 129.26 6.2 145.04 7.7 133.18 6.6 

8 134.29 7.5 133.18 10.2 141.03 6.4 

9 117.51 6.4 129.37 7.3 143.69 7.7 

10 137.12 5.8 129.35 9.2 135.69 7.2 

Overall Mean Diameter: 142.87 nm Height: 7.7 nm 

Table 3.1: Measurement results of VACNFs in Chip 1. 
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Figure 3.8: Measurement result of fibers in Chip 1 presented by mean values. 

 

Figure 3.9: Measurement result of cavities in Chip 1 presented by mean values. 
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Chip 2 Array 1 Array 2 Array 3 

Measure # Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) 

1 132.92 6.5 187.58 4.8 160.60 4.3 

2 156.40 6.5 171.74 6.8 160.60 10.4 

3 172.02 6.7 159.64 4.6 141.02 7 

4 140.74 5.5 175.60 7 144.93 6.1 

5 125.10 5.8 179.60 5.8 137.10 8.9 

6 125.15 7.6 140.74 7.1 152.77 8.9 

7 140.74 7.5 164.19 7.4 148.81 10.8 

8 164.20 7.1 140.74 5.4 137.06 8.6 

9 172.08 6.5 132.92 6 143.68 7.4 

10 140.74 7.5 179.90 10.2 147.68 11.9 

 
Array 4 Array 5 Array 6 

Measure # Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) 

1 148.85 7.1 171.61 9.1 151.36 8.5 

2 141.01 6.1 123.74 14.8 143.47 7.7 

3 168.44 6.3 111.74 13.5 151.36 6.9 

4 156.68 5.8 126.01 6.6 159.33 6.1 

5 172.35 14.4 150.40 6.6 129.82 6.5 

6 176.27 8.7 121.94 8.2 129.88 9 

7 105.89 13.2 138.20 7 129.82 5.7 

8 144.93 6.6 123.74 8.4 137.93 6.3 

9 156.68 6.9 139.71 7 167.30 7.7 

10 115.32 11.6 152.76 9.9 143.39 7.4 

 
Array 7 Array 8 Array 9 

Measure # Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) Dia. (nm) Ht. (nm) 

1 127.46 6.8 122.74 7.2 125.23 11.7 

2 135.43 7 145.76 8.5 172.02 13 

3 135.54 8.2 168.87 6.3 156.33 7.4 

4 151.36 8.7 145.76 6.1 164.20 7.9 

5 148.56 8.3 133.00 6.7 191.19 8.1 

6 164.19 6.9 148.56 6.2 143.40 6.6 

7 140.83 7.1 140.74 7.3 143.40 10.9 

8 140.74 10.3 140.74 7.7 127.46 10.4 

9 140.74 7 143.56 6.3 184.11 10.2 

10 148.56 7.2 159.48 6.6 176.44 12.5 

Overall Mean Diameter: 148.15 (nm) Height: 7.9 (nm) 

Table 3.2: Measurement results of VACNFs in Chip 2. 
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Figure 3.10: Measurement result of fibers in Chip 2 presented by mean values. 

3.3 Statistical Analysis 

3.3.1 Confidence Interval 

In statistics, a confidence interval (CI) is an interval estimate of a population parameter [90]. 

Instead of estimating the parameter by a single value, an interval likely to include the parameter 

is given. Thus, confidence intervals are used to indicate the reliability of an estimate. How likely 

the interval is to contain the parameter is determined by the confidence level or confidence 

coefficient. 

Therefore, this statistical method is applied for our experimental data in order to obtain the 

intervals to describe the size of fibers. Take the fibers in Chip 1 for instance, from [90] and 

Figure 3.8, the mean values for each array are obtained, and we put the value as the first element 

in a 1 × 9 matrix as follows: {131.61 146.3 144.6 152.83 157.08 146.78 128.4 140.57 137.62}, 

and then we substitute these samples into the calculation of a 95% confidence interval. The mean 
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of the matrix is 142.87 nm and the standard deviation is 8.82 nm. Thus, the CI is determined as 

[137.11nm 148.63nm]. For the height, the matrix is as follows: {8 7.83 7.61 7.55 8.37 7.27 7.27 

8.68 6.78}, the mean is equal to 7.7 nm and the standard deviation is 0.554 nm. Thus, the CI can 

be determined as [7.338 nm 8.062 nm]. Furthermore, based on the data in Figure 3.9, the 

standard deviations are 66.65 nm and 2.07 nm for cavity diameter and depth (abbreviated as Dp.) 

respectively. Thus, the 95% CIs can be calculated to describe the diameter and depth as [453.03 

nm 540.12 nm] and [8.46 nm 11.16 nm] respectively. Lastly, from Figure 3.10, another two CIs 

with same confidence level are computed, [143.13 nm 153.17 nm] and [7.18 nm 8.62 nm] for 

diameter and height respectively. Their standard deviations are 7.68 nm and 1.11 nm respectively. 

Hence, the accurate size of the fibers and cavities can be determined with the intervals as stated. 

The CI result details are given in Table 3.3, and Equation (3.1) shows how to calculate the 

interval. 

         
 

√ 
      

 

√ 
  (3.1) 

where,  ̅ is the mean values of the samples; Z, the critical value, is equal to 1.96 in a 95% CI; ζ 

is the standard deviation, and N is the number of the samples. 

Chip 1 Confidence Interval Mean Standard Deviation 

Fiber Dia. (nm) [137.11 148.63] 142.87 8.82 

Ht. (nm) [7.338 8.062] 7.7 0.554 

Cavity Dia. (nm) [453.03 540.12] 496.58 66.65 

Dp. (nm) [8.46 11.16] 9.81 2.07 

Chip 2 Confidence Interval Mean STD. Dev. 

Fiber Dia. (nm) [143.13 153.17] 148.15 7.68 

Ht. (nm) [7.18 8.62] 7.9 1.11 

Table 3.3: Calculation results of CIs for fibers and cavities. 
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3.3.2 P-Value 

Besides CI, another statistical method is employed to help, P-Value. In statistical hypothesis 

testing, the P-Value is the probability of obtaining a test statistic at least as extreme as the one 

that was actually observed, assuming that the null hypothesis is true. The fact that P-Values are 

based on this assumption is crucial to their correct interpretation. The lower the P-Value is, the 

less likely the result is, assuming the null hypothesis, the more "significant" the result, in the 

sense of statistical significance. One often rejects a null hypothesis if the P-Value is less than 

0.05 or 0.01, corresponding to a 5% or 1% chance respectively of an outcome at least that 

extreme, given the null hypothesis [90]. 

Therefore, the P-Value can be used to judge if a new group of measurements is reliable 

enough to confirm the fibers dimension but not some other ―dirty‖ particles on the surface. Take 

measurements for Arrays 3 & 5 in Chip 1 and Arrays 3 & 7 in Chip 2 for example, Table 3.4 

gives the results of the fibers for us to tell if the measurement for each array should be accepted 

or rejected. In Table 3.4, the standard is the mean of entire 90 measurements on each chip of 

diameter and height, respectively (see Table 3.1 Table 3.2); the mean is the averaged value of 10 

measurement for each array; the critical value Z is calculated as in Equation (3.2); Ф(abs(Z)) is 

the corresponding cumulative area, whose value can be determined; P-Value is obtained as in 

Equation (3.3) and the significance level is 0.05. Thus, the rejection is able to be confirmed after 

comparing P-Value with the significance level. If P-Value is less than or equal to 0.05, this group 

of data is rejected. 

 
Standard Mean Std.Dev. Z ф(abs(Z)) P-Value Sig. Lv. Reject 

Chip 1 

Array 3 Dia. (nm) 142.866 144.603 14.95 0.367 0.6736 0.6528 0.05 No 

Ht. (nm) 7.707 7.61 1.79 -0.171 0.5987 0.8026 0.05 No 

Array 5 Dia. (nm) 142.866 157.081 7.867 5.714 0.9997 0.0006 0.05 Yes 

Ht. (nm) 7.707 8.37 1.442 1.454 0.9394 0.1212 0.05 No 

Chip 2 Array 3 Dia. (nm) 148.148 147.425 8.081 1.784 0.9678 0.0644 0.05 No 
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Ht. (nm) 7.903 8.43 2.182 1.048 0.8531 0.2938 0.05 No 

Array 7 Dia. (nm) 148.148 143.341 9.741 0.244 0.5987 0.8026 0.05 No 

Ht. (nm) 7.903 7.75 1.067 0.203 0.5987 0.8026 0.05 No 

Table 3.4: Calculation and application of P-Value. 

   
                √ 

      
       (3.2) 

                        (3.3) 

3.3.3 Discussion 

The calculations above show relatively large variations to the measurement of the same 

objective. For example, in Table 3.1, the fourth measurement of fiber diameter in Array 2 is 

123.72 nm, which is quite different from the sixth measurement of 160.6 nm. Similarly, the 

measurement of fiber height is 5.1 nm versus 10.3nm in Array 9. This phenomenon is not caused 

by an incorrect measurement but by the non-uniform growth of the VACNFs on Ni dot 

nanoelectrodes. Similarly, in Figure 3.5, the upper-left differs from the bottom-right owing to an 

uneven distribution of the cavities generated in CMP procedure, which matters very little. The 

cavities in the arrays will not influence the performance of the nanofibers on the nanoelectrodes 

as long as the VACNFs growth is not impeded. Furthermore, as introduced in 3.1.3, the bare 

VACNF tips we originally incubated by PECVD are supposed to have a diameter of 70 nm while 

our AFM measurement combined with a statistical analysis shows an almost double size after the 

deposition of SiO2 and CMP steps as given in Table 3.3. Based on this phenomenon, it may be 

concluded that there could be some SiO2 residual still covering these VACNF tips after CMP. 

Thus, there would be an obstacle to the electrical connection with outside circuit through the 

contact pads. This is also verified by our attempt at electrical property testing of VACNF tips 

using Current Sensing AFM. In the future, since tetraethlyorthosilicate (TEOS) causes the 

cavities on the surface of the nanoelectrodes, it could essentially be used as a method to create 
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nanochannels for other potential applications such as chemical sensor and pH sensor Lab-on-

Chip (LOC) system development using the VACNFs. 

3.4 Summary 

Microchips with multiplexed 3 × 3 biosensing arrays employing patterned VACNFs are 

ready to work. However, when researchers want to examine the quality of the fabrication, a tool 

with nano-level ability is needed. In this chapter, measurements of the VACNFs are carried out 

using AFM, and the results are presented. Consequently, their accurate sizes are indicated 

statistically by confidence interval. Furthermore, P-Value is introduced as a tool for the judgment 

of the possibility of correct measure target in the future measurement. The work is a proof of the 

feasibility to examine the growth of carbon nanofibers using the nano tool, AFM. With proper 

statistical analysis, the experimental results become more scientific and reliable for other 

researchers to refer to. 
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Chapter IV. MECHANICAL PROPERTY TESTING OF NANO/BIO SAMPLES 

USING AFM BASED NANOINDENTATION 

4.1 Methodology of AFM Based Nanoindentation 

The mechanical properties of linear, isotropic, elastic materials considered here may be 

completely described by two intrinsic parameters, the Young‘s Modulus E (Pa) and the Poisson‘s 

Ratio v (dimensionless). Through the AFM-based nanoindentation, it is able to obtain the raw 

data Amplitude (V) versus distance (µm), similar to Figure 1.7. The raw data indirectly gives the 

relationship of the force (nN) versus indentation (nm), which is the pre-condition to calculate the 

Young‘s modulus of the sample. Force curves can be collected by monitoring the cantilever 

deflection while users ramp the piezo scanner in z direction (vertical), with the x, y scanning 

disabled, resulting in a plot of Amplitude versus the distance that the piezo scanner changes 

vertically. Figure 4.1 illustrates the schematic for indenting a soft flat surface with a rigid conical 

indenter. As we can see, Δz is the piezo-actuator vertical displacement under user‘s control, Δd is 

the deflection of the cantilever, and δ is the indentation distance on the sample. The relationship 

of these three parameters can be described as in Equation (4.1). Furthermore, according to 

Newton‘s third law, the magnitude of the force acting on the sample is equal to the force exerting 

on the cantilever, which is able to be calculated as in Equation (4.2), where kc is the spring 

constant of the cantilever. Thus, the force curve can be obtained. 

         (4.1) 

         (4.2) 

Before it is able to convert the raw data of amplitude versus distance into the relationship of 

force versus indentation of the sample, a calibration is necessary as the AFM software provides 

the deflection information of the cantilever through amplitude in volt. The sensitivity (nm/V) is 
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necessary in order to obtain the deflection of the cantilever in nm during the indentation. For the 

calibration, we usually indent a mica surface with the same tip as the one that is going to indent a 

sample. The mica surface is hard enough to work as a rigid substrate, which means there will not 

be a deformation of the mica surface and the translation distance is equal to the deflection of the 

cantilever (imagine there is no sample and δ is 0 in Figure 4.1). Hereby, the sensitivity is able to 

be determined with this method. Figure 4.2 illustrate how to extract force vs. indentation data 

based on AFM indentation raw data after the sensitivity is known. 

 

Figure 4.1: Schematic of AFM-based nanoindentation for thin sample with conic tip. 

The slope of a force curve describes the elastic properties of a sample in a qualitative way. 

On an infinitely stiff sample, the deflection Δd of the cantilever is identical to the movement of 

the piezo in Δz direction. In the case of a soft sample, the cantilever tip will indent the sample. 

This indentation distance δ leads to a smaller deflection Δd, resulting in a flatter force curve with 

a smaller slope. Also the loading force can be determined as in Equation (4.2) according to 

Hooke‘s law. 
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Figure 4.2: A typical AFM based nanoindentation force curve and corresponding data extraction. 

The elastic deformation of two spherical surfaces touching under load was calculated 

theoretically in 1882 by H. Hertz. Sneddon extended the calculation to other geometries [91], 

like a rigid cone pushing onto a flat thin sample as used in this chapter. We will call this model 

the Sneddon model to distinguish it from others. The Sneddon model gives the following relation 

between the indentation δ and the loading force F: 

   (
 

 
) [

 

      
]        (4.3) 

where, F is the loading force on the sample, E is Young‘s Modulus of sample, υ is the Poisson‘s 

Ratio (assumed to be 0.06 and 0.5 for VACNFs and scaffolds respectively [92][93][94]), δ is the 
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indentation distance, and α is the half-opening angle of indenter (AFM tip). Therefore, E can be 

determined once the relationship between the force and the indentation is obtained. For the 

Sneddon model, the indentation distance δ needs to be so large that the cone apex can be 

considered infinitely sharp. 

4.2 Dimensional and Mechanical Behavior of VACNFs at Subzero Temperatures 

4.2.1 Background 

A major concern for the space organizations is to adjust the space and resources available on 

a space mission. Extraordinary electro mechanical properties of carbon nanomaterials had 

attracted the attention of researchers [95][96][97]. Ever since discovery of carbon nanotubes in 

1991, researchers have effectively used them as sensory materials, storage materials, hardening 

materials and so on. With the advancement in MEMS technologies and understanding about 

carbon nanomaterials integration, today it is possible to detect molecules down to parts per 

billion (ppb) with carbon nanomaterials sensors [98][99]. More exciting are their response time 

in seconds and the resources in millivolts. Thus, many space research organizations, for example 

NASA, are exploring the possibility of integration of sensors made of carbon nanomaterials. 

NASA took the initiative and established a research organization called NASA Ames 

research center with a mission “To develop Nanotechnology based chemical sensors that can 

provide high sensitivity, low power and low cost portable tools for in-situ chemical analysis in 

space and terrestrial applications” [100]. Based on their current sensor development results, 

NASA has proven that the carbon nanotube sensors can offer very high sensitivity for NO2 , 

ammonia, methane, acetone, benzene and toluene detection, with detection limits in the lower 

ppm to ppb level and response time in seconds to minutes” [100]. Each sensor draws the power 

in microwatts to milliwatts. The size of the detector is designed to be 5´× 5´× 1´ for 32 sensing 



49 
 

elements detection system. The weight of this detector is estimated to be less than 2 kg. All these 

factors are encouraging scientists to use them in space applications. 

In 2003, the Nuclear Regulatory Committee (NRC) Decadal Survey for Solar System 

Exploration recommended that ―NASA commit to significant new investments in advanced 

technology so that future high–priority flight missions can succeed.‖ In a 2007 report released by 

NASA on its failure of flight missions [101], it concluded that extreme environments of 

temperature, pressure and extreme radiations are the primary causes for the failure of the 

missions. The report also emphasizes on the need for investment on extreme environment 

technology needs. In the near future, there will be many more outer space missions, and this pose 

a greater challenge to the scientific community for development of materials that can cater the 

needs of these missions. 

The fact that most of our planetary system is engulfed in negative temperature convinced us 

to characterize the nanofibers at subzero temperatures. Furthermore, since the mechanical 

properties of materials change widely with temperatures, the measurement of Young‘s Moduli 

for VACNFs is targeted. 

