19 research outputs found

    PKind: A parallel k-induction based model checker

    Full text link
    PKind is a novel parallel k-induction-based model checker of invariant properties for finite- or infinite-state Lustre programs. Its architecture, which is strictly message-based, is designed to minimize synchronization delays and easily accommodate the incorporation of incremental invariant generators to enhance basic k-induction. We describe PKind's functionality and main features, and present experimental evidence that PKind significantly speeds up the verification of safety properties and, due to incremental invariant generation, also considerably increases the number of provable ones.Comment: In Proceedings PDMC 2011, arXiv:1111.006

    Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee Contracts

    Full text link
    Automated synthesis of reactive systems from specifications has been a topic of research for decades. Recently, a variety of approaches have been proposed to extend synthesis of reactive systems from proposi- tional specifications towards specifications over rich theories. We propose a novel, completely automated approach to program synthesis which reduces the problem to deciding the validity of a set of forall-exists formulas. In spirit of IC3 / PDR, our problem space is recursively refined by blocking out regions of unsafe states, aiming to discover a fixpoint that describes safe reactions. If such a fixpoint is found, we construct a witness that is directly translated into an implementation. We implemented the algorithm on top of the JKind model checker, and exercised it against contracts written using the Lustre specification language. Experimental results show how the new algorithm outperforms JKinds already existing synthesis procedure based on k-induction and addresses soundness issues in the k-inductive approach with respect to unrealizable results.Comment: 18 pages, 5 figures, 2 table

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain

    Verification of Temporal Properties of Neuronal Archetypes Modeled as Synchronous Reactive Systems

    Get PDF
    International audienceThere exists many ways to connect two, three or more neu-rons together to form different graphs. We call archetypes only the graphs whose properties can be associated with specific classes of biologically relevant structures and behaviors. These archetypes are supposed to be the basis of typical instances of neuronal information processing. To model different representative archetypes and express their temporal properties, we use a synchronous programming language dedicated to reactive systems (Lustre). The properties are then automatically validated thanks to several model checkers supporting data types. The respective results are compared and depend on their underlying abstraction methods

    Enhancing the Compilation of Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction

    Get PDF
    RR version = http://hal.inria.fr/hal-00780521/enInternational audienceIn this paper, we propose an enhancement of the compilation of synchronous programs with a combined numerical-Boolean abstraction. While our approach applies to synchronous dataflow languages in general, here, we consider the SIGNAL language for illustration. In the new abstraction, every signal in a program is associated with a pair of the form ( clock, value ), where clock is a Boolean function and value is a Boolean or numeric function. Given the performance level reached by recent progress in Satisfiability Modulo Theory (SMT), we use an SMT solver to reason on this abstraction. Through sample examples, we show how our solution is used to determine absence of reaction captured by empty clocks; mutual exclusion captured by two or more clocks whose associated signals never occur at the same time; or hierarchical control of component activations via clock inclusion. We also show that the analysis improves the quality of the code generated automatically by a compiler, e.g., a code with smaller footprint, or a code executed more efficiently thanks to optimizations enabled by the new abstraction. The implementation of the whole approach includes a translator of synchronous programs towards the standard input format of SMT solvers, and an ad hoc SMT solver that integrates advanced functionalities to cope with the issues of interest in this wor

    IC3 modulo theories via implicit predicate abstraction

    Get PDF
    We present a novel approach for generalizing the IC3 algorithm for invariant checking from finite-state to infinite-state transition systems, expressed over some background theories. The procedure is based on a tight integration of IC3 with Implicit (predicate) Abstraction, a technique that expresses abstract transitions without computing explicitly the abstract system and is incremental with respect to the addition of predicates. In this scenario, IC3 operates only at the Boolean level of the abstract state space, discovering inductive clauses over the abstraction predicates. Theory reasoning is confined within the underlying SMT solver, and applied transparently when performing satisfiability checks. When the current abstraction allows for a spurious counterexample, it is refined by discovering and adding a sufficient set of new predicates. Importantly, this can be done in a completely incremental manner, without discarding the clauses found in the previous search. The proposed approach has two key advantages. First, unlike current SMT generalizations of IC3, it allows to handle a wide range of background theories without relying on ad-hoc extensions, such as quantifier elimination or theory-specific clause generalization procedures, which might not always be available, and can moreover be inefficient. Second, compared to a direct exploration of the concrete transition system, the use of abstraction gives a significant performance improvement, as our experiments demonstrate

    Vérification de la génération modulaire du code impératif pour Lustre

    Get PDF
    National audienceLes langages synchrones sont utilisés pour programmer des logiciels de contrôle-commande d'applications critiques. Le langage Scade, utilisé dans l'industrie pour ces applications, est fondé sur le langage Lustre introduit par Caspi et Halbwachs. On s'intéresse ici à la formalisation et la preuve, dans l'assistant de preuve Coq, d'une étape clef de la compilation : la traduction de programmes Lustre vers des programmes d'un langage impératif. Le défi est de passer d'une sémantique synchrone flot de données, où un programme manipule des flots, à une sémantique impérative, où un programme manipule la mémoire de façon séquentielle. Nous spécifions et vérifions un générateur de code simple qui gère les traits principaux de Lustre : l'échantillonnage, les noeuds et les délais. La preuve utilise un modèle sémantique intermédiaire qui mélange des traits flot de données et impératifs et permet de définir un invariant inductif essentiel. Nous exploitons la formalisation proposée pour vérifier une optimisation classique qui fusionne des structures conditionnelles dans le code impératif généré
    corecore