
IC3 Modulo Theories via
Implicit Predicate Abstraction

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta

Fondazione Bruno Kessler
{cimatti,griggio,mover,tonettas}@fbk.eu

Abstract. We present a novel approach for generalizing the IC3 algorithm for
invariant checking from finite-state to infinite-state transition systems, expressed
over some background theories. The procedure is based on a tight integration of
IC3 with Implicit (predicate) Abstraction, a technique that expresses abstract tran-
sitions without computing explicitly the abstract system and is incremental with
respect to the addition of predicates. In this scenario, IC3 operates only at the
Boolean level of the abstract state space, discovering inductive clauses over the
abstraction predicates. Theory reasoning is confined within the underlying SMT
solver, and applied transparently when performing satisfiability checks. When the
current abstraction allows for a spurious counterexample, it is refined by discov-
ering and adding a sufficient set of new predicates. Importantly, this can be done
in a completely incremental manner, without discarding the clauses found in the
previous search.
The proposed approach has two key advantages. First, unlike current SMT gener-
alizations of IC3, it allows to handle a wide range of background theories without
relying on ad-hoc extensions, such as quantifier elimination or theory-specific
clause generalization procedures, which might not always be available, and can
moreover be inefficient. Second, compared to a direct exploration of the concrete
transition system, the use of abstraction gives a significant performance improve-
ment, as our experiments demonstrate.

1 Introduction

IC3 [5] is an algorithm for the verification of invariant properties of transition systems.
It builds an over-approximation of the reachable state space, using clauses obtained by
generalization while disproving candidate counterexamples. In the case of finite-state
systems, the algorithm is implemented on top of Boolean SAT solvers, fully leveraging
their features. IC3 has demonstrated to be extremely effective, and it is a fundamental
core in all the engines in hardware verification.

There have been several attempts to lift IC3 to the case of infinite-state systems,
for its potential applications to software, RTL models, timed and hybrid systems [9],
although the problem is in general undecidable. These approaches are set in the frame-
work of Satisfiability Modulo Theory (SMT) [1] and hereafter are referred to as IC3
Modulo Theories [7, 18, 16, 25]: the infinite-state transition system is symbolically de-
scribed by means of SMT formulas, and an SMT solver plays the same role of the
SAT solver in the discrete case. The key difference is the need in IC3 Modulo Theories

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357357602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for specific theory reasoning to deal with candidate counterexamples. This led to the
development of various techniques, based on quantifier elimination or theory-specific
clause generalization procedures. Unfortunately, such extensions are typically ad-hoc,
and might not always be applicable in all theories of interest. Furthermore, being based
on the fully detailed SMT representation of the transition systems, some of these solu-
tions (e.g. based on quantifier elimination) can be highly inefficient.

We present a novel approach to IC3 Modulo Theories, which is able to deal with
infinite-state systems by means of a tight integration with predicate abstraction (PA) [12],
a standard abstraction technique that partitions the state space according to the equiva-
lence relation induced by a set of predicates. In this work, we leverage Implicit Abstrac-
tion (IA) [23], which allows to express abstract transitions without computing explicitly
the abstract system, and is fully incremental with respect to the addition of new predi-
cates. In the resulting algorithm, called IC3+IA, the search proceeds as if carried out
in an abstract system induced by the set of current predicates P – in fact, IC3+IA
only generates clauses over P. The key insight is to exploit IA to obtain an abstract
version of the relative induction check. When an abstract counterexample is found, as
in Counter-Example Guided Abstraction-Refinement (CEGAR), it is simulated in the
concrete space and, if spurious, the current abstraction is refined by adding a set of
predicates sufficient to rule it out.

The proposed approach has several advantages. First, unlike current SMT general-
izations of IC3, IC3+IA allows to handle a wide range of background theories without
relying on ad-hoc extensions, such as quantifier elimination or theory-specific clause
generalization procedures. The only requirement is the availability of an effective tech-
nique for abstraction refinement, for which various solutions exist for many important
theories (e.g. interpolation [15], unsat core extraction, or weakest precondition). Sec-
ond, the analysis of the infinite-state transition system is now carried out in the abstract
space, which is often as effective as an exact analysis, but also much faster. Finally, the
approach is completely incremental, without having to discard or reconstruct clauses
found in the previous iterations.