4.2.2 Extreme Environment Treatment 

In this experiment, the same VACNF chip as shown in Figure 3.3 is used. Additionally, a 

Microclimate Benchtop Test Chamber (Cincinnati Sub Zero, MCBH-1.2) as shown in Figure 4.3, 

which possesses an error of ±0.5% in the range of -73 
o
C – 190 

o
C, is employed to realize 

extreme environment treatment. Thus, the environmental chamber is set to a fixed temperature. 

After the attainment of a specified temperature, the chip with nanofibers is placed in the 

Environmental Chamber for 30 minutes at the specified temperature in order to facilitate 

response to temperature. Then, the substrate is transferred into a dry box (McDry MCU-201, 
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Seika Machinery Inc., USA) as shown in Figure 4.4 for about 90 seconds to eliminate water 

vapor. The relative humidity of dry box normally remains as low as 1% in normal operation. 

After loading the sample from the subzero temperature treatment chamber, the percentage can 

resume to less 3% in 90 seconds. Then, the sample can be transferred to the AFM for imaging to 

measure the dimensions and analyze the mechanical properties of treated fibers. In general, it 

takes about 255 seconds to complete a single frame scan for 5 µm × 5 µm when the scan speed is 

set at 5.021 µm/s, which means 1.004 lines/s, and the image resolution is 256 × 256. 

 

Figure 4.3: Microclimate benchtop test chamber for subzero temperature treatment. 
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Figure 4.4: Dry box for anhydrating chip after each subzero temperature treatment. 

4.2.3 Imaging and Measurement Using AFM 

Agilent 5500 ILM is used for accurate measurement of VACNF dimensions after the 

treatment in the test chamber. Dimensional measurement is carried out in Acoustic AC (Tapping) 

mode with a Tap190DLC (BudgetSensors, Innovative Solutions Bulgaria Ltd.) probe, which has 

a resonant frequency of 190 KHz and force constant of 48 N/m. In Atomic Force Microscopy, a 

large area of 5 µm × 5 µm is scanned initially in order to locate the nanofibers. As mentioned in 

the fabrication methodology, the nanofibers are grown on a patterned Ni dots with a spacing of 1 

µm. AFM and SEM images of VACNF before temperature treatment are shown in Figure 4.5. 

Standing carbon nanofibers at spacing of 1 µm are clearly seen in the figure. Once the nanofibers 

are identified, substrate is rescanned to shrink the area to 2 µm × 2 µm in order to accurately 
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measure the nanofiber dimensions. Figure 4.5 (b) shows the SEM image of the nanofibers 

scanned using a Philips SEM at 30 KeV. Nanofibers are clearly seen as the white dots in the 

black background.  

 

Figure 4.5: Scan images of VACNFs (a) AFM and (b) SEM. 

Figure 4.6 shows 3D AFM images after VACNFs are exposed to different subzero 

temperatures. As seen from the 3D images, there is no obvious change to the shape of the 

nanofibers before and after the treatment. For reliability, 20 measurements for both height and 

diameter are recorded and averaged at each temperature treatment. Table 4.1 gives the mean and 

standard deviation of nanofibers after treated in the extreme environments. From the Table 4.1, it 

is clear that the nanofibers become smaller as the temperature decreases. 

(a) (b) 
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Figure 4.6: AFM 3D images of VACNFs at (a) -20, (b) -30, (c) -40, (d) -50, (e) -60, and (f) -

70 °C. 

Temp 

(oC) 

Average 

Height (nm) 

Average 

Diameter (nm) 

Standard Deviation of 

Height (nm) 

Standard Deviation of 

Diameter (nm) 

25 8.86 254 1.321 36.4 

-20 5.25 189.5 0.939 27.5 

-30 6.71 136.75 2.35 21.83 

-40 5.44 112.77 1.28 15.36 

-50 6.53 118.58 2.27 22.29 

-60 5.99 173.2 1.172 17.03 

-70 6.63 120.50 1.58 19.95 

Table 4.1: Average dimensions of VACNFs exposed to extreme temperatures. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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4.2.4 Nanoindentation on Treated VACNFs 

The nanoelectrode arrays are scanned to locate VACNFs, and Figure 4.6 (f) shows the 

VACNFs that are treated in the test chamber at -70 ºC for 30 minutes. The tip is then positioned 

on the top of a located fiber followed by a sweep of amplitude versus distance in vertical 

direction. Thus, the raw data of indenting a treated nanofiber is obtained as shown in Figure 4.7, 

where ―Amplitude‖ describes Δd and ―z‖ presents Δz. In order to convert the amplitude in V into 

the cantilever deflection in nanometer (nm), to calibrate the sensitivity (SZ in nm/V) of the 

cantilever deflection for Position Sensitive Detector (PSD) on the AFM is necessary. Before 

scanning the nanoelectrode arrays, the same tip is used to indent a mica disc surface 5 times. 

During this indentation period, the mica surface is assumed to be rigid, which indicates δ = 0. 

Hence, the deflection of the cantilever Δd equals to the vertical displacement Δz, which is 

controlled by user when an indentation sweep is engaged. Therefore, the sensitivity is obtained, 

and its mean value is calculated to be 68.5 nm/V with a standard deviation of 0.55 nm/V. With 

this sensitivity, the relation between the force and the indentation distance is obtained. 

Furthermore, the slope of force versus δ
2
 is approximated by a linear fit as shown in Figure 4.8. 

The linear fit provides the slope approximation, which is 34.078 nN/nm
2
. Finally, this slope is 

substituted in Equation (4.3) to compute value of the Young‘s Modulus, EVACNF = 23.9628 GPa. 

Table 4.2 shows the detailed results of EVACNFs at different temperature treatments. 

Temp (
o
C) EVACNF 1 (GPa) EVACNF 2 (GPa) EVACNF 3 (GPa) Mean (GPa) Stdev. (GPa) 

25 511.82 1240.43 1010.68 920.98 372.50 

-20 44.03 124.80 50.76 73.19 44.82 

-30 70.36 64.41 80.86 71.88 8.33 

-40 59.18 50.89 40.53 50.20 9.35 

-50 37.66 34.22 55.07 42.32 11.17 

-60 41.01 40.67 30.22 37.30 6.13 

-70 23.54 20.84 26.86 25.09 1.67 

Table 4.2: Young‘s Moduli of VACNFs after exposed to subzero temperatures. 
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Figure 4.7: Raw data of AFM based nanoindentation on a treated fiber. 

 

Figure 4.8: Force vs. indentation squared with linear fit. 
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4.2.5 Discussion 

From the current dimensional results, it is imperative that the dimensions of VACNFs are 

widely affected by the changes in temperatures. This is critically important because of the fact 

that most material properties at nanoscale depend on the dimensions. Our particular interest lies 

in the changes of the height of VACNFs rather than their diameter as the side walls of the 

nanofibers are passivated by SiO2, which leads to much more complex material behavior. 

Furthermore, it has been reported that the main problem with VACNF based sensor is that large 

variations in fiber height and overall fiber density will fluctuate the sensitivity of the sensor [17], 

which is the key to the reproducibility of sensor. From the current dimensional results, it is 

observed that the nanofiber height decreases with the temperature when compared with the 

original room temperature. But in the subzero range, the height almost remained constant near to 

6 nm. 

Besides the height of VACNFs, the other critical factor regarding the sensing ability is the 

density of fibers. Materials usually become more vulnerable at low temperatures. To investigate 

the mechanical properties of VACNFs at extreme temperatures become necessary as fibers are 

promising to work in space. Fibers, that lose their stiffness significantly, may no longer be 

functional as sensing elements. Mechanical properties of the nanofibers exposed to extreme 

environments are studied in detail. Young‘s moduli of the nanofibers are calculated at different 

temperatures. It is obtained that the Young‘s modulus of VACNFs at room temperature 

approximately equals 920 ± 372.5 GPa. These values are in accordance with the Young‘s 

modulus of MWCNTs reported in previous research works [102][103]. However, the Young‘s 

moduli of the VACNFs fall drastically as they are exposed to subzero temperatures. It is also 

imperative from Table 4.2 that the Young‘s Moduli of VACNFs are reduced approximately by 
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20 fold at subzero temperature range. Moreover, the Young‘s moduli decrease linearly as 

temperature changes in the subzero range. Figure 4.9 shows the plot of Young‘s Moduli against 

subzero temperatures. With linear curve fit, a regression line equation is obtained and included in 

Figure 4.9. In statistics, coefficient of determination, R
2
, is used to evaluate the quality of curve 

fit. R
2
 varies between 0 and 1 with 1 being the best fit and 0 being the worst fit. As depicted in 

Figure 4.9, Young‘s Moduli vs. subzero temperatures linear fit curve (the red dashed line) has an 

R
2
 of 0.9537 proving that the linear fit is the best one for the collected data when -70 

o
C ≤ T ≤ -

20
o
C. Thus, VACNFs will lose their complete stiffness at a temperature lower than -93.68 

o
C 

accordingly. 

 

Figure 4.9: Yong‘s Moduli of VACNFs at subzero temperatures. 

4.3 Determination of Mechanical Properties of Soft Tissue Scaffolds 

4.3.1 Background 

Cells in vivo interact with various surrounding cells through cell-cell and cell-extracellular 

matrix (ECM) interaction in a three dimensional (3D) fashion. It has become clear recently that 



58 
 

cell fate is regulated by not only soluble signaling molecules but also physicochemical cues such 

as mechanical properties of the ECM. Thus, the determination of mechanical properties of in 

vitro constructed ECM, i.e., tissue scaffolds, becomes more critical for cell growth and 

differentiation in 3D cultures. A variety of biomaterials have been developed and adopted for 

fabricating various types of scaffolds for 3D cultures. Among those biomaterials, collagen and 

chitosan are two of widely used natural biomaterials for 3D cultures [104][105][106][107]. 

Collagen and chitosan can be readily crosslinked to form hydrogels for growing soft tissues 

[108][109][110]. Compared to scaffolds made from hard materials, cells grown inside soft 

scaffolds respond more significantly to mechanical properties of a scaffold. For example, cells 

grown inside a hydrogel scaffold have been found to respond considerably different to the 

stiffness of a scaffold [111][112][113][114]. In addition, the elasticity of a soft scaffold can be 

altered by cells through their secreted ECM [115]. A body of evidence suggests that cells can 

alter substrate‘s stiffness hundreds of micrometers away from their edges [116]. The traction 

forces that cells apply to their matrix can also refashion matrix stiffness of a hydrogel scaffold 

that exhibit strain-stiffening behaviors. 

Different from hard materials, the characterization of mechanical properties of soft scaffolds 

is quite challenging due to their fragility. They usually can only tolerate nN stress, making it 

difficult to measure. One way to overcome this difficulty is to determine the elastic modulus of 

these scaffolds through the nanoindentation technique. Nanoindentation has been developed for 

investigating mechanical properties of many soft materials [117][118]. In a nanoindentation test, 

small loads and small tip size can be achieved using an AFM [119]. AFM is a powerful tool for 

determining various biological processes in nanometer scale. It can not only image the 

topography of a surface but also measure forces at nN level. It has been employed as a 
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nanoindenter for characterizing elastic properties of soft materials [120][121][122]. For example, 

AFM nanoindentation has recently been applied to quantify quasi-static mechanical properties of 

newly synthesized cell-associated matrices of individual chondrocytes [59][62]. 

Although AFM nanoindentation shows tremendous potentials for characterizing soft tissues, 

its application in determining mechanical properties of hydrogel scaffolds in liquid has not been 

explored yet. Here, the dissertation presents an approach to quantify mechanical elastic stiffness 

of soft tissue scaffolds through AFM-based nanoindentation. A mathematical model is developed 

for determining the stiffness and elastic modulus of a collagen-chitosan hydrogel scaffold. The 

effect of cell growth on the mechanical tensile strength of a collagen-chitosan scaffold is also 

investigated 

4.3.2 Scaffold Fabrication and Cell Growth 

Cell-based tissue engineering holds great potential for therapies involving regeneration 

and/or replacement of damaged tissue. Such approaches typically involve seeding cells within 

scaffolds and subjecting them to stimulatory biochemical and/or mechanical factors in vitro or in 

vivo to promote the development of engineered tissue. The ultimate goal and challenge is to 

develop a graft with structural, biochemical and biomechanical properties similar enough to 

healthy tissue so that upon maturation in vivo it can restore physiological function. To achieve 

this objective, it is important to know the mechanical property of engineered tissue. 

Details regarding how to fabricate collagen-chitosan scaffolds can be found in [123]. In brief, 

0.5% (w/v) rat tail type I collagen and 2% chitosan were dissioved in 0.1 M acetic acid, followed 

by freezing at -80 
o
C for 2 hours and then lyophilized for 24 hours. After lyophilization, the 

scaffolds were crosslinked by cutting them into small sizes (15 mm in diameter and 2 mm in 

thickness) and immersing into 2 ml 40% (v/v) ethanol containing 50 mM MES (ethanesulfonate) 
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(pH 5.0), 33 mM EDC (carbodiimide) and 8 mM NHS (N-hydroxyl succinimide) for 10 hours. 

After crosslinking, the scaffolds were neutralized with 0.1 M Na2HPO4 (pH 9.1) for 1 hour, 

followed by repeatedly washing with 40% ethanol and Milli-Q water to remove excess base until 

the pH reached between 7.0-7.4. The scaffolds were then lyophilized for 24 hours and sterilized 

under UV. 

A human foreskin fibroblast cell line, HFF-1 (ATCC SCRC-1041) was routinely maintained 

in 20% defined fetal bovine serum, 2 mM L-glutamine, 1% nonessential amino acids, 0.1% mM 

β-Mercaptoethanol, and 80% DMEM at 37 
o
C in a 5% CO2 incubator. Single suspended cells 

were prepared by trypsinizing with 0.05% trypsin/0.53 mM EDTA (Mediatech, Inc. VA) and 

seeded into collagen-chitosan scaffolds at a density of 1 × 10
5 

cells/scaffold. The scaffolds were 

prewashed with Phosphate Buffered Saline (PBS) solution and pre-equilibrated with the 

aforementioned culture medium. 

Collagen is one of the major ECM components that support cell growth. It has been widely 

used in constructing 3D tissue scaffolds [124][125]. Chitosan is another biomaterial that has been 

extensively used to endow scaffolds with sufficient mechanical strengths required for cell growth. 

A number of studies suggest that the mixing of chitosan with collagen can significantly improve 

cell proliferation and attachment [126][127]. Studies further indicate that physicochemical cues 

of a collagen-chitosan scaffold are significantly different depending upon the collagen content in 

the scaffolds [128]. We find that a ratio of 8:2 (collagen versus chitosan, v/v) or 7:3 of collagen-

chitosan scaffolds are suitable enough for cell growth [123][128]. Thus, in this experiment, the 

ratios of 8:2 (refer to scaf1) and 7:3 (refer to scaf2) are chosen for fabricating the scaffolds. 

These interconnected porous structures are suitable for cell growth [129]. 
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Scaffolds were mounted on stubs with a double-stick carbon tape and sputter coated with 

gold-palladium, and examined using a Joel Field Emission SEM (JSM-6335F, JOEL) at an 

accelerating voltage of 5 kV. Distinct sections from each sample were imaged (4 images per 

sample), and the pore size was determined using the Image-Pro Plus software. At least 90 pores 

were assessed for each sample. Data are presented by the mean pore size ± Standard Deviation 

(SD). The SEM images of these two scaffolds are shown in Figure 4.10. Both scaffolds exhibit 

interconnected network structures with a high porosity. The average pore size of high collagen 

content scaffolds, scaf1 (8:2), is about 150±67 µm. It is 100±48 µm for low collagen content 

scaffolds, scaf2 (7:3). 

 

Figure 4.10: SEM images of collagen-chitosan (v/v) scaffolds (a) 8:2 and (b) 7:3. 

4.3.3 Nanoindenter and Conditions 

The Agilent 5500 ILM AFM is used to perform the nanoindentation. A rotated monolithic 

silicon probe ContAl (BudgetSensors, Innovative Solutions Bulgaria Ltd.) with a spring constant 

of 0.2 N/m is adopted for AFM AC mode imaging and nanoindenting test. The probe employs an 

―on scan angle‖ symmetric triangle tip to provide a more symmetric representation of features 

over 200 nm and its resonance frequency is 13 kHz in air, which could vary accordingly in liquid. 
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The tip radius is less than 10 nm and its half cone angle α is 25°. A typical indentation distance is 

approximately 1000 nm, 200 nm and 65 nm for the scaffolds, 3µm bubble, and 1µm bubbles, 

respectively. The nanoindentation test needs to be done in liquid. For liquid imaging, the laser is 

originally aligned in air mode after a tip is assembled. This is critical to the controlling of the 

distance by which the tip is withdrawn from the sample plate, as the tip and the sample will be 

invisible after the liquid cell is mounted on the sample plate. After alignment, a liquid cell is 

mounted on the sample plate as shown in Figure 4.11 to create a liquid-sealed space where the 

sample is immersed in PBS. In case the sample floats, a transparent tape can be used to fix the 

sample to the bottom of the plate to guarantee the stability. The assembled sample plate is then 

moved back to AFM for scanning or indenting. Since liquid will cause laser refraction, the 

position of the detector needs a second adjustment in order to keep receiving the laser signal. The 

indentation is very much straightforward as the distance between the tip and the sample can be 

controlled by user. 

