4,024 research outputs found

    Generating realistic scaled complex networks

    Get PDF
    Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.Comment: 26 pages, 13 figures, extended version, a preliminary version of the paper was presented at the 5th International Workshop on Complex Networks and their Application

    Scaling Virtualized Smartphone Images in the Cloud

    Get PDF
    Üks selle Bakalaureuse töö eesmärkidest oli Android-x86 nutitelefoni platvormi juurutamine pilvekeskkonda ja välja selgitamine, kas valitud instance on piisav virtualiseeritud nutitelefoni platvormi juurutamiseks ning kui palju koormust see talub. Töös kasutati Amazoni instance'i M1 Small, mis oli piisav, et juurutada Androidi virtualiseeritud platvormi, kuid jäi kesisemaks kui mobiiltelefon, millel teste läbi viidi. M1 Medium instance'i tüüp oli sobivam ja näitas paremaid tulemusi võrreldes telefoniga. Teostati koormusteste selleks vastava tööriistaga Tsung, et näha, kui palju üheaegseid kasutajaid instance talub. Testi läbiviimiseks paigaldasime Dalviku instance'ile Tomcat serveri. Pärast teste ühe eksemplariga, juurutasime külge Elastic Load Balancing ja automaatse skaleerimise Amazon Auto Scaling tööriista. Esimene neist jaotas koormust instance'ide vahel. Automaatse skaleerimise tööriista kasutasime, et rakendada horisontaalset skaleerimist meie Android-x86 instance'le. Kui CPU tõusis üle 60% kauemaks kui üks minut, siis tehti eelmisele identne instance ja koormust saadeti edaspidi sinna. Seda protseduuri vajadusel korrati maksimum kümne instance'ini. Meie teostusel olid tagasilöögid, sest Elastic Load Balancer aegus 60 sekundi pärast ning me ei saanud kõikide välja saadetud päringutele vastuseid. Serverisse saadetud faili kirjutamine ja kompileerimine olid kulukad tegevused ja seega ei lõppenud kõik 60 sekundi jooksul. Me ei saanud koos Load Balancer'iga läbiviidud testidest piisavalt andmeid, et teha järeldusi, kas virtualiseeritud nutitelefoni platvorm Android on hästi või halvasti skaleeruv.In this thesis we deployed a smartphone image in an Amazon EC2 instance and ran stress tests on them to know how much users can one instance bear and how scalable it is. We tested how much time would a method run in a physical Android device and in a cloud instance. We deployed CyanogenMod and Dalvik for a single instance. We used Tsung for stress testing. For those tests we also made a Tomcat server on Dalvik instance that would take the incoming file, the file would be compiled with java and its class file would be wrapped into dex, a Dalvik executable file, that is later executed with Dalvik. Three instances made a Tsung cluster that sent load to a Dalvik Virtual Machine instance. For scaling we used Amazon Auto Scaling tool and Elastic Load Balancer that divided incoming load between the instances

    Dimensionality of social networks using motifs and eigenvalues

    Full text link
    We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an mm-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when mm scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution.Comment: 26 page
    corecore