We experimentally evaluated IC3+IA on a set of benchmarks from heterogeneous
sources [2, 14, 18], with very positive results. First, our implementation of IC3+IA
is significantly more expressive than the SMT-based IC3 of [7], being able to handle
not only the theory of Linear Rational Arithmetic (LRA) like [7], but also those of
Linear Integer Arithmetic (LIA) and fixed-size bit-vectors (BV). Second, in terms of
performance IC3+IA proved to be uniformly superior to a wide range of alternative
techniques and tools, including state-of-the-art implementations of the bit-level IC3 al-
gorithm ([11, 22, 3]), other approaches for IC3 Modulo Theories ([7, 16, 18]), and tech-
niques based on k-induction and invariant discovery ([14, 17]). A remarkable property
of IC3+IA is that it can deal with a large number of predicates: in several benchmarks,
hundreds of predicates were introduced during the search. Considering that an explicit
computation of the abstract transition relation (e.g. based on All-SMT [19]) often be-
comes impractical with a few dozen predicates, we conclude that IA is fundamental to
scalability, allowing for efficient reasoning in a fine-grained abstract space.

The rest of the paper is structured as follows. In Section 2 we present some back-
ground on IC3 and Implicit Abstraction. In Section 3 we describe IC3+IA and prove

its formal properties. In Section 4 we discuss the related work. In Section 5 we ex-
perimentally evaluate our method. In Section 6 we draw some conclusions and present
directions for future work.

2 Background

2.1 Transition Systems

Our setting is standard first order logic. We use the standard notions of theory, satisfi-
ability, validity, logical consequence. We denote formulas with ϕ,ψ, I, T, P , variables
with x, y, and sets of variables with X , Y , X , X̂ . Unless otherwise specified, we work
on quantifier-free formulas, and we refer to 0-arity predicates as Boolean variables, and
to 0-arity uninterpreted functions as (theory) variables. A literal is an atom or its nega-
tion. A clause is a disjunction of literals, whereas a cube is a conjunction of literals.
If s is a cube l1 ∧ . . . ∧ ln, with ¬s we denote the clause ¬l1 ∨ . . . ∨ ¬ln, and vice
versa. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
and in disjunctive normal form (DNF) if it is a disjunction of cubes. With a little abuse
of notation, we might sometimes denote formulas in CNF C1 ∧ . . . ∧ Cn as sets of
clauses {C1, . . . , Cn}, and vice versa. If X1, . . . , Xn are a sets of variables and ϕ is a
formula, we might write ϕ(X1, . . . , Xn) to indicate that all the variables occurring in ϕ
are elements of

⋃
iXi. For each variable x, we assume that there exists a corresponding

variable x′ (the primed version of x). If X is a set of variables, X ′ is the set obtained
by replacing each element x with its primed version (X ′ = {x′ | x ∈ X}), X is the set
obtained by replacing each x with x (X = {x | x ∈ X}) and Xn is the set obtained by
adding n primes to each variable (Xn = {xn | x ∈ X}).

Given a formula ϕ, ϕ′ is the formula obtained by adding a prime to each variable
occurring in ϕ. Given a theory T, we write ϕ |=T ψ (or simply ϕ |= ψ) to denote that
the formula ψ is a logical consequence of ϕ in the theory T.

A transition system (TS) S is a tuple S = 〈X, I, T 〉 where X is a set of (state)
variables, I(X) is a formula representing the initial states, and T (X,X ′) is a formula
representing the transitions. A state of S is an assignment to the variables X . A path of
S is a finite sequence s0, s1, . . . , sk of states such that s0 |= I and for all i, 0 ≤ i < k,
(si, s

′
i+1) |= T .