 

Figure 4.11: Liquid cell for imaging and indenting samples in liquid. 
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Before the indentation process, the surface information of the scaffold is obtained under 

liquid environment using Acoustic AC imaging mode. Scaffold samples are immersed in PBS 

buffer to simulate the same surroundings as they are inside human body. The topography image 

obtained during scanning is depicted in Figure 4.12 for the engineered Collagen-Chitosan 

scaffold. The scan is suspended right after it starts, and no valuable information about the sample 

surface is obtained. The reason for this is that the position of the AFM tip varies fiercely than it 

does for a normal scan because of the liquid environment which affects the stability of the 

scanning motion. Moreover, this happens because of the extreme softness of the engineered 

collagen-chitosan scaffold. Additionally, approaching is always hard to complete as the scaffold 

sample is so soft that it is very unstable while sitting on the sample plate in PBS. Furthermore, a 

small ladder-like surface would have the tip stuck as the scan range of the AFM scanner is in 

microns. Despite these particular setbacks, the nanoindentation of the engineered Collagen-

Chitosan scaffold will not be affected. 

 

Figure 4.12: A suspended scan of scaffold in liquid. 
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The mean elastic modulus of a scaffold can be determined from its force curve. Data from 

each group will be expressed as the mean ± SD by frequency analysis. The Levene homogeneity 

test indicates unequal variances (p< 0.05). Therefore, the means are analyzed by one-way 

analysis of variance with a Brown Forsythe test to account for unequal variances, followed by 

Bonferroni post-hoc tests using SPSS to evaluate differences between regions. A P-Value < 0.05 

is considered statistically significant. 

4.3.4 Results of Nanoindenting Scaffolds 

Before indenting the scaffolds, a mica disk is indented for the sensitivity calibration with the 

same tip as well as in the same condition, and it is resolved that the sensitivity of the cantilever 

deflection for PSD (SZ) on the AFM is approximately 89.0 nm/V. Besides E, there are another 

two variables to be determined, the nanoindentation force (F) and distance (δ). They are the 

precondition and will be indicated in the force curve of force (nN) versus indentation (nm). The 

curve can be obtained indirectly from the indentation raw data in the AFM control software 

PicoVIEW. Eventually, the Young‘s Modulus (E) can be computed by selecting six points from 

the force versus indentation curve and averaging the values. Equations below will better explain 

how to extract the indentation force and distance from a group of indentation raw data, where the 

information of Δz and amplitude A can be read from the raw data. A0 and z0 are the amplitude and 

z-axis piezo sensor when the cantilever begins to bend, while A and z the corresponding values 

of an indentation status that user select. 

    |     | (4.4) 

                       (4.5) 

     |     |          (4.6) 

                  (4.7) 
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Figure 4.13 shows a typical set of AFM raw data after indenting a collagen-chitosan scaffold 

at a ratio of 7:3 (a. piezo movement starts in z-axis; b. cantilever begins to contact the sample; c. 

z-axis movement stops; d. cantilever departs from the sample during unloading; and e. piezo 

movements stops). It appears that the approach and the retrace curves are not completely 

overlapped. There is a 0.4 µm offset between the start and end height. The effect of this offset, 

however, is minor, as the indenting curves are linear. This offset should be mainly due to the 

water layer on the sample. As the measurements are performed in PBS buffer, the liquid layer 

exerts a capillary force that is strong and attractive. As the scanner pulls away from the surface, 

the water holds the tip in contact with the surface, bending the cantilever strongly towards the 

surface (Amplitude difference between point b and d in Figure 4.13). At some point, depending 

upon the thickness of the water layer, the scanner retracts enough that the tip springs free (point d 

in Figure 4.13). This is known as the snap-back point. As the scanner continues to retract beyond 

the snap-back point, the cantilever remains straight as the scanner moves it away from the 

surface in free space [130]. Moreover, it is assumed that the deformation during indentation is 

elastic and the indenter is a rigid body. Only the approach data is used for obtaining force curves 

of a sample. 
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Figure 4.13: Raw data of indenting a collagen-chitosan scaffold. 

Because the AFM tips used are rather sharp cones, the induced shear stress is on the order of 

the sample‘s elastic modulus with the danger of producing plastic deformation. Although the 

cone could penetrate the surface of a scaffold, resulting in plastic and/or irreproducible 

deformations, such effect can be minimized by taking a reading on one spot a time. It is believed 

that as long as the indentation approach and retrace plots are the same for one and the other, and 

the force curves obtained are linear, the elastic state would be guaranteed. Figure 4.14 presents 

the force curves from 4 indentations on a scaf1 sample at 4 locations within a small neighboring 

area of the sample surface. Only one indentation is done at each location. The slopes (nN/nm) are 

0.01058, 0.008055, 0.02341, and 0.01845 for Indent #1, 2, 3, and 4, respectively. They appear to 

be within a reasonable range. 



67 
 

 

Figure 4.14: Force curves obtained from indenting a scaf1 sample multiple times. 

On the other hand, since the radius of the tip for the indentation is less than 10 nm and the 

features on the scaffolds tested are in the dimension of 10 µm level, the conditions are satisfied 

to apply the schematic in Figure 4.1 and Equation (4.3) for the estimation of the Young‘s 

Modulus of the scaffolds. While indenting, there is no speed control, but the z distance and the 

total number of data points along that distance are controlled. For example, the indentation 

distance is 2 µm, and the number of data points, which possess the indenting raw data, is 10,000. 

~50% of the approaching curve from the point where the cantilever begins to deflect is selected 

to analyze the indentation, as the use of the retracting curve might lead to an incorrect 

measurement of indentation. With this method, two force curves for a scaf1 sample and a scaf2 

sample are obtained and plotted in Figure 4.15 in order to estimate the Young‘s Modulus. From 

linear curve fitting, the slopes are 0.00974 and 0.01368 (nN/nm) for scaf1 and scaf2, respectively. 

Then, six points in each force curve in Figure 4.15 are adopted and substituted into Equation (4.3) 

to calculate the Young‘s Modulus. The results are showed in Figure 4.16. The Young‘s Moduli 
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are 1.8 kPa and 10.4 kPa for the scaf1 and scaf2 sample respectively, which suggests the addition 

of chitosan to a collagen scaffold helps enhance its stiffness. 

 

Figure 4.15: Force curve comparison between scaf1 and scaf2 samples. 

 

Figure 4.16: The averaged Young‘s Modulus for scaf1 and scaf2 samples. 
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To validate these tests, we ascertain the Young‘s Modulus of mouse pancreas and heart 

tissues prepared from 3 mice in the same way. Figure 4.17 gives the force curve comparison with 

the slopes (nN/nm) of 0.00329:0.00908 through linear fitting, and Figure 4.18 shows that the 

averaged Young‘s Modulus is 8.25 kPa and 47.4 kPa for the mouse pancreas and heart tissues, 

respectively. The estimation result of the Young‘s Modulus for the mouse heart tissues is in 

agreement with others‘ work. For example, one study has reported that the average stiffness of a 

mouse heart sample is about 49.6 kPa [131]. Therefore, the estimation of the Young‘s Moduli for 

the scaffolds is reliable. 

 

Figure 4.17: Force curve comparison between mouse pancreas and heart tissues. 
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Figure 4.18: The averaged Young‘s Modulus of mouse pancreas and heart tissues. 

4.3.5 Results of Nanoindenting Scaffolds with Cell Cultures 

Next, whether or not the tensile strength of a collagen-chitosan scaffold is altered by ECM 

deposited from cells grown inside a scaffold is investigated. The human foreskin fibroblasts are 

seeded into both scaf1 and scaf2 the way as in [128][132]. The elastic moduli of the two 

scaffolds are determined at different time points within 10 days of cultures. As shown in Figure 

4.19 (a) and (b), their elastic moduli decrease gradually when they are immersed in a cell culture 

medium for 10 days. The scaf1‘s elastic modulus drops from 3.69 to 2.63 kPa, while scaf2‘s 

elastic modulus declines from 11.6 to 5.19 kPa after 10 days incubation. It appears that a high 

content collagen in the scaffolds helps delay their deterioration. As documented in literatures, 

collagen tends to degrade in culture medium [124][132]. In contrast, the tensile strength of 

collagen-chitosan scaffolds increase when cells are grown inside them. The elastic modulus of 

scaf1 is elevated from 10.5 kPa on day 3 to 63.4 kPa on day 10 when the human foreskin 

fibroblasts are cultured inside the scaffolds as shown in Figure 4.19 (c). The deposition of ECM 

from cells might contribute to this increase. Although the cellular deposition of ECM is not 

directly observed here, related early works using similar scaffolds demonstrated the ECM 
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deposition from cells grown inside the scaffolds [123][128][133]. It is also found out that the 

tensile strength of a collagen-chitosan scaffold is less affected by the cellular deposition of ECM 

if a higher content chitosan is used for fabricating scaffolds as shown in Figure 4.19 (d). The 

elastic modulus of scaf2 is increased only slightly from 3.64 kPa on day 3 to 8.72 kPa on day 10 

with cells grown inside. 

The cellular enhancement of mechanical properties of a collagen scaffold has been observed 

by other groups as well [134]. The transition of mechanical property has also been found in other 

scaffolds [135]. The effect of scaffold stiffness on cells has also been characterized extensively 

[136]. It is also noteworthy to point out that large variation in elastic modulus measurements is 

observed in our experiment. These variations might be due to the nature of porous scaffolds or 

due to the different positions where a tip touches the scaffolds during the measurements. Thus, 

the procedure needs to be further optimized in order to generate more consistent measurements. 

 

Figure 4.19: Changes in elastic moduli of scaffolds during 3D cell cultures. 



72 
 

4.4 Estimation of Mechanical Properties of Protein Microbubbles 

4.4.1 Background 

Over the last decade, there has been significant progress towards the development of 

microbubbles as theranostics for a wide variety of biomedical applications. The unique ability of 

microbubbles to respond to ultrasound makes them useful agents for contrast ultrasound imaging 

[137] and targeted drug and gene delivery [138]. The general composition of a microbubble is a 

gas core stabilized by a shell comprised of proteins, lipids or polymers. Each type of 

microbubble has its own unique advantages and can be tailored for specialized functions. 

Microbubbles work by resonating in an ultrasound beam, rapidly contracting and expanding 

in response to the pressure changes of the sound wave. By a fortunate coincidence, they vibrate 

particularly strongly at the high frequencies used for diagnostic ultrasound imaging. This makes 

them several thousand times more reflective than normal body tissues. In this way they enhance 

both grey scale images and flow mediated Doppler signals. As well as being useful in itself, the 

resonance that microbubbles produce has several special properties that can be exploited to 

improve diagnoses. Just as with a musical instrument, multiple harmonic signals, or overtones, 

are produced. Ultrasound scanners can be tuned to ―listen‖ to these harmonics, producing strong 

preferential imaging of the microbubbles in an image. The selective excitation produced can also 

destroy microbubbles relatively easily, an effect that can be useful both in imaging and in 

emerging therapeutic applications. The use of microbubbles in treatments may eventually be 

even more important than there diagnostic uses [139]. Microbubbles can aid drug delivery in 

themselves and as agents to carry drugs for site-specific treatment. Their most exciting 

application is in the emerging area of gene therapy, where delivery of genetic material to a 

chosen site is difficult [140]. 
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Microbubbles used for biomedical purposes are typically between 0.5 and 10 µm diameter, 

which is the upper limit for passage through the lung capillaries. The gas core is a single 

chamber and comprises a large majority of the total particle volume. The shell acts as a barrier 

between the encapsulated gas and the surrounding aqueous medium. Different shell materials 

may be used, including lipid (~3 nm thick), protein (15-20 nm thick) and polymer (100-200 nm 

thick). Figure 4.20 shows the structure of a typical microbubble with different shell compositions 

[138]. The unique ability of microbubbles to respond to ultrasound energy and to potentially 

cause a physiological response makes them ideally suited for targeted delivery applications. 

 

Figure 4.20: Structure of a typical microbubble with different shell compositions. 

The microbubbles involved in this dissertation are designated for gene /drug delivery and 

ultrasound contrast diagnostic with protein shells. The University of Arkansas Medical Science 

(UAMS) provides the microbubble samples with two different diameters, 1 µm and 3 µm. Figure 

4.21 is a schematic of microbubbles for a potential drug delivery application towards brain 

thrombus treatment. Assume a patient, who is suffering from a brain thrombus issue, swallows a 

number of microbubbles, and the protein shells encapsulate particular pills for delivery. The 
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microbubbles normally survive in a liquid environment for about 2 hours. During this time, the 

microbubbles are able to be led to a chosen site (affected area) and release the pills after they 

burst through ultrasound-mediated effects of microbubbles, such as acoustic backscatter, 

streaming, fragmentation, dissolution, cavitation and radiation force. Thus, the thrombus will be 

eliminated after the pills take effective. However, before microbubbles can be applied into 

various biomedical applications, some mechanical properties of the microbubbles need to be 

known in order to make use of them properly and accurately. The mechanical properties are also 

among important parameters of microbubbles for quality control purpose. The Young‘s Modulus 

of the microbubbles is one of their major mechanical properties to be estimated. Owing to the 

particularities of the microbubbles and the constraints of the experimental condition, it is not 

straightforward, or even not feasible to implement the measurement until advanced techniques in 

nano level become mature. Now, the AFM-based nanoindentation technique is one of the 

potential solutions to carry out the task as AFM imaging in liquid will examine the microbubbles 

size-wise and nanoindentation will offer the information for mechanical properties at the same 

time. Our experimental results show the proof of the methodology. Although there is still 

distance to be perfect by this means, the current results are encouraging and significant as no one 

has reported such an AFM-based nanoindentation attempt for estimating the mechanical 

properties of protein microbubbles. 
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Figure 4.21: Schematic of microbubbles for drug delivery. 

4.4.2 Immobilization of Microbubbles 

The microbubble samples are stored in syringes with PBS and need to be kept refrigerated 

(do not freeze). It is recommended that freshly prepared microbubbles or ones that are stored 

concentrated at 5 °C be used for AFM application. Before bringing the microbubbles to AFM, 

the immobilization is necessary. Figure 4.22 shows the procedures that are used for immobilizing 

the microbubbles on a 10-mm-diameter mica disk. Firstly, a Polydimethylsiloxane (PDMS) mask 

with four round wells is made. Each well has a diameter of 6 mm. Secondly, fill one of the wells 

with 6% poly-l-lysine solution. Make sure the poly-l-lysine solution is a little above the PDMS 

mask surface, which secures the contact after a mica disk covers the well. Then keep the mica 

disk and the poly-l-lysine solution in contact for 15 minutes, remove the mica disk, let it air-dry 

overnight, and a poly-l-lysine layer is coated on the mica disk. Poly-l-lysine is a synthetic amino 

acid chain that is positively charged and widely used as a coating to enhance cell attachment and 

adhesion to both plasticware and glass surfaces. Poly-l-lysine is also a charge enhancer, and it 
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can be used for coating many surfaces. Coated surfaces will often improve cell attachment in 

reduced or serum-free conditions. It is recommended that poly-l-lysine be stored at or below 2 to 

10 ºC. Therefore, poly-l-lysine is adopted to immobilize the microbubbles on the mica surface. 

Thirdly, the microbubbles are attached to the poly-l-lysine coated mica disk. The syringes are 

kept vertical with the nozzle facing down in a fridge so that the microbubbles gather in the top of 

the syringe owing to the smaller density. In order to guarantee that a large number of bubbles can 

be filled in the well, PBS in the bottom part of the syringe is pushed out immediately after taking 

the syringe out of the fridge. Then, after lightly shaking the syringe for a few minutes, the 

microbubbles are suspending everywhere in the rest of PBS. Fill a well on the PDMS mask with 

the PBS with a great number of microbubbles, and also make sure the PBS level is a little above 

the mask surface. Cover the well with the mica disk with the poly-l-lysine coated side facing 

down, and keep it in contact with PBS for about 15 minutes. During that time, all the 

microbubbles rise to the top and are attached to the poly-l-lysine coated surface. The poly-l-

lysine layer provides the bubble-immobilization, and multilayer of microbubbles will not happen. 

Finally, the mica disk is moved to a petri dish and flipped over with the bubble-attached side 

facing up. Flood the disk slowly with PBS, and let the microbubbles, which are the extra ones 

and not able to be attached, be suspending in the PBS. Then the mica disk with the immobilized 

microbubbles is taken out of the petri dish and attached to an AFM metal specimen disc using a 

Lift-N-Press tab. Transfer the disc to the AFM sample plate with the liquid cell mounted, and fill 

the cell with PBS. Since there is a magnetic area at the center of the sample plate, everything is 

stable. The microbubbles are ready to be scanned and imaged. 
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Figure 4.22: Immobilization procedures of microbubbles. 

As introduced in 1.1.7, the large multi-purpose AFM scanner has a scan size of 90 µm × 90 

µm, which is 0.0081 mm
2
. However, that is still tiny comparing to the surface area of the mica 

disk, which is about 78.54 mm
2
. Therefore, the surface density of the immobilized microbubbles 

becomes quite critical to determine the success of AFM imaging. After the failure to image the 

microbubbles at the first beginning, to examine the density of immobilized microbubbles using 

an optical microscope becomes necessary. Olympus BX51 is then used to observe the 

immobilized microbubbles under phase contrast mode before we take them to the AFM. Figure 

4.23 presents a comparison between good and bad 3 µm-bubble attachments, which lead to a 

success and failure AFM scan, respectively. With a high surface immobilizing density, AFM 

users spend much less time in locating the microbubbles than they do with a low surface-

attachment density. Sometimes, a low surface-attachment density may take an AFM user too 

long (~a few hours) to image the microbubbles as these microbubbles will be gone after about 2 
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hours in PBS. The bubbles will burst immediately when they are exposed to the air. Since 

imaging these microbubbles is implemented in liquid, nothing can be seen from the AFM real-

time video system except for the AFM tip and laser even though microbubbles are visible for 

both high and low surface-attachment density. So, it is recommended that the examination of the 

attachment should be always performed before the samples are taken to the AFM. Otherwise, 

there exists possibility that pains trade no gains. 

 

Figure 4.23: Optical microscope images of immobilized 3 µm bubbles (a) success and (b) failure 

to scan. 

4.4.3 AFM Imaging of Microbubbles 

After 3 µm bubbles are immobilized with a high surface density, the sample plate is brought 

back to the AFM for imaging. The same AFM probes (ContAl) as the ones used for indenting the 

scaffolds are adopted mainly because of their low cantilever force constant, 0.2 N/m. A dummy 

approach should be executed with a bare metal specimen disc on the sample plate in advance in 

order to control the distance between the tip and the sample. Once the dummy approach is done, 

the tip is lifted from the metal specimen disc by 3,000 µm. Then, it is safe to mount the sample 

plate with the microbubbles attached mica disc in the liquid cell. Next, manually approach while 

observing the distance change. In general, the cantilever will be immersed by the PBS in the 
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liquid cell after the distance is decreased from 3000 µm to 1000 µm, and the position of the 

AFM detector needs to be adjusted to receive the deflected laser signal. Resume the manual 

approach until the distance is decreased within 300 µm and 400 µm, which indicates the AFM 

tip is very close to the microbubbles as the mica disc is 210 µm thick. Manual tune to determine 

the resonance frequency of the cantilever, and it is about 27 kHz in PBS. The force setpoint is set 

at about 1.0 V by controlling the drive percentage. Thus, it is ready to implement auto approach 

to let the AFM tip reach the sample. 

Once the auto approach is completed, a 50 µm × 50 µm square area near the center of the 

sample plate is scanned in tapping mode. Figure 4.24 shows that a pack of microbubbles are 

found and imaged. It is often the truth that the phase and amplitude images offer better visual 

performance than the topographies when imaging samples in liquid. Since to indent a deflated 

microbubble currently does not provide us with much valuable information for the future 

application, it is necessary to examine the bubble size before indenting it. Figure 4.25 gives the 

measurement results on microbubbles‘ diameter. The measurement profiles verify they are 3-

µm-diameter bubbles. Figure 4.26 shows five microbubbles located within 20 µm × 20 µm and 

the height of microbubbles are measured. The second scan is also completed followed by the 

third scan for the same area, and the microbubbles are becoming smaller and smaller as the scan 

number goes up as shown in Figure 4.27 and Figure 4.28. Table 4.3 records the height 

measurement information, and it suggests that the indentation should be carried out immediately 

after a target bubble is located at the first time although the microbubbles are imaged under 

intermittent contact mode. Additionally, another area of 50 µm × 50 µm on the same mica disc is 

scanned an hour and a half later. Figure 4.29 shows that the microbubbles are still able to be 
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imaged, but they are already weak. So, once the immobilization of the microbubbles is finished, 

to locate the microbubbles quickly using AFM becomes critical and decisive for indenting. 

 

Figure 4.24: AFM image of 3 µm bubbles immediately after immobilization. 

 

(a) 

(b) 
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Figure 4.25: Diameter measurement of 3 µm bubbles (a) selected bubbles and (b) profiles. 

 

Figure 4.26: The first scan of five 3 µm bubbles for height measurement. 

 

Figure 4.27: The second scan of the same 3 µm bubbles as in Figure 4.26. 
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Figure 4.28: The third scan of the same 3 µm bubbles as in Figure 4.26. 
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Figure 4.29: Another scan of 3 µm bubbles an hour and a half later than in Figure 4.24 

# of Scan Bubble 1 (µm) Bubble 2 (µm) Bubble 3 (µm) Bubble 4 (µm) Bubble 5 (µm) 

1 3.8651 3.9373 2.8081 3.5733 3.6624 

2 3.6022 0.6803 1.0866 0.5389 0.4679 

3 0.8992 0.7028 0.7794 0.4822 0.6575 

Table 4.3: Height measurement of 3 µm bubbles after multiple scans. 

To image the bubbles with 1 µm diameter share the same procedures except for the AFM 

scanner. The small scanner is adopted for these smaller microbubbles as it offers better images 

for the samples which suffice for the scan limitations. For example, the vertical servo range of 

the small scanner, about 2.4 µm, is obviously capable to image samples that are supposed to be 

around 1 µm high. Figure 4.30 shows a 9 µm × 9 µm scan area that includes a number of 

microbubbles. According to Figure 4.31, these microbubbles are all approximately 1 µm wide.  

 

Figure 4.30: AFM image of 1 µm bubbles. 
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Figure 4.31: Diameter measurement of 1 µm bubbles (a) selected bubbles and (b) profiles. 

In fact, it is very challenging for us to precisely measure the height of these microbubbles. 

During the entire experiment, there are issues regarding the height verification. Although 3-µm-

high bubbles are verified as shown in Figure 4.24 and Figure 4.25, it still may be inaccurate. The 

sensitivity in z-axis of the large AFM scanner was adjusted based on a calibration with a grating 

sample. However, when the sensitivity was changed based on the height of the grating feature, 

the deflection range of AFM cantilever increased to 22.15 µm from the original 7.826 µm, which 

is strange and suspicious. Moreover, it is unable to obtain correct height information after 

imaging 1 µm bubbles using the small scanner. The height of bubbles in Figure 4.30 is much less 

than 1 µm even if their diameter measured on x-y surface is satisfying. The two scanners have 

separate calibration files, and the parameters on the small scanner file remained the same as 

factory calibration, which is reliable. Thus, this height issue becomes one of the major challenges 

for us to face. It is possible for the microbubbles to deform and lose their sphere shape due to the 

water pressure when the microbubbles are immobilized at the bottom level of PBS in the liquid 

(a) 

(b) 



85 
 

cell. Therefore, it could be a major reason why the diameter and height of a microbubble is no 

longer identical. 

4.4.4 Results of Nanoindentating Microbubbles 

Since the conical indenter is regarded to be rigid and has a tip radius less than 10 nm while 

the bubbles are in micro scale, the Sneddon mode in Equation (4.3) is also applicable to 

approximate the relationship among force, indentation distance and Young‘s Modulus during 

indenting the microbubbles. The Poisson‘s Ratio υ of microbubbles is assumed to 0.5 [141][142], 

and the AFM probe ContAl is employed to carry out nanoindentation. Therefore, to estimate the 

Young‘s Modulus of the microbubbles becomes feasible after the force curves are obtained. 

There are four major steps in order to calculate the Young‘s Modulus for microbubbles. Firstly, 

experimental raw data of nanoindentation on mica surface and microbubbles needs to be 

obtained. Secondly, the raw data of indenting on mica surface will be used to obtain the PSD 

sensitivity (SZ in nm/V). This sensitivity needs to be calibrated each time right before indenting a 

sample as the value would change under different conditions even if the same kind of AFM 

probe is used and pre-calibrated. With this sensitivity, the raw data of indenting microbubbles 

will be used to obtain the relationship between the indentation force and distance according. The 

nanoindenting raw data reflects the relationship between Δz vertical displacement of AFM piezo 

in µm and the cantilever deflection in V, which indirectly gives the relation between the 

indentation force and distance on a sample as indicated in Equations from (4.4) to (4.7). Thirdly, 

the relation between nanoindentation force and distance squared can be extracted. With a proper 

curve fitting, the slope of nanoindentation force over distance squared is known. Lastly, this 

slope will be substituted into the Sneddon Model together with the Poisson‘s Ratio and the half 
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cone angle of the AFM tip, which is 0.5 and 25º respectively. Thus, the Young‘s Modulus is able 

to be calculated as it becomes the only unknown variable in Equation (4.3). 

Figure 4.32 illustrates an AFM image with four 3-µm-diameter bubbles to nanoindent. In 

order to obtain SZ, the AFM tip is first used to complete three dummy nanoindentations at the 

positions without any microbubbles. Figure 4.33 illustrates the AFM raw data of indenting mica 

while Figure 4.34 illustrates the AFM raw data of indenting a microbubble. These AFM files can 

be imported into Microsoft Excel to extract the raw data as long as the files are saved in ASCII 

format. Thus, the mean of SZ is obtained at 192.8 nm/V with a standard deviation of 26.3 nm/V. 

With this sensitivity, the deflection of the cantilever during nanoindentation process can be 

known by obtaining the product of the amplitude from the raw data and this sensitivity, which 

also enables us to calculate the corresponding force and indentation distance on the sample. Next, 

the force curve of nanoindenting a microbubble is obtained as shown in Figure 4.35, from which 

the relation between force and indentation squared is obtained as shown in Figure 4.36. With a 

proper curve fitting, the slope of force over indentation squared is known, which is 0.0019 

nN/nm
2
, and this value is substituted into Equation (4.3) together with υ = 0.5 and α = 25°. 

Finally, the Young‘s modulus of the indented microbubble is calculated, E = 1.044MPa. 
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Figure 4.32: AFM image of four 3 µm bubbles for nanoindentation. 

 

Figure 4.33: AFM raw data of nanoindenting mica before 3 µm bubbles. 
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Figure 4.34: AFM raw data of nanoindenting a 3 µm bubble. 

 

Figure 4.35: Force curve of nanoindenting a 3 µm bubble based on Figure 4.34. 
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Figure 4.36: Force vs. indentation squared curve based on Figure 4.35. 

Table 4.4 records the results of calculated Young‘s Moduli for the four 3 µm bubbles. As we 

can see, the mean Young‘s Modulus equals about 0.824 MPa with a standard deviation at 0.273 

MPa. Thus, we have succeeded in quantifying the Young‘s Modulus of 3 µm bubbles through 

AFM based nanoindentation. 
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Table 4.4: Results of calculated Young‘s Moduli for 3 µm bubbles. 

The procedures are repeated in order to obtain the Young‘s Moduli of 1 µm bubbles. Figure 

4.37 contains two AFM images of 1 µm bubbles. Two bubbles in the left image and three 

bubbles in the right one are indented. Figure 4.38 is one of the AFM raw data of nanoindenting 

mica, and the sensitivity SZ is 86.0 nm/V and 80.1 nm/V for the left and right image respectively. 

Figure 4.39 shows the AFM raw data of nanoindenting one of the microbubbles in the left image 
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of Figure 4.37. Thus, the corresponding force curve and correlation between force and 

nanoindentation squared are obtained as shown in Figure 4.40 and Figure 4.41 respectively. 

Through linear curve fit on the force vs. indentation squared data, the slope is determined at 

0.0105 and substituted into Equation (4.3) together with υ = 0.5 and α = 25°. Finally, the 

Young‘s Moduli of the indented 1 µm bubbles are obtained as recorded in Table 4.5. 

 

Figure 4.37: AFM images of five 1 µm bubbles for nanoindentation. 
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Figure 4.38: AFM raw data of nanoindenting mica before 1 µm bubbles. 

 

Figure 4.39: AFM raw data of nanoindenting a 1 µm bubble. 

 

Figure 4.40: Force curve of nanoindenting a 3 µm bubble based on Figure 4.39. 
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Figure 4.41: Force vs. indentation squared curve based on Figure 4.40. 
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Table 4.5: Results of calculated Young‘s Moduli for 1 µm bubbles. 

4.5 Summary 

The methodology of AFM based nanoindentation is introduced in this chapter. With AFM‘s 

assistance, it becomes feasible to characterize the mechanical properties of some nano/bio 

samples which used to be impossible due to their unique characteristics and the limited testing 

conditions. The Sneddon Model is employed to approximate the contact correlation between 

AFM tip and samples. By this means, we have investigated the mechanical properties of 

VACNFs at subzero temperatures, soft tissue scaffolds with cell cultures, and protein 
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microbubbles. Based on the experimental results, it is found that the Young‘s Modulus of 

VACNFs drops significantly when they are treated at subzero temperatures comparing to what it 

is at room temperature. Also, their Young‘s Modulus keeps decreasing in a linear manner when 

the temperature varies from -20 °C to -70 °C. This information is of great value for the potential 

usage of VACNFs as sensing element in outer space missions. The results on the mechanical 

properties of collagen-chitosan scaffolds reveal that addition of chitosan to collagen in the 

scaffold ingredients enhances the stiffness. Also, the Young‘s Modulus of the scaffolds decreases 

gradually when they are immersed in a cell culture medium for 10 days, and it appears that a 

high content of collagen in scaffolds helps delay their deterioration. On the other hand, it is 

interesting that the Young‘s Modulus increases when human embryonic fibroblast cells are 

cultured. Furthermore, the AFM-based nanoindentation has successfully realized imaging and 

indenting microbubbles in PBS, and the results on the mechanical properties reveal that 1 µm 

bubbles are stiffer than 3 µm ones. This mechanical property of microbubbles is precious 

information for quality control objective and as pre-condition of proper applications. 
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Chapter V. DESIGN, FABRICATION, TESTING OF CNT BASED ISFET 

5.1 Design of CNT Integrated ISFET 

As introduced in 1.1.5, an ISFET is generally used to measure ion concentrations in solutions. 

When the ion concentration, such as pH, changes, the current through the transistor will change 

accordingly. Researchers have reported ISFET development for sensing ion concentration in 

solutions for more than 30 years. Solution is used as the gate electrode instead of the traditional 

metal gate. The voltage between substrate and oxide surfaces arises due to an ions‘ sheath. An 

ISFET's source and drain are constructed similar to a Metal-oxide Semiconductor Field-Effect 

Transistor (MOSFET). Although an ISFET is similar to a MOSFET, there are still some 

differences. As shown in Figure 1.5, the metal gate is replaced by the metal of a reference 

electrode, whilst the target liquid in which this electrode is present makes contact with the bare 

gate insulator. Both have the same equivalent circuit. Devices with this structure can be applied 

to pH measurement. However, the final objective of our work on the nano-pH sensor is to 

enhance the inversion layer with CNTs as ―nano-bridge‖ to conduct electrons between the drain 

and source. The drain current might be much greater under the same condition. When an ISFET 

device is active, ions will flow between the source and drain through the inversion layer and 

form the drain current, whose magnitude depends on the ion concentration of solution. CNT-

ISFET structure intends to make use of CNTs‘ extremely high current carrying capacity 

(~1TA/cm
3
) to improve the performance. There will be a ―highway‖ for the ions after CNTs are 

aligned properly inside a nanochannel that is fabricated in the location of the inversion layer. 

Figure 5.1 illustrates the design for CNT-ISFET structure with nanochannel. If all of these 

conditions are satisfied, the device will be able to measure targets solutions in microliter or even 

smaller scale comparing to at least milliliter scale of conventional pH sensors. It would be a 
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revolution of measuring ion concentration in solutions if the sensitivity can be remained while 

sample volume significantly decreases. Therefore, in order to achieve CNT integrated ISFET, it 

is needed to fabricate common ISFET structure using MEMS techniques except for the inversion 

layer where nanochannels and CNT alignment are involved. 

 

Figure 5.1: Design of CNT-ISFET structure: (a) perspective view, (b) side view and (c) CNTs in 

nanochannel. 

5.2 Fabrication of ISFET 

The fabrication process of our ISFET consists of eight major steps, all of which were 

completed using the cleanroom thin film facilities in High Density Electronics Center (HiDEC) 

of University of Arkansas. The fabrication started with a 5-inch p-type boron diffused silicon 

wafer with orientation of <1-1-1> and thickness of 625 µm. The major fabrication steps are Field 

Oxidation, Phosphorus Source Preparation, Pre-Deposition, Drive-in, Gate Oxide, Backside 

Oxide Etch, Lift-off Patterning, and Metallization as shown in Figure 5.2, where a) silicon b) 

first mask photolithography c) oxide etching d) phosphorus pre-deposition e) deglaze f) drive-in 
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g) second mask photolithography and gate oxide etching h) gate oxidation i) backside oxide etch 

j) strip off resist k) third mask photolithography l) oxide etching m) apply and pattern 5214 

photoresist n) evaporation o) lift-off. 