Given a formula P (X), the verification problem denoted with S |= P is the problem
to check if for all paths s0, s1, . . . , sk of S, for all i, 0 ≤ i ≤ k, si |= P . Its dual is the
reachability problem, which is the problem to find a path s0, s1, . . . , sk of S such that
sk |= ¬P . P (X) represents the “good” states, while ¬P represents the “bad” states.

Inductive invariants are central to solve the verification problem. P is an inductive
invariant iff (i) I(X) |= P (X); and (ii) P (X)∧ T (X,X ′) |= P (X ′). A weaker notion
is given by relative inductive invariants: given a formula φ(X), P is inductive relative
to φ iff (i) I(X) |= P (X); and (ii) φ(X) ∧ P (X) ∧ T (X,X ′) |= P (X ′).

2.2 IC3 with SMT

IC3 [5] is an efficient algorithm for the verification of finite-state systems, with Boolean
state variables and propositional logic formulas. IC3 was subsequently extended to

the SMT case in [7, 16]. In the following, we present its main ideas, following the
description of [7]. For brevity, we have to omit several important details, for which we
refer to [5, 7, 16].

Let S and P be a transition system and a set of good states as in §2.1. The IC3
algorithm tries to prove that S |= P by finding a formula F (X) such that: (i) I(X) |=
F (X); (ii) F (X) ∧ T (X,X ′) |= F (X ′); and (iii) F (X) |= P (X).

In order to construct an inductive invariant F , IC3 maintains a sequence of formulas
(called trace) F0(X), . . . , Fk(X) such that: (i) F0 = I; (ii) Fi |= Fi+1; (iii) Fi(X) ∧
T (X,X ′) |= Fi+1(X

′); (iv) for all i < k, Fi |= P . Therefore, each element of the
trace Fi+1, called frame, is inductive relative to the previous one, Fi. IC3 strengthens
the frames by finding new relative inductive clauses by checking the unsatisfiability of
the formula:

RelInd(F, T, c) := F ∧ c ∧ T ∧ ¬c′. (1)

More specifically, the algorithm proceeds incrementally, by alternating two phases:
a blocking phase, and a propagation phase. In the blocking phase, the trace is analyzed
to prove that no intersection between Fk and ¬P (X) is possible. If such intersection
cannot be disproved on the current trace, the property is violated and a counterexample
can be reconstructed. During the blocking phase, the trace is enriched with additional
formulas, which can be seen as strengthening the approximation of the reachable state
space. At the end of the blocking phase, if no violation is found, Fk |= P .

The propagation phase tries to extend the trace with a new formula Fk+1, moving
forward the clauses from preceding Fi’s. If, during this process, two consecutive frames
become identical (i.e. Fi = Fi+1), then a fixpoint is reached, and IC3 terminates with
Fi being an inductive invariant proving the property.

In the blocking phase IC3 maintains a set of pairs (s, i), where s is a set of states
that can lead to a bad state, and i > 0 is a position in the current trace. New formu-
las (in the form of clauses) to be added to the current trace are derived by (recursively)
proving that a set s of a pair (s, i) is unreachable starting from the formula Fi−1. This is
done by checking the satisfiability of the formula RelInd(Fi−1, T,¬s). If the formula
is unsatisfiable, then ¬s is inductive relative to Fi−1, and IC3 strengthens Fi by adding
¬s to it1, thus blocking the bad state s at i. If, instead, (1) is satisfiable, then the overap-
proximation Fi−1 is not strong enough to show that s is unreachable. In this case, let p
be a subset of the states in Fi−1 ∧ ¬s such that all the states in p lead to a state in s′ in
one transition step. Then, IC3 continues by trying to show that p is not reachable in one
step from Fi−2 (that is, it tries to block the pair (p, i − 1)). This procedure continues
recursively, possibly generating other pairs to block at earlier points in the trace, until
either IC3 generates a pair (q, 0), meaning that the system does not satisfy the property,
or the trace is eventually strengthened so that the original pair (s, i) can be blocked.