 

Figure 5.2: ISFET fabrication flowchart. 

5.2.1 Mask Design 

Before the fabrication, the mask for photolithography needs to be designed and produced. 

Since the ISFET is a multilayer structure, the mask also should contain multilayer. This 

multilayer mask is designed using AutoCAD as shown in Figure 5.3. According to the demand 

of photolithography during the entire process, four layers are necessary and they are named 

NDIFF (in red), GATE (in green), MET (in blue) and CNT (in yellow) respectively. There are 60 

× 40 ISFET chips in the design, and each is sized of 1.4 mm × 0.9 mm, and the classification is 

given in Table 5.1. Actually, all these ISFET chips are based on a fundamental design which has 

a 40 µm × 300 µm gate area, and the CNT area exactly overlaps the gate area. The only major 

difference between the chips is the metal electrode as shown in Figure 5.4. The chips without 

electrodes can only be tested as an ISFET, while CNTs can be integrated to the ones with 
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electrodes. Finally, the masks are produced on transparency films with both clear field and dark 

filed polarities. 

 

Figure 5.3: Multilayer mask design for fabricating ISFETs. 

 

Figure 5.4: Comparison of (a) ISFET and (b) ISFET with triangle electrodes. 

(a) (b) 
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Gap of Source/Drain 

(µm) 

Electrode 

Shape 

Expanded Gate 

(µm) 

Shrunk Gate 

(µm) 

Gate Length 

(µm) 

40 
   

300 

40 
 

1 
 

300 

40 
 

2.5 
 

300 

40 
 

5 
 

300 

40 
  

1 300 

40 
  

2.5 300 

40 
  

5 300 

40 
   

380 

40 
 

1 
 

380 

40 
 

2.5 
 

380 

40 
 

5 
 

380 

40 
  

1 380 

40 
  

2.5 380 

40 
  

5 380 

40 Triangle 90° 
  

300 

30 Triangle 90° 
  

300 

40 Triangle 90° 1 
 

300 

40 Triangle 90° 5 
 

300 

30 Triangle 90° 1 
 

300 

30 Triangle 90° 5 
 

300 

40 Triangle 90° 
 

1 300 

40 Triangle 90° 
 

5 300 

30 Triangle 90° 
 

1 300 

30 Triangle 90° 
 

5 300 

40 Triangle 60° 
  

300 

30 Triangle 60° 
  

300 

40 Triangle 60° 1 
 

300 

40 Triangle 60° 5 
 

300 

30 Triangle 60° 1 
 

300 

30 Triangle 60° 5 
 

300 

40 Triangle 60° 
 

1 300 

40 Triangle 60° 
 

5 300 

30 Triangle 60° 
 

1 300 

30 Triangle 60° 
 

5 300 

40 Triangle 30° 
  

300 

30 Triangle 30° 
  

300 

40 Triangle 30° 1 
 

300 

40 Triangle 30° 5 
 

300 

30 Triangle 30° 1 
 

300 

30 Triangle 30° 5 
 

300 

40 Triangle 30° 
 

1 300 

40 Triangle 30° 
 

5 300 

30 Triangle 30° 
 

1 300 

30 Triangle 30° 
 

5 300 

Table 5.1: Classification of ISFET chips in the mask design. 
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5.2.2 Field Oxidation 

During the fabrication, a diffusion furnace (Bruce BDF4, Bruce Technologies Inc., USA) as 

shown in Figure 5.5 is used for oxidation and phosphorus diffusion. In filed oxidation, multiple 

bare silicon wafers are loaded into the furnace for oxidizing, one of which would be used as the 

process wafer. The objective of field oxidation is to grow a silicon dioxide layer of about 500 nm 

thick on wafer‘s polished side. After loading the wafers and heating inside the oxidation tube of 

the furnace at 750 °C for 50 minutes, the process wafer underwent a DCE clean, which helps the 

wafer trap or remove metal substances or other impurities. Then, the temperature is increased to 

1100 °C to complete dry oxidation and wet oxidation for 40 minutes and 34 minutes respectively. 

Finally, the tube is cooled to 750 °C for 55 minutes. Then, the field oxidation process is 

complete. Through Nanospec microscopy as shown in Figure 5.6, the thickness of oxidation 

layer is obtained as recorded in Table 5.2. An average of 5430 Å thick SiO2 on the polished side 

is achieved. The oxidation on both sides of the process wafer will work as a protection layer 

during the following diffusion process. 

 

Figure 5.5: Diffusion furnace for oxidation and diffusion. 
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Figure 5.6: Nanospec reflectometer for SiO2 thickness measurement. 

Center Left Top Right Bottom Average 

5425 Å 5410 Å 5422 Å 5457 Å 5440 Å 5430.8 Å 

Table 5.2: SiO2 thickness measurement after field oxidation. 

5.2.3 Phosphorus Source Preparation 

The phosphorus source preparation is done in a specific phosphorus tube (tube #4) which is 

different from the oxidation one (tube #1). The source wafer is a PH-950 n-type 5-inch wafer 

with active component of SiP2O7. The source wafer is loaded into the tube on a boat with 2 

dummy wafers located on its edges as shown in Figure 5.7. The tube is first dried in N2 at 400 °C 

for 1 hour. Then, the temperature rises to 885 °C in 50 minutes, and it is followed by maintaining 

the temperature at 885 °C for 18 hours with both N2 and O2 valves on. Then, the tube 

temperature is decreased to 400 °C for 1 hour before loading the process wafer. After this 

process, the tube is filled with the dopant vapor P2O5 from the source by direct volatilization. 
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Figure 5.7: Phosphorus source wafers on boat. 

5.2.4 Pre-Deposition 

It is necessary to open windows in order to diffuse the silicon wafer by etching the oxidation 

layer using photolithography before the pre-deposition process really starts. The process wafer is 

first coated by AZ 4110 positive Photoresist (PR) by a desktop spin coater at maximum rpm of 

3000 for 30 seconds. Figure 5.8 shows two desktop spin coaters available in the HiDEC 

photolithography room, where the left spin coater is specified for Poly(Methyl methacrylate) 

(PMMA) coating towards electron beam lithography while the right one is particular for other 

PRs, such as AZ4000/5000 series resist. Before coating, a hexamethyldisilazane (HMDS) 

process is implemented for the silicon wafers in order to provide an adhesion promoter for PR. 

Figure 5.9 shows the HMDS oven where HMDS can be applied to wafers in vapor form. Thus, 

the coating process gives a 1.25 µm thick PR layer. Then, the coated wafer is baked on the hot 

plates of Eaton Spin Coater (Eaton 6000HX Spin Coater) at 110 °C for 2 minutes and transferred 

to the mask aligner (SUSS Microtec MA 150 Contact Aligner) as shown in Figure 5.10 and 

Figure 5.11, respectively. The first mask (NDIFF, darkfield) is attached onto a blank glass 

substrate by double-sided tape with ink facing up as shown in Figure 5.12, and it is used to 
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pattern the applied PR by exposing the process wafer under UV for 6 seconds, and the exposed 

PR is developed at a caustic wet bench as shown in Figure 5.13. In order to prevent the silicon 

dioxide layer on the backside from being etched during etching the frontside, the backside is also 

coated by a layer of PR and baked inside a Blue M Oven at 110 °C for 20 minutes as shown in 

Figure 5.14. Next, the openings are ready to be etched by Buffered Oxide Etch (BOE, Baker) 5:1, 

the etching rate of which is about 1000 Å/min. After etching at an acid wet bench as shown in 

Figure 5.15, the rest of PR is completely stripped off by immersing the wafer into a positive 

resist stripper (Baker PRS-1000) solution at 85 °C for 10 minutes using another caustic wet 

bench as shown in Figure 5.16. Eventually, the wafer is loaded to the phosphorus tube. The 

deposition begins at 700 °C for 30 minutes, and then the temperature is increased to 885 °C for 

65 minutes. The deposition ends with another 35 minutes treatment at 700 °C. Thus, the wafer is 

uniformly covered by the dopant. During the entire furnace process, N2 is the only gas needed. 

 

Figure 5.8: Photoresist desktop spin coaters. 

Besides the process wafer, a control wafer C1, a bare silicon wafer of the same kind as the 

process wafer, is also loaded in this process in order to investigate the diffusion quality. After 
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unloading, the both wafers need a deglaze process by immersing them into a mixture solution of 

1000 mL DI water and 100 mL HF at room temperature for 2 minutes. The deglaze is used to 

remove the excess un-reacted dopant. The mixture solution is contained in a 5000-ml-volume 

plastic beaker, and the two wafers are loaded in a wafer cassette which enables us to deglaze 

both simultaneously. 

 

Figure 5.9: HMDS oven to generate HMDS adhesion layer in vapor form. 

 

Figure 5.10: Eaton 6000HX spin coater with hotplates. 
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Figure 5.11: Suss microtec MA 150 aligner. 

 

Figure 5.12: Transparency masks attached on glass (a) dark field and (b) clear field. 

(a) (b) 
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Figure 5.13: Caustic wet bench for developing PR. 

 

Figure 5.14: Blue M Oven for baking PR applied to wafer backside. 
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Figure 5.15: Acid wet bench for etching SiO2. 

 

Figure 5.16: Caustic wet bench for stripping off PR. 
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5.2.5 Drive-In 

The dopant deposited on Si will diffuse into Si substrate by loading the control wafer C1 and 

the process wafer into the phosphorus tube at high temperatures with N2 and O2 gas flow as 

shown in Figure 5.17. The wafers are first heated at 1000 °C for 30 minutes with N2 and another 

30 minutes with O2. After the dry oxidation, a wet oxidation with steam flow is done for 20 

minutes at the same temperature. Finally, the temperature is decreased to 750 °C for 35 minutes 

with N2. After drive-in, the wafers are covered by a thin SiO2 layer. Thickness of SiO2 on C1 and 

the process wafer are 924 Å and 4009 Å respectively after the completion of diffusion. The SiO2 

thickness on C1 is supposed to be the same as the one on the diffused areas on the process wafer. 

 

Figure 5.17: Loading process and control wafers into phosphorus tube for drive-in. 

Besides measuring the thickness of SiO2, C1 can also be used to calculate the junction depth 

in order to verify the diffusion, for which a groove is need on the doped silicon surface. The 

junction sectioning geometry is illustrated in Figure 5.18. The oxidation layer on C1 is firstly 

removed by BOE 5:1 wet etching, and a groove is fabricated by using a wafer groover as shown 

in Figure 5.19. The blade of wafer groover has a radius of 19,885 µm, and 5 minutes grooving 

gives a 16-µm-deep groove measured by Dektak 3030 as shown in Figure 5.20 and Figure 5.21. 

The solution of CuSO4*5H2O with HF is prepared as the n-type stain. A stain droplet is applied 
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to the grooved area on C1, and it is taken to the Suss aligner to be exposed for 390 seconds. Then, 

the stain is removed by dipping into DI water and blow-dry with N2. The copper plating on the 

doped area can be inspected by microscopy. As shown in Figure 5.22, the copper plating is 

obvious to present the outline of the groove after the stain is exposed and rinsed off. Next, a 

microscope with micro-measure function as shown in Figure 5.23 is employed to determine W1 

and W2, which are 1692.4 µm and 1442.7 µm respectively. According to the geometry, the 

junction depth xj was able to be calculated using Equation (5.1). Ultimately, the junction depth 

on C1 is obtained, xj = 4.9 µm. Detailed measurement results are given in Table 5.3. 

          √   (
  

 
)
 

 √   (
  

 
)
 

 (5.1) 

 
r Units W1 Units W2 Units 

 
19885 um 1692.4 um 1442.7 um 

 
r
2
 Units (W1/2)

2
 Units (W2/2)

2
 Units 

Depth 395413225 um 716054.44 um 520346 um 

 
SQRT (r

2
 - (W2/2)

2
) SQRT (r

2
 - (W1/2)

2
) 
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Depth 19871.91181 19866.98695 
 

um 

 
SQRT (r

2
 - (W2/2)

2
) - SQRT (r

2
 - (W1/2)

2
) 

 
Units 

Junction Depth 4.9 µm 

Table 5.3: Result of junction depth measurement. 

 

Figure 5.18: Junction sectioning geometry. 
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Figure 5.19: Wafer groover to fabricate groove on diffused Si substrate. 

 

Figure 5.20: Dektak 3030 surface profiling measuring system. 

 

Figure 5.21: Surface profile of grooved Si substrate. 
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Figure 5.22: Inspection (top-view) of Cu plating on groove after stain exposed and rinsed. 

 

Figure 5.23: Micro measure system to measure groove dimensions. 

5.2.6 Gate Oxide 

After completing the diffusion, the thickness of oxidation layer on the process wafer is about 

4009.4 Å except for those doped areas where the thickness is about 923.6 Å. Since the direct 

contact between target solutions and the transistor happens on the gate area, a fine thin oxide 
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layer is needed instead of the current one. Thus, the second mask (GATE, dark field) is used to 

pattern the PR 4110 after coating and exposing on the frontside. HMDS and soft baking are done 

before and after coating respectively. After exposing the PR with the GATE mask for 6 seconds, 

the PR is developed for 45 seconds. Before etching, the backside is again coated by PR the same 

way as in 5.2.4. During etching, the process wafer is immersed into 1000 ml BOE 5:1 solution 

for 5 minutes to remove the uncovered SiO2. Then, the PR is completely removed by PRS-1000 

at the caustic wet bench, and the wafer is ready to go back to the furnace for oxidation with a 

second control wafer C2, another bare silicon wafer. Besides DCE clean, the gate oxidation 

process only involves dry oxidation with O2 flow at 1100 °C for 40 minutes. Then, the 

temperature is decreased to 400 °C for 3 hours. Based on the oxidation thickness measurement 

through Nanospec microscopy, the thickness of SiO2 layer on C2 is about 560 Å as given in 

Table 5.4, which reflects the oxide thickness at the gate areas on the process wafer, while the 

thickness of oxidation layer on the diffused areas is about 1310 Å. In fact, C1 is also involved in 

the gate oxide process before it is etched and grooved to measure the junction depth. Therefore, 

the oxide thickness on the doped areas of the process wafer is obtained by measuring C1, and 

Table 5.5 presents the measurement result on C1. 

Center Left Top Right Bottom Average 

558 Å 556 Å 557 Å 559 Å 556 Å 557.2 Å 

Table 5.4: SiO2 thickness measurement for gate area after gate oxide. 

Center Left Top Right Bottom Average 

1304 Å 1272 Å 1434 Å 1282 Å 1254 Å 1309.2 Å 

Table 5.5: SiO2 thickness measurement for doped area after gate oxide. 
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5.2.7 Backside Oxide Etch 

In order to protect the oxidation layer on the front side during etching the oxidation off the 

backside of the process wafer, the frontside is coated with PR4110 by desktop spin coater after 

going through HMDS process. The coated wafer is baked at 110 °C for 2 minutes, and then 

immersed into 1000 ml BOE 5:1 solution for 7 minutes to remove the backside oxidation 

completely. At last, the frontside of the process wafer is applied to flood UV exposure using a 

black glass for 24 seconds and 3 minutes developing to strip off the PR. 

5.2.8 Lift-off Patterning 

In order to pattern the metal layer by lift-off, an image reversal photoresist AZ 5214E [143] 

is employed. This special photoresist is intended for lift-off technique, which calls for a negative 

wall profile. Although AZ 5214E is still a positive photoresist comprised of a novolak resin and 

naphthoquinone diazide as Photo Active Compound (PAC), it is capable of Image Reversal (IR) 

resulting in an opposite pattern of mask. Actually, AZ 5214E is almost exclusively used in the 

IR-mode. The IR-mode can be activated by baking and exposing the PR twice, and at the same 

time the IR-mode can cause a lower dissolution rate at the top a higher rate at the bottom. 

Consequently, there will be a negative wall profile ideally suited for lift-off while AZ 4000 series 

PR such as 4110 and 4330 will create a positive wall profile as shown in Figure 5.24. 

Before coating the process wafer with 5214E, it is cleaned using acetone on a spin coater and 

undergoes an HMDS process. Then, 5214E is applied to the wafer using spin coater at 4000 rpm 

for 30 seconds which gives a 2 µm thickness. Then, the coated wafer is baked at 88 °C for 45 

seconds before the first exposure. The third mask (MET, clear field) is used to expose the PR for 

6 seconds. It is followed by the IR baking, where the wafer is baked at 106 °C for 45 seconds. 

Next, the second exposure, a flood exposure with a blank glass, is completed for 45 seconds to 
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turn on IR-mode of 5214E. Then, the PR is developed using MF CD-26 developer for 45 seconds. 

Eventually, the area that is exposed only once is developed leaving a negative wall profile, and 

the process wafer is ready for metallization. 

 

Figure 5.24: PR wall profile after developing (a) positive and (b) negative. 

5.2.9 Metallization 

Metallization is realized through evaporation using Edwards Auto 306 Turbo as shown in 

Figure 5.25. Chromium and gold are deposited onto the process wafer using a chromium rod and 

four highly pure gold pellets as the source. In this process, the four gold pellets are evaporated in 

two times, and two pellets are fed each time. Generally, each gold pellet generates a 50-nm-thick 

layer. Finally, the chromium as an adhesion layer is 15-nm-thick and the gold layer is about 

233.8-nm-thick. One of the major advantages of evaporation over other deposition methods, for 

example sputtering, is that the PR can survive during evaporation process and be used for lift-off. 

To lift off the metal, an ultrasonic cleaner is used. The process wafer is put into a crystallizing 

dish which is filled with acetone. Then the dish is moved into the water-filled ultrasonic cleaner 

and floated on the top of water as shown in Figure 5.26. The ultrasonic is turned on for 5 minutes, 

and the metal starts to be lifted off. Figure 5.27 illustrates the process wafer in the middle of lift-

off. The ultrasonic process may last longer until the metal is no longer lifted off, and the acetone 

in crystallizing dish should be replaced if necessary. Next, the wafer is rinsed with acetone and 

isopropyl alcohol (IPA). Finally, the ISFET structure is completed as shown in Figure 5.28. The 

(a) (b) 
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thickness of metal layer is also measured using Dektak 3030, and the metal is about 2000 Å 

above the oxide layer on the doped area as shown in Figure 5.29. 

 

Figure 5.25: Evaporator for chromium and gold deposition. 

 

Figure 5.26: Metallized wafer (a) in acetone to lift-off ultrasonically (b). 

(a) (b) 
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Figure 5.27: Process wafer in the middle of lift-off. 

 

Figure 5.28: Structure of ISFET: (a) desired and (b) fabricated. 
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Figure 5.29: Metal layer thickness measurement above doped area. 

5.3 Experimental Setup for pH Measurement 

After cutting the process wafer into pieces of ISFET chip using a dicing saw 

(MicroAutomation Model 1100) as shown in Figure 5.30, a small outline integrated circuit 

package (CSO00802, Spectrum Semiconductor Materials Inc., USA) as shown in Figure 5.31 is 

employed in order to establish reliable electrical connections through which outer electronic 

devices can be applied. Figure 5.32 shows both the schematics and reality of setup. There is a 

metal layer on top of the package cavity, and the chip substrates are attached onto the cavity 

surface by conductive epoxy. The epoxy works as glue after cured by heating at 150 °C for 10 

hours in a vacuum oven (Fisher Isotemp Oven 282) as shown in Figure 5.33. Then, the gold on 

the doped areas and the package cavity surface are bonded to different pins through a wire 

bonder (Model 4123, Kulicke & Soffa, Singapore) as shown in Figure 5.34, which provides 25.4 

µm diameter aluminum wire bonding. During the pH measurement, this structure employs a 

discrete null-balancing method and the output of ISFET, drain current Id, will be held constant by 

adjusting the gate voltage Vgs. When gate area of the ISFET chip is exposed to various target 

solutions, the external bias voltage Vgs in series with the reference electrode should be adjusted to 
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secure zero change of Id. Therefore, the change of Vgs depends directly on the ionic 

activity/concentration. In this experiment, the drain voltage Vds is constant at 1 V provided by a 

DC power supply (Model XP-760, Elenco Electronics Inc., USA), and Id is measured by a 

picoammeter (Model 6485, Keithley, USA). A second DC power supply (Model N5748A, 

Agilent, USA) with a fine adjustable function at 0.01 V is employed to adjust Vgs. A copper wire 

in diameter of 250 µm (Model 93-2972, Strem Chemicals, USA) is used to sense target solutions. 

 

Figure 5.30: Dicing saw system (a) automatic saw, (b) wafer taper and (c) diced chips. 

 

Figure 5.31: Small outline integrated circuit package. 

(a) (b) 

(c) 
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Figure 5.32: Experimental setup for pH measurement (a) schematic and (b) real. 
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Figure 5.33: Vacuum curing oven for conductive epoxy bonding. 

 

Figure 5.34: Wire bonding machine. 

5.4 Current Results on pH Measurement 

Before testing, six target solutions are prepared. Their pH values are checked using a pH 

tester (pH55, Milwaukee Instruments, USA) and are 4.1, 5, 6, 7.1, 8.5, and 9.5 respectively. 

Figure 5.35 shows the pH tester and pipette (Eppendorf Research Pipette) that are involved 

during the pH measurement. In order to test the ISFET, five droplets of 2.5 µL from each target 

solution are dropped onto the gate area and measured. For instance, a 2.5 µL droplet from pH 4.1 
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solution is located onto the gate area using a pipette while the drain voltage is applied at 1 V. 

Then, the copper wire as reference electrode is inserted into the droplet while the gate voltage is 

applied and adjusted to keep the drain current constant at 5.475 mA. When the drain current is 

stabilized, the gate voltage is recorded. The droplet evaporates quickly after the gate voltage is 

applied. Thus, the testing continues until five data are recorded for each pH. Then, the ISFET 

chip is stored overnight in the dry box (McDry MCU-201, Seika Machinery Inc., USA), where 

the relative humidity can be as low as 1 %. Then, the measurement for next pH solution could be 

carried out next day. Eventually, the complete results for pH detections between 4.1 and 9.5 are 

given in Table 5.6 and Figure 5.36. Furthermore, the corresponding ΔVgs at each pH is collected 

to apply a linear fit in order to study the sensitivity of the ISFET as shown in Figure 5.37. 

According to the linear fit, the slope is 0.0107, which means the sensitivity is 10.7 mV/pH. 

Additionally, the ISFET has an instant response. During the measurement, the reading of Id 

varies simultaneously when the electrode is in contact with the target solution. 

pH 
Vgs (V) 

#1 #2 #3 #4 #5 Mean Stdev. Δ Vgs 

4.1 0.52 0.51 0.5 0.53 0.53 0.518 0.01304 -0.042 

5 0.54 0.54 0.56 0.56 0.56 0.552 0.01095 -0.008 

6 0.56 0.57 0.56 0.57 0.56 0.564 0.00548 0.004 

7.1 0.56 0.56 0.55 0.57 0.56 0.56 0.00707 0 

8.5 0.58 0.58 0.59 0.58 0.57 0.58 0.00707 0.02 

9.5 0.6 0.59 0.58 0.58 0.58 0.586 0.00894 0.026 

Table 5.6: Results of pH measurement at Vdc = 1V and Id = 5.475 mA. 

 

(a) (b) 
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Figure 5.35: (a) pH tester and (b) 0-2.5 µL pipette involved in pH measurement. 

 

Figure 5.36: Results of pH measurement at Vdc = 1V and Id = 5.475 mA. 

 

Figure 5.37: Sensitivity of ISFET for pH measurement. 
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5.5 Modeling – Nernst Potential 

As known, pH is defined as the decimal logarithm of the reciprocal of the hydrogen ion 

activity aH+ in a solution as in Equation (5.2). As a matter of fact, hydrogen ion activity is always 

approximated to the free hydrogen ion concentration [H
+
]. Thus, we can use Equation (5.3) to 

describe the definition of pH in solution instead. Furthermore, the pH measurement using ISFET 

is based on the principle of Nernst Potential, which has a physiological application when it is 

used to determine the potential of an ion of charge z across a membrane. This potential is 

calculated using the concentration of the ion both inside and outside the cell. Equation (5.4) 

expresses the meaning of the Nernst Potential, where E is the Nernst Potential in voltage, R is the 

ideal gas constant in joules per kelvin per mole, T the is temperature in kelvin, F is the Faraday‘s 

constant in coulombs per mole, z is the valence of the ion (z = 1 for hydrogen ion), and [H1
+
] and 

[H2
+
] are the hydrogen ion concentration outside cell and inside cell respectively, which, in our 

case, are the ion activity Id and the hydrogen ion concentration in the target solution. Therefore, 

if the ion activity/concentration in either side of the membrane is kept constant, the Nernst 

Potential only depends on the ion activity/concentration in the other side of the membrane and 

the Nernst Potential can be used as output to reflect the ion activity/concentration of target 

solution. In the experiment, both ID and Vds are held constant during the pH measurement while 

the measured potential Vgs indicates the pH of the target solution. Equation (5.5) and (5.6) reveal 

the relation between the measured Nernst Potential and the pH, where E
0
 is the standard 

membrane potential at the temperature of interest and a constant due to constant Id and Vds. 
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After substituting the constants, R = 8.314472 JK
-1

mol
-1

, T at room temperature 25 °C which 

is 298.16 K, z = 1 and F = 96485.3 Cmol
-1

, Equation (5.6) is rewritten as in Equation (5.7). As 

we can see, the slope of the relation between Nernst Potential and the pH of target solution is 

0.059172 V/pH or 59.2 mV/pH. Apparently, the Nernst Equation is a mathematical description 

of an ideal pH electrode behavior. Therefore, the slope of 59.2 mV/pH is an ideal sensitivity of 

ISFET based pH sensor when pH is measured by the means of Nernst Potential. Figure 5.38 

presents the comparison between the pH sensitivity of current ISFET and the ideal Nernst slope. 

 

Figure 5.38: pH sensitivity of ISFET chip vs. ideal Nernst slope. 

y = 0.0107x - 0.0297 

R² = 0.8385 

y = 0.0592x - 0.2427 

R² = 1 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 5 6 7 8 9 10

Δ
V

g
s 

(V
) 

pH 

ISFET Slope

Nernst Slope



124 
 

One of the major factors that cause a low sensitivity in the current pH measurement is the 

volume of target solution is scaled down to microliter while conventional pH sensors generally 

require the target solution in at least milliliter scale. As shown in Figure 5.39, the quantity of ions 

decreases significantly while the volume is reduced even if the corresponding concentration is 

kept the same. To measure the pH value for solutions in microliter or molecule level is one of the 

significant novelties for this project. However, the sensitivity has to be affected owing to the 

largely reduced volumes. It has been reported [88] that an ISFET fabricated similarly but with 

extra p-type stop channel using boron diffusion reached a sensitivity of 40 mV/pH. Their ISFET 

device was also equipped with an optimized reference electrode. However, the device was totally 

immersed into the target solution for measuring pH, which means relatively large volume of 

target solution was necessary to reach the sensitivity. Furthermore, it was mentioned in [144] that 

a layer of silicon nitride on the top of gate oxide as the ion sensing material might be able to 

improve the ISFET performance. Unfortunately, so far it has not been reported any research 

work regarding an effective compensation for measuring solutions in microliter or molecule level. 

Therefore, we propose CNT integrated ISFET as a promising solution. 

 

Figure 5.39: Relation between quantity of molecules/ions and volume/concentration. 
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5.6 CNT Alignment 

5.6.1 Fabrication of FET 

As introduced in 1.1.4, a non-uniform electric field is the precondition in order to generate 

DEP forces, which can be used to align polarizable particles such as CNTs. So, FET structures 

are needed in order to produce non-uniform electric field. Figure 5.40 illustrates the mask 

designed using AutoCAD. The FET structure consists of four layers: Si wafer, 300 Å of SiO2, 

200 Å of chromium and 5000 Å of gold. The fabrication flowchart using MEMS surface 

micromachining techniques is illustrated in Figure 5.41, where we have (a) Si substrate, (b) 300 

Å SiO2 by thermal oxidation, (c) chromium and gold are deposited by evaporation and electro 

plating, (d) apply photoresist, (e) photolithography, and (f) the metals are etched as patterned and 

the rest of photoresist is stripped off completely. Triangular electrodes of 30, 60 and 90 degree 

angles, with various electrode gaps are designed. 24 microelectrode chips are fitted on a 5-inch 

Si wafer. The reason why triangular variation is selected is that it provides a wider zone of 

stronger DEP force and weaker hydrodynamic force than other variations, such as square and 

semicircular-shaped ones, which do not allow particles to be easily released [145]. 

 

Figure 5.40: Mask design for Au microelectrodes on silicon as FET. 
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Figure 5.41: MEMS fabrication process for FET structure. 

5.6.2 Experimental Setup 

Two CNT stocks are prepared: 1.37mg SWCNTs dissolved in 1ml Deionized (DI) water with 

2µl Triton; and 2.69mg MWCNTs dissolved in 1ml DI water with 5µl Nanosperse. Then both 

samples are sonicated for 1 hour. After the stocks are available, 5X, 10X and 20X dilutions are 

also prepared for each kind CNT. 

For wire bonding, since the traditional method of soldering can damage microchips easily, 

conductive epoxy is used to stick wires onto the gold pads in order to interface the outer 

environment. In the experiment, the two parts of conductive epoxy are equally mixed, and then a 

little of the mixture is deposited on the pads. The epoxy becomes firm enough to bond stably 

between wires and pads after it is heated at 130ºC for about 1 hour on a heat plate. Eventually, 

the FET chip is to apply DEP forces in between the electrodes. 

5.6.3 Alignment by DEP 

Figure 5.42 illustrates the experimental setup for CNT alignment by generating DEP forces. 

A function/arbitrary waveform generator (33220A, Agilent Technologies) provides an AC power 
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of 20V p-p and 1.5MHz, which will be verified by the oscilloscope (MSO6012A, Agilent 

Technologies). Then, the chip is real-time observed by the optical microscope (BX51, Olympus) 

during the alignment. 1.5µl of 10X SWCNT dilution is dropped on the gap of the electrode pairs 

1-4 while 1.5µl of 10X MWCNT dilution for the pairs 6-9. Then by connecting the electrodes to 

the function generator, DEP forces are generated in the gaps and the electrodes are bridged by 

the CNTs. Figure 5.43 shows the observations of the electrode gaps, where we have a. gap 

measure, b. covered by CNT droplet, c & d. bridged by SWCNTs and MWCNTs respectively. 

 

Figure 5.42: Experimental setup for CNT alignment using DEP. 

 

Figure 5.43: Pairs of Au electrodes observed by optical microscope. 
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5.6.4 Verification of Aligned CNT 

Figure 5.44 shows I-V curve measurement results of all the nine pairs of electrodes. As we 

can see, both SWNTs and MWNTs aligned between the gaps possess a linear I-V curve. This 

linear relationship reveals that these CNTs are metallic and possessing very excellent ion 

conductive properties. Additionally, the I-V characteristic reveals that the source and drain of 

each pair of electrode are connected by the aligned CNTs after DEP is applied. Otherwise, all the 

I-V curves are supposed the same as the one for Pair 5, which has no CNT applied. 

 

Figure 5.44: I-V characteristics with SWCNTs alignment (Pair 1-4), MWCNTs alignment (Pair 

6-9) in the scratched gaps and Pair 5 for the bare electrode. 

5.7 Electrical Characterization of CNT Using Conductive AFM 

5.7.1 Current Sensing AFM 

Generally, electrical characterization based on DEP alignment is suitable for bundle of CNTs. 

However, it is feasible to study the electrical property of single CNT through a conductive AFM 

technique – current sensing. To set up the experiment, we need a conductive surface to sustain 

0 2 4 6 8 10
-2

0

2

4

6

8

10

12

14

16

Voltage (V)

C
u

rr
e

n
t 
(m

A
)

 

 

Pair 1

Pair 2

Pair 3

Pair 4

Pair 5

Pair 6

Pair 7

Pair 8

Pair 9



129 
 

the nanotubes. A glass slide coated by an indium tin oxide (ITO) layer on the top guarantees the 

surface conductivity. A droplet of CNT solution is on the ITO surface, and surface is dried by 

heating. Then the CNT sample is ready for scanning. Agilent 5500-ILM supplies a Current 

Sensing AFM (CSAFM) capability, where an ultra-sharp AFM cantilever, coated with 

conductive film, probes the conductivity and topography of the sample surface simultaneously. 

CSAFM requires a special 10˚ nose cone containing a preamplifier. A bias voltage is applied to 

the sample while the cantilever is kept as virtual ground. During scanning, the tip force is held 

constant and the current is used to construct the conductivity image of the surface. It has proven 

useful in joint I-V spectroscopy and contact force experiments as well as contact potential studies. 

Figure 1 illustrates the schematic. This novel technique offers a simple and effective method 

with which electrical properties of single nano particle, like nanotubes, are able to be 

investigated. 

The resonant frequency and spring constant of the conductive Si AFM probes (ElectriCont-G, 

BudgetSensors) are 13 kHz and 0.2 N/m respectively. These probes are coated by Cr/Pt 

conductively on both sides. The special nose cone assembled has a sensitivity of 10nA/V. 

 

Figure 5.45: Schematic of measuring electrical property of single CNT using CSAFM. 
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5.7.2 Preamp 

Before measuring the I-V curve, the electrical environment in the AFM should be examined 

by the process called preamp. A test resistor is employed to construct a connection by placing 

one end directly on the CSAFM nose cone, held by a spring clip, and the other to the 3-wire-EC 

cable that normally connects to the sample plate. Thus the test assembly takes the places of the 

sample and AFM probe. Then, a current versus bias sweep needs to be run to see whether or not 

the preamp is operational. The plot should of course present a linear relationship running from -1 

nA to +1 nA as the voltage sweeps from -10V and +10V. As shown in Figure 5.46, it can be 

concluded the electrical circuit is reliable to carry on electrical property measurement. The plot is 

linear enough to validate the preamplifier. However, there is a tiny offset as current in pA level is 

measured at 0V. This phenomenon may be caused by imprecise parameter setting for the 

preamplifier and can be eliminated by further calibration. The offset is negligible as the 

experiment is to determine CNT is either metallic or semiconducting rather than extract exact 

resistance. 

 

Figure 5.46: Preamp plot for electrical circuit examination. 
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5.7.3 Testing of SWCNT 

Figure 5.47 shows the topography image of the surface in 10 µm × 10 µm square where it is 

clear to find a single SWCNT in the middle separating from the others. After the scanning is 

stopped, the tip is moved to contact with the nanotube at one point of its body, and the setpoint, 

which controls the force of the probe acting on its target, is increased to confirm the electric 

connection. Next, the sample bias is modified and input in terms of range from -3V to 3V to 

obtain the I-V characteristic. Figure 5.48 illustrates the SWCNT has a non-linear curve of 

CSAFM/Aux BNC vs. Sample Bias. In CSAFM, the system has a current output range from -

10nA to 10nA. The platform indicates the current is out of range when the bias belongs to the 

intervals of (-3, -1) and (1, 3). Eventually, a conclusion that the nanotube is semiconducting is 

established. 

 

Figure 5.47: Topography of ITO surface with SWCNT: the cursor is where to measure I-V. 
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Figure 5.48: I-V sweep on SWCNT with range from -3 to +3V. 

5.7.4 Testing of MWCNT 

The MWCNTs are about 0.5~2 µm long and 30~50 nm in diameter. Figure 5.49 illustrates 

the AFM images of the sample surface in 1 µm × 1 µm, in the middle of which a multi-walled 

nanotube is forming an ―island‖. While scanning the surface, a conductivity map of the same 

area is also generated with a bias of 200mV as shown in Figure 5.49 (b). This potential bias is 

applied from the microscope sample plate, which is connected to the ITO surface through a Cu 

wire. In conductivity map, larger current flows into the AFM tip in brighter area, which suggests 

ITO has a lower resistance than the MWCNT does. After the scanning is stopped, the tip is 

moved to contact with the nanotube body. The setpoint, which controls the force of the probe 

acting on its target, is increased to confirm the electric connection. Then the cross-section 

information is measured at the location as shown in Figure 5.50. Figure 5.51 gives the 

nanotube‘s diameter is 40 nm, which further convinces us it is a MWCNT. Finally, a potential 

range from -10V to 10V is applied to draw the I-V curve. Figure 5.52 illustrates that the 

MWCNT has an approximately linear relationship of CSAFM/Aux BNC vs. Sample Bias. 

Eventually, a conclusion that the MWCNT is metallic is established. 
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Figure 5.49: AFM images of MWCNT on ITO (a) topography and (b) conductivity map. 

 

Figure 5.50: Deflection image shows the contact position on the CNT body. 

 

Figure 5.51: 112-nm-long cross-section line for CNT diameter measurement. 

(a) (b) 

Diameter 
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Figure 5.52: I-V sweep on MWCNT with range from -7.5 to +7.5 V. 

5.8 AFM Based Surface Nanoscratching for Nanochannels 

5.8.1 Background 

Among current nanotechnology applications, the design and fabrication of nanochannels are 

one of the major challenges. To date, the methods for fabricating nanochannels have included 

bulk nanomachining and wafer-bonding [146][147], surface nanomachining [148], buried 

channel technology [149] and nanoimprint lithography [150][151][152]. Nanochannels that are 

50 nm deep and 5 µm wide, 20-100 nm deep and 0.5-20 µm wide and 10 nm deep and 50 nm 

wide have been demonstrated. Although nanoimprint lithography can fabricate 2-dimensional 

nanochannels, these channels are all fabricated by complex processing methods that require 

sophisticated masking and etching. Thus, a means by which nanochannels are able to be 

fabricated without complex processing and reach to nano level in 3-dimension becomes 

necessary. AFM-based nanolithography [153] offers a simple and reliable technique for 

mechanically machining nanochannels on substrates such as polymer [154][155][156], metal 

[157], semiconductor [158][159][160], and insulator [161]. So, we are inspired to create 

nanochannels using AFM based surface nanoscratching in the inversion layer of ISFET where 

CNTs will be aligned to seek for improvement of the device. However, nanochannels on a bare 
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silicon substrate produced by AFM have not been reported yet. Thus, a calibration is needed for 

several promising AFM tips when they are used to scratch surfaces. Eventually, the AFM based 

nanoscratching technique will be employed to achieve the integration of CNTs and ISFET. 

5.8.2 Calibration of Nanoscratching with Two Ordinary Tips 

The calibration is used to specify the effect of two kinds of AFM probes when they are used 

to create nanochannels on Si, SiO2 and glass surfaces. The AFM probes are Tap190DLC 

(BudgetSensors) and PPP-NCH (Nanosensors), both of which are recommended by the 

manufacturers for nanoscratching. In the experiment, the scratching is completed under the 

close-loop mode in order to guarantee precise control of tip position. The results can help us to 

judge preliminarily whether these probes are capable of creating nanochannels in the CNT-

ISFET system. 

As introduced previously, Tap190DLC has a 48N/m force constant and a 190 kHz resonant 

frequency. In general, a 48N/m probe is almost among the stiffest ones available in the current 

market. Two channels are made in different settings on Si, SiO2, and glass respectively. Five 

measurements are taken on each channel for the width and depth. Table 5.7, where NA 

represents no channel, provides the parameters and measurements of the nanochannels, which 

tells Tap190DLC is able to create nanochannels on all the three materials (M.). However, it is 

inefficient, especially when scratching on the Si surface. For example, 150 times for an 11.7188 

µm channel at 1.5 µm/s speed (Sp.) takes about 45 minutes and only provides a 5-nm-deep 

channel. Table 5.7 also proves that the setpoint (ST) and time (T) are the two key factors that 

determine the depth of the channel. Figure 5.53 presents a precise control of the channel location: 

the real channel is right underneath the red line that shows the desired channel after scratching 

under the close-loop mode. 
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M. ST(V) Sp.(um/s) Time Ave. W.(nm) Stdev. W Ave. D.(nm) Stdev. D. 

Si 7.5 1.5 150 233 0.632 4.94 2.88 

Si 7.5 1.5 100 NA NA NA NA 

SiO2 7.5 1.5 100 350 0 39.5 6.85 

SiO2 7.5 1.5 50 362 150 0.446 0.101 

SiO2 5 1.5 100 NA NA NA NA 

G 7.5 1.5 100 362 66.4 7.76 2.29 

G 7.5 1.5 50 280 60.5 0.912 0.354 

G 5 1.5 100 NA NA NA NA 

Table 5.7: Calibration Results of Tap190DLC on Si, SiO2 and Glass. 

 

Figure 5.53: Re-image topography of a nanochannel on Si substrate (a) the real channel locally 

overlaps the desired one in red and (b) channel dimension. 

PPP-NCH has a lower force constant of 42 N/m, and as recorded in Table 5.8, it is unable to 

create nanochannels on any of the three samples even though the setpoint is increased to 8 V. 

Additionally, the glass surface heaves in the track that the tip scratches as shown in Figure 5.54. 

During all the attempts with PPP-NCH, there is no channel, but the heaving phenomenon also 

appears on Si substrate. Besides the force constant and the resonant frequency, another important 

difference between the two tips is that Tap190DLC has a 15-nm-thick diamond-like-carbon 
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coating to protect the tip while PPP-NCH does not, which means scratching with PPP-NCH will 

leave some residuals of the tip on the surface, and scratching with Tap190DLC leaves nothing. 

Therefore, neither of Tap190DLC or PPP-NCH is suitable to create nanochannels on Si due to 

their defects including inefficiency, time consuming, unstable, and unpredictable. 

M. ST (V) Sp.(um/s) Time Ave. W.(nm) Stdev. W Ave. D.(nm) Stdev. D. 

Si 8 2 150 NA NA NA NA 

SiO2 7.5 1.5 100 NA NA NA NA 

G 7.5 1.5 100 1576 420 -40.5 16.9 

Table 5.8: Calibration Results of PPP-NCH on Si, SiO2 and Glass. 

 

Figure 5.54: ―Nanochannels‖ are created but above glass surface (a) channel dimension. 

5.8.3 Calibration of Nanoscratching with Diamond Tip on Silicon 

The experiment is performed using Agilent 5500 SPM with the Head Electronics Box that 

provides an oscillating voltage for AC (tapping) Mode imaging. A hand-crafted high force 

cantilever with a diamond tip for nanoindentation/nanoscratching is used to produce the 

nanochannels (DNISP, Bruker Corporation). The cantilever is pre-calibrated with a normal 

spring constant (KC) of 244 N/m.  The radius of the diamond tip is 40 nm. The diamond tip apex 
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is similar to the corner of cube so that three right angle planes form an ―A‖-shape apex. This is 

used for all nanolithography-related operations. The cantilever is made of stainless steel with a 

normal elastic modulus (E) of 193 GPa and a shear modulus (G) of 80 GPa. The sensitivity (SZ) 

of position-sensitive-detector (PSD) is 255 nm/V. 

Figure 5.55 illustrates the schematic of the experimental setup for creating nanochannels on a 

polished silicon layer (625-µm-thick), where we have (1) piezo scanner for XYZ movement; (2) 

cantilever; (3) diamond tip; (4) silicon; (5) nanochannel; (6) laser; and (7) four-quadrant PSD.. 

The topographies are scanned under AC Mode, while nanoscratching is completed under Contact 

Mode where the vertical deflection of the cantilever is kept constant and controlled by the 

setpoint (ST in V). Therefore, once the setpoint is specified, the scratching normal force (FN) can 

be computed as in Equation (5.8) [162]. 

              (5.8) 

 

Figure 5.55: Schematic of AFM based nanoscratching. 

Before scratching, three user-controllable parameters that may affect the dimensions of the 

nanochannels need to be determined. These parameters are the scratching velocity, the scratching 

normal force (the setpoint) and the number of times that the tip scratches. Through single 

nanomachining experiment, it is observed that the variation of scratching velocity is negligible 
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for predicting the dimensions. Figure 5.56 presents 25 5-µm-long nanochannels that are 

fabricated by single-scratch, but with different FN from (a) to (e), at different scratching 

velocities from I to V. Take Figure 5.56 (a) for example: it has five channels, all of which are 

fabricated under FN = 31.11 µN, but the scratching velocity varies from 0.1 µm/s, 0.25 µm/s, 0.5 

µm/s, 0.75 µm/s and 1 µm/s for nanochannel I, II, III, IV, and V, respectively. No trends about 

significant dimensional changes are observed either from the vision of figure or the measurement 

of nanochannel dimension as the scratching velocity varies. 

 

Figure 5.56: AFM topographies of nanochannels scratched at different forces and velocities. 
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In Figure 5.56, nanochannels in part (a), (b), (c), (d), and (e) are fabricated in different 

locations. However, every five nanochannels (I, II, III, IV, and V) in each part are fabricated 

continuously. Take part (a) for instance as shown in Figure 5.57, the AFM tip starts scratching at 

Point 1 with a normal force of 31.11 μN until it reaches Point 2. After this process, the normal 

force should return to an original value when it moves from Point 2 to 3. This normal force is 

caused by the setpoint used after switching from AC to Contact mode, and it has to be positive in 

order to maintain the contact between the tip and the sample. During scratching from Point 3 to 4, 

a normal force of 62.22 μN is applied. After repeating the scratching procedure, i.e., 1-2, 3-4, 5-6, 

7-8, 9-10 and moving from 2-3, 4-5, 6-7,8-9, 10-1, the tip moves back to the origin position 

Point 1 by system default. Due to the setpoint in Contact mode, there are diagonals left when the 

tip moves from an end point to a start point. We also measure and analyze these diagonals and 

find they are much smaller than the nanochannels next to them. In addition, the reason why there 

are a lot of scratching residuals in the topographies is that five deep nanochannels are fabricated 

in 7 µm × 7 μm square and imaged immediately after the fabrication. The issues are only caused 

by automatically fabricating multiple nanochannels at a time. In the future application, we can 

fabricate single nanochannel at a time, so these issues will no longer exist. Furthermore, if 

multiple channels need to be fabricated simultaneously in certain application, the setpoint can be 

set as low as 0.1 V which will maintain the contact and lead negligible diagonal depths. 

 

Figure 5.57: Route for continuous fabrication of five nanochannels at different settings. 
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In order to investigate the relationship between the dimension of nanochannels and the 

scratching normal force, single surface nanoscratching is implemented. In this test, the scratching 

velocity is kept constant at 0.1 µm/s, and five 5-µm-long nanochannels are fabricated at different 

normal forces of 31.11 µN, 62.22 µN, 93.33 µN, 124.44 µN and 155.55 µN. Then, five 

measurements for each nanochannel are recorded in Table 5.9. Figure 5.58 presents the 

topography for the nanochannels. Furthermore, Figure 5.59 shows how to take the dimensional 

measurement by drawing arbitrary cross-section line over target. Finally, the linear relationship 

between the depth of nanochannels and the scratching normal force for single surface 

nanomachining is obtained as shown in Figure 5.60. 

Channel (left to 

right) 

Force 

(µN) 
Depth (nm) 

Mean 

(nm) 

St. Dev. 

(nm) 

1 31.11 5.32 4.55 7.90 6.42 6.29 6.09 1.26 

2 62.22 16.2 17.4 18.2 18.8 15.3 17.2 1.42 

3 93.33 28.0 22.3 25.3 23.0 25.8 24.9 2.28 

4 124.44 30.3 28.0 33.5 29.5 31.8 30.6 2.11 

5 155.55 32.3 35.0 35.5 36.7 40.7 36.1 3.04 

Table 5.9: Nanochannel depth for single nanoscratching with diamond tip on silicon. 

 

Figure 5.58: Topography of single nanoscratching at different normal forces. 
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Figure 5.59: Nanochannel dimensional by the yellow cross-section line in Figure 5.58. 

 

Figure 5.60: Linear relationship between depth and force for single-scratching. 

Furthermore, the relationship between the depth of nanochannel and the normal force in 

repeatable nanoscratching is also studied. The scratching velocity is kept at 0.1 µm/s, but the 

surface will be scratched twice by the diamond tip to fabricate each 5-µm-long channel at 

different normal forces of 31.11 µN, 62.22 µN, 93.33 µN, 124.44 µN and 155.55 µN. Figure 

5.61 shows the topography of the channels, and their depth information is recorded in Table 5.10. 

In addition, the linear relationship between the depth of nanochannels and the scratching normal 

force for double surface nanomachining is shown in Figure 5.62. 
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Figure 5.61: Topography of double nanoscratching at different normal forces. 

Channel (left to 

right) 

Force 

(µN) 
Depth (nm) 

Mean 

(nm) 

St. Dev. 

(nm) 

1 31.11 7.55 16.5 10.3 13.9 14.6 12.6 3.60 

2 62.22 35.7 32.4 35.0 37.4 34.3 35.0 1.82 

3 93.33 49.0 45.2 48.7 44.9 36.3 44.8 5.12 

4 124.44 136 141 91.0 130 148 129 22.4 

5 155.55 107 113 101 92.2 106 104 7.67 

Table 5.10: Nanochannel depth for double nanoscratching with diamond tip on silicon. 

 

Figure 5.62: Linear relationship between depth and force for double-scratching. 
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As discussed previously, it is assumed the linear correlations between the nanochannel 

dimension and the normal force start at the origin (0, 0), which means a nanochannel appears no 

matter how small the normal force is. This assumption may not be completely precise. A more 

reasonable prospect is that a threshold of the normal force exists. No nanochannel can be 

fabricated unless the normal force exceeds this threshold, and this threshold should depend on 

material properties and geometry of both the surface and the AFM tip. However, the linear 

correlation cannot present the meaning in this level. In contrary, the linear correlation may 

mislead us to some confusion. Take Figure 5.60 for example, according to the linear correlation, 

a 0.4587-nm-deep channel will be fabricated with a normal force of zero magnitude which 

theoretically and physically cannot be true (a 0.9632-nanometer-deep channel would appear and 

the slope becomes 0.2357 according to the linear correlation obtained without the origin point). 

In addition, logarithmic correlations do possess a better coefficient of determination (R
2
) 

[163][164]. Therefore, the logarithmic correlation as shown in Equation (5.9) and (5.10) is 

employed to represent the results on nanochannel depth and width, respectively. 

        (
  

   
) (5.9) 

        (
  

   
) (5.10) 

where α1 and α2 are the scratching penetration depth and penetration width, respectively, and Ft1 

and Ft2 are the threshold forces depending on the depth and width data, respectively. 

Figure 5.63 shows both the linear and logarithmic correlations between the nanochannel 

depth and the normal force for single scratching. Hence, the scratching penetration depth is 

18.421 nm, and the threshold force is 23.2992 µN. The logarithmic method possesses a better 

coefficient of determination (R
2
) as expected. The same approach is used for the width as shown 
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in Figure 5.64, where the logarithmic method also has a better performance and the penetration 

width and the threshold force are 54.605 nm and 7.41889 µN, respectively. Figure 5.65 and 

Figure 5.66 illustrate the comparison between the linear and logarithmic correlations for the 

double-scratching, where neither of the two correlations possesses a good R
2
 value. The main 

issue may lie in the experimental data collected from repeated scratching as the fourth channel 

(from left to right) in Figure 5.61 is fabricated beyond expected. The new results and data show 

that our experimental setup is correct and repeatable. The depth and width of the channel created 

with normal force of 124.44 µN are experimentally verified that they should be within the values 

of normal force of 93.33 µN and 155.55 µN. Also, the linear correlation possesses a higher 

coefficient of determination in repeatable scratching. Figure 5.67 and Figure 5.68 are one of the 

extra experimental results to illustrate the correlations between the channel dimensions and 

different normal forces with a constant scratching number of 2. 

 

Figure 5.63: Linear and logarithmic correlations between channel depth and normal force for 

single scratching. 
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Figure 5.64: Linear and logarithmic correlations between channel width and normal force for 

single scratching. 

 

Figure 5.65: Linear and logarithmic correlations between channel depth and normal force for 

double scratching. 
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Figure 5.66: Linear and logarithmic correlations between channel width and normal force for 

double scratching. 

 

Figure 5.67: Additional linear and logarithmic correlations between channel depth and normal 

force for double scratching. 

 

Figure 5.68: Additional linear and logarithmic correlations between channel width and normal 

force for double scratching. 

An experiment is conducted to conclude on the dimensional changes caused by an increasing 

scratching number. Figure 5.69 (a) shows five 3 µm long nanochannels. Figure 5.69 (b) and (c) 

are the height profiles. They are fabricated at constant speed (0.1 µm/s) and constant normal 

force (31.11 µN) but with different scratching numbers from 1 to 5. Their mean depths are 0.837, 

1.71, 2.45, 2.79 and 2.99 nm respectively, and the corresponding standard deviations are 0.141, 

1.195, 0.141, 0.188, and 0.152 nm respectively. Although these five channels are still close to 
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each other spacing wise, they are scratched separately. Therefore, the diagonals no longer exist. 

As shown in Figure 5.70 and Figure 5.71, deeper and wider channels are fabricated as the 

scratching number is increased as expected. Additionally, the logarithmic correlation owns 

higher coefficient of determination especially for the depth. Furthermore, it is more logarithmic 

when scratching nanochannels at a constant normal force with increasing scratching number 

while it is more linear when scratching twice with increasing normal force. 

 

Figure 5.69: Test of varying scratching number 1-5 for channel I-V (a) topography, (b) height 

profile of yellow cross-section line, and (c) five height profiles of channel V. 
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Figure 5.70: Linear and logarithmic correlations between channel depth and scratching numbers. 

 

Figure 5.71: Linear and logarithmic correlations between channel width and scratching numbers. 

After some careful comparison about the nanochannel depth between Figure 5.63 and Figure 

5.70, Figure 5.65 and Figure 5.70, Figure 5.65 and Figure 5.67, it is obvious that the 

nanochannels become shallower when the results of first few nanoscratching represented in 

Figure 5.63 and Figure 5.65 are regarded as the reference even if the nanochannels are 

fabrication with the same parameter combinations. Thus, the diamond tip is imaged by SEM to 

examine its condition. Expectedly, the surface of the diamond tip is heavily contaminated as 

shown in Figure 5.72. The tip surface is covered by a layer of impurities and residuals from 

nanoscratching, which is supposed to be the major issue for repeatability. Besides the 

contamination, it has been confirmed the nanoscratching must be defined the same as in Figure 
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5.72 (a) in order to successfully fabricate nanochannels. Thus, since the diamond has to be 

loaded every time, a tiny geometry offset will also affect the performance of nanoscratching. 

 

Figure 5.72: SEM images of diamond tip (a) overview and (b) zoomed-in tip. 

5.9 Summary 

A novel idea about CNT integrated ISFET has been proposed towards pH measurement of 

microliter/molecule scale solution samples. ISFET chips are fabricated in the cleanroom facility 

HiDEC, and the chip has been successfully used to measure the pH values of microliter level 

solutions. The fabrication involves major MEMS techniques including thermal oxidation, 

photolithography, diffusion, evaporation and lift-off. These MEMS techniques assure us that the 

ISFET chip is suitable for measuring tiny volume samples. Through Nernst Potential theory and 

proper experimental setup, the sensitivity of ISFET chip for pH testing is obtained. Some issues 

that may affect the sensor performance are discussed after comparing the current sensitivity to 

the ideal one from the Nernst mathematic model. CNT integrated ISFET is considered as a very 

promising solution to maintain an impressive sensitivity while scaling down sample volume. 

Besides MEMS fabrication techniques, other techniques and tools are involved in order to 

(a) 

Nanoscratching 

direction 

(b) 
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integrate CNTs into ISFET. It is verified that CNT alignment by DEP is an effective method for 

connecting the source and drain in ISFET. Furthermore, the electrical property of single SWCNT 

and MWCNT is able to be characterized by current sensing AFM. At last, AFM based 

nanoscratching is proved as a simple and effective method to create nanochannels on substrates. 

The experimental results, especially the nanoscratching with diamond tip on silicon surface, 

encourage us to machine nanochannels in the inversion layer of ISFET and align CNTs inside 

the channel to seek for an improved performance in the future. All the experiments involved in 

this chapter make the feasibility of CNT integrated ISFET complete. It is believed that CNT 

integrated ISFET as next-generation ion concentration sensor is quite beneficial in various areas, 

such as engineering, biology, chemistry and medicine. 
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Chapter VI. FUTURE WORK 

6.1 Continuous Work on CNT-ISFET 

Our ISFET has already been able to measure pH values for solution in microliter. However, 

although related preliminary testing has been carried to illustrate the methodology and prove the 

feasibility, CNT has not been integrated into ISFET to verify whether or not there is going to be 

any improvement. So, the first continuous work regarding CNT-ISFET is to integrate CNTs into 

the current ISFET chips. Those ISFET chips with triangle electrodes are designed to be used for 

CNTs‘ integration. The fourth mask (CNT), which is not involved in the previous fabrication 

process, will be needed. Besides testing the performance CNT-ISFET for pH sensing application, 

it is also very interesting and valuable to study the relation between the sensitivity and the size of 

ISFET. Therefore, another mask is designed as shown in Figure 6.1. In this design, there are two 

major types of ISFET both of which are larger than the design in 5.2.1. One type is sized of 2 

mm × 1.5 mm, and the other is sized of 12 mm × 9 mm. The corresponding fundamental gate 

areas are in 80 µm × 800 µm and 480 µm × 4800 µm respectively. We also make modifications 

to the base design, varying dimensions such as gate width, shape of metal electrodes, and gap 

between source and drain. The new ISFET chips sized of 2 mm × 1.5 mm are listed in Table 6.1. 

The wafer for these larger ISFETs is in the middle of fabrication using the same travelers as 

before. In the future, the Small Outline Integrated Circuit Package will be still suitable to 

package the new ISFET chips sized of 2 mm × 1.5 mm while the new chips of 12 mm × 9 mm 

can be fit into Hybrid Package Multi-Chip Module (HYB02806, Spectrum Semiconductor 

Materials Inc., USA). With conductive epoxy and wire bonding machine, the experiment for 

testing these larger ISFETs can be completed. If possible, a DC power supply with precision in 

0.01/0.001 V should be employed to supply Vds instead of the current one with precision in 0.1 V. 
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Electrode shape Source/drain gap (μm) Silicon dioxide gate width (μm) 

Rectangular 80 80 

Rectangular 40 
30 

40 

50 

Rectangular 60 
50 

60 

70 

Rectangular 70 
60 

70 

80 

Rectangular 80 

70 

75 

85 

90 

90-degree arrows (CNT) 

80 
70 

80 

90 

40 
30 

40 

50 

60-degree arrows (CNT) 

80 
70 

80 

90 

40 
30 

40 

50 

120-degree arrows (CNT) 

80 
70 

80 

90 

40 
30 

40 

50 

Flat (CNT) 

80 
70 

80 

90 

40 
30 

40 

50 
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Table 6.1: Modifications made to ISFET base design (outline 2 mm × 1.5 mm). 

 

Figure 6.1: Multilayer mask design for fabricating larger ISFETs. 

6.2 AFM Based Characterization and Related Application 

As you have learned from the previous chapters in this dissertation, AFM is such a powerful 

tool that plenty of missions, which used to be impossible, are able to be carried out in order to 

learn and explore the nano world. Personally speaking, I enjoy very much when I work with 

AFM. I do believe AFM related manipulations and applications will be one of my major research 

interests in the future. I have accepted a job offer as a post-doctoral fellow in Notre Dame, where 

I will continue using AFM to characterize various nanomaterials. Right now, I am interested in 

the study of graphene. So far, I have obtained some encouraging preliminary results, and I would 

like to share it in this dissertation as the end of introducing my research work during my Ph. D. 

1600 µm 

500 µm 

800 µm 

9600 µm 

3000 µm 

4800 µm 
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student period. To work with AFM will never stop until the day more advanced nanotools take 

the place of it. 

6.2.1 Nanomanipulation of Graphene by AFM 

In recent years, significant attention has been paid to graphene, a monolayer structure 

nanomaterial, due to its excellent and unique physical, electrical and mechanical properties. The 

Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov for 

groundbreaking experiments regarding the two-dimensional material graphene. Graphene also 

has shown its extraordinary performance in various nano devices. However, both theoretical and 

experimental studies have revealed that the electrical properties of graphene are closely related to 

its size, lattice orientation, geometry, and edge structures. Furthermore, graphene nanoribbons 

can possess metallic or semiconducting properties depending on their different edge structures 

(zigzag or armchair) with band gap tunable by width, which means graphene can be tailored into 

desired geometries and edge structures for generating expected and tunable band gaps. Therefore, 

an effective and reliable technique to study the structural characteristic of graphene in atom level 

and tailor the monolayer into desired shapes becomes necessary before properly using it in 

practical applications. Fortunately, we can realize all of them with AFM. 

Figure 6.2 shows the graphene sample on silicon dioxide substrate. Then, the graphene 

sample is scanned under AC mode with a Tap300DLC AFM probe (BudgetSensors). In order to 

precisely tailor graphene, closed-loop is enabled all the time. Figure 6.3 shows two AFM images 

of graphene in an area of 1.5 nm × 1.5 nm. The AFM raw images, for example Figure 6.3 (a), are 

not sufficient in resolution to tell the lattice structure of the carbon atoms. Thus, the amplitude 

image is processed with FFT filtering technique to get rid of unnecessary period noises. As a 

result, the lattice structure shows up after a proper filtration. Figure 6.4 gives the corresponding 
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length of the lines drawn in Figure 6.3 (b) to represent the carbon-carbon bond in graphene. The 

mean length approximates the theoretical value 0.142 nm. 

 

Figure 6.2: Graphene sample on silicon dioxide substrate. 

 

Figure 6.3: AFM images of graphene (a) amplitude and (b) FFT filtered. 

(a) (b) 
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Figure 6.4: Corresponding line length of these drawn in Figure 6.3 (b). 

After identifying appropriate parameters for nanoscratching on graphene with Tap300DLC 

tip, we are able to test the AFM lithographical capabilities by producing detailed, accurate, and 

clean shapes, and ultimately test the capability of tailoring graphene with this mechanical cutting 

method. For this, an electrode shape is drawn into the PicoLITH software Figure 6.5 (a) as an 

example of a possible application of this technique. With optimized parameters determined 

through previous tests on nanoscratching channels on graphene as shown in Figure 6.6, 2.5 μN, 

7.5 µm/s, and scratching number 1 are applied to tailor the shape. The result for this test is seen 

in Figure 6.5 (b) verifying that it is indeed possible to produce a desired graphene shape through 

AFM based nanoscratching. This research also introduces some future areas of research in this 

field as to how thermal drift effects Z-axis positioning and varies with cutting speed. Another 

promising area of research for the future would be to produce a bias voltage across the graphene 

sample and to observe how that affects the efficiency parameters of such a mechanical cutting 

process. Then other methods such as electron beam or electrical force cutting methods could be 

explored and compared in order to identify the overall most efficient method for the tailoring and 

manipulation of graphene monolayers. 



158 
 

 

Figure 6.5: Tailor graphene to a desired shape (a) design and (b) result. 

 

Figure 6.6: Nanoscratching on graphene (a) channels under different forces and (b) depth profile. 

 

  

(a) (b) 

(a) (b) 
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Chapter VII. CONCLUSION 

As introduced above, the goals of my research work involved in this dissertation include two 

major categories. One is to characterize nano or bio samples, and the other is to design, fabricate 

and test CNT integrated ISFET as the next generation pH sensor. The characterization results are 

important for studying related physical properties and quality control purpose, and the next 

generation pH sensor will be served for microliter or molecule level targets. As a matter of fact, 

the two researches are not completely independent to each other but closely connected through 

some nano technologies. For example, AFM is employed in both playing an important role. This 

phenomenon is not a coincidence but it is something inevitable as we have already entered the 

era of nanosystems. Fortunately, my research work has achieved its aims through the steps that I 

took during the research process. 

Dimensional characterization of VACNF is a good example to present how to characterize 

nano samples in size using AFM. The characteristics of VACNFs, especially their height and 

density, determine the sensitivity of devices for which VACNFs work as the sensing elements. 

The experimental results not only verified the growth of these fibers but also provided us with 

accurate information in the level of 0.1 nm on the height and diameter. Furthermore, statistical 

analysis on the measurement made the results more complete and reliable. 

AFM based nanoindentation is also an important technique to study mechanical properties of 

the materials/samples which are impossible to be tested unless the manipulation is precise-

controlled in nanometer scale. The theory and a proper mathematical model for AFM based 

nanoindentation were introduced and applied to solve some practical issues. The behaviors of 

VACNFs in dimension and mechanical properties at subzero temperatures were observed. The 

Young‘s Moduli of VACNFs at different temperatures between -70 °C and 25 °C were 
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calculated by nanoindenting VACNFs after temperature treatment in a test chamber. We need to 

understand these behaviors within this temperature range before VACNFs are involved in any 

outer space missions.  

Additionally, the Young‘s Modulus of soft tissue scaffold was also studied. The changes of 

Young‘s moduli were investigated when the scaffolds were made or treated differently. The 

Young‘s Moduli of scaffolds were obtained when they were in different combinations of 

ingredients and cell cultured. Mice heart and pancreas tissues were nanoindented as control to 

validate the experiment. Furthermore, the Young‘s Moduli of protein microbubbles in different 

sizes were estimated as their quality control process. Besides nanoindentation, the 

immobilization of microbubbles in liquid was the key to the success as clear AFM imaging of 

microbubbles was precondition of nanoindentation. Thus, the Young‘s Moduli of 1-µm-diameter 

and 3-µm-diameter bubbles were known by nanoindenting sufficient microbubbles. Hence, 

applications of the scaffolds for replacing human damaged tissues and the microbubbles for 

ultrasound imaging diagnose and drug delivery are able to be correctly realized only after their 

mechanical properties are known. 

MEMS fabrication techniques and cleanroom facilities were employed to fabricate ISFET 

chips towards ion concentration sensing applications of extremely tiny solutions. Major steps 

during the fabrication process included multilayer mask design, oxidation, photolithography, 

diffusion and evaporation. With a proper packaging method, an ISFET chip was used to measure 

the pH values for 2.5 µL solutions in the range of pH 4 to 10, and the sensitivity was 10.7 

mV/pH. Nernst Potential was adopted for mathematical modeling and result analysis. Promising 

strategies were proposed to improve the performance. Furthermore, related preliminary tests 

were completed to confirm the feasibility regarding integrating CNTs into the current ISFET 
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structure. When MEMS and CNT related nanotechnologies can be combined properly, the next 

generation product for ion concentration measurement will be available. It will be of great value 

and potential in various fields, such as biology, chemistry, medical and industry, as the new ion 

concentration sensor will be able sense samples in micron liter or molecule scale while maintain 

a high sensitivity. At the same, the mature MEMS technologies still guarantee low cost, massive 

productive, reliability, and repeatability.  

In the future, I would like to continue developing CNT integrated ISFET. It is quite 

interesting to see how a CNT-ISFET would perform as a pH sensor for microliter scale solutions. 

Besides CNT, I am also willing to figure how the dimensions of ISFET affect its performance. I 

am currently fabricating larger ISFETs, which is almost done and would be used to measure 

relatively larger solution samples. Others will take over from here in the near future. On the other 

hand, I will focus on AFM based characterization and manipulation in my next research period. 

Most of the research results involved in this dissertation have been shared with others through 

publications and presentations. Hopefully, what I described could enlighten others in similar 

areas and we might keep contributing our own strength into the beloved micro/nano world. 
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