A key difference between the original Boolean IC3 and its SMT extensions in [7,
16] is in the way sets of states to be blocked or generalized are constructed. In the
blocking phase, when trying to block a pair (s, i), if the formula (1) is satisfiable, then
a new pair (p, i− 1) has to be generated such that p is a cube in the preimage of s wrt.
T . In the propositional case, p can be obtained from the model µ of (1) generated by

1 ¬s is actually generalized before being added to Fi. Although this is fundamental for the IC3
effectiveness, we do not discuss it for simplicity.

the SAT solver, by simply dropping the primed variables occurring in µ. This cannot
be done in general in the first-order case, where the relationship between the current
state variables X and their primed version X ′ is encoded in the theory atoms, which in
general cannot be partitioned into a primed and an unprimed set. The solution proposed
in [7] is to compute p by existentially quantifying (1) and then applying an under-
approximated existential elimination algorithm for linear rational arithmetic formulas.
Similarly, in [16] a theory-aware generalization algorithm for linear rational arithmetic
(based on interpolation) was proposed, in order to strengthen ¬s before adding it to Fi

after having successfully blocked it.

2.3 Implicit Abstraction

Predicate abstraction Abstraction [10] is used to reduce the search space while pre-
serving the satisfaction of some properties such as invariants. If Ŝ is an abstraction of
S, if a condition is reachable in S, then also its abstract version is reachable in Ŝ. Thus,
if we prove that a set of states is not reachable in Ŝ, the same can be concluded for the
concrete transition system S.

In Predicate Abstraction [12], the abstract state-space is described with a set of
predicates. Given a TS S, we select a set P of predicates, such that each predicate
p ∈ P is a formula over the variables X that characterizes relevant facts of the system.
For every p ∈ P, we introduce a new abstract variable xp and define XP as {xp}p∈P.
The abstraction relation HP is defined as HP(X,XP) :=

∧
p∈P xp ↔ p(X). Given

a formula φ(X), the abstract version φ̂P is obtained by existentially quantifying the
variables X , i.e., φ̂P = ∃X.(φ(X) ∧ HP(X,XP)). Similarly for a formula over X and
X ′, φ̂P = ∃X,X ′.(φ(X,X ′) ∧ HP(X,XP) ∧ HP(X

′, X ′P)). The abstract system with
ŜP = 〈XP, ÎP, T̂P〉 is obtained by abstracting the initial and the transition conditions. In
the following, when clear from the context, we write just φ̂ instead of φ̂P.

Since most model checkers deal only with quantifier-free formulas, the computation
of ŜP requires the elimination of the existential quantifiers. This may result in a bottle-
neck and some techniques compute weaker/more abstract systems (cfr., e.g., [21]).

E
Q

T

E
Q

E
Q

E
Q

T

T

Fig. 1. Abstract path.

Implicit predicate abstraction Implicit
predicate abstraction [23] embeds the
definition of the predicate abstraction in
the encoding of the path. This is based
on the following formula:

EQP(X,X) :=
∧
p∈P

p(X)↔ p(X) (2)

which relate two concrete states corresponding to the same abstract state. The formula
P̂athk,P :=

∧
1≤h<k(T (X

h−1
, Xh)∧ EQP(X

h, X
h
))∧ T (Xk−1

, Xk) is satisfiable iff
there exists a path of k steps in the abstract state space. Intuitively, instead of having a
contiguous sequence of transitions, the encoding represents a sequence of disconnected
transitions where every gap between two transitions is forced to lay in the same abstract
state (see Fig. 1). BMCk

P encodes the abstract bounded model checking problem and

is obtained from P̂athk,P by adding the abstract initial and target conditions: BMCk
P =

I(X0) ∧ EQP(X
0, X

0
) ∧ P̂athk,P ∧ EQP(X

k, X
k
) ∧ ¬P (Xk

).

3 IC3 with Implicit Abstraction

3.1 Main idea

The main idea of IC3+IA is to mimic how IC3 would work on the abstract state space
defined by a set of predicates P, but using IA to avoid quantifier elimination to compute
the abstract transition relation. Therefore, clauses, frames and cubes are restricted to
have predicates in P as atoms. We call these clauses, frames and cubes respectively
P-clauses, P-formulas, and P-cubes. Note that for any P-formula φ (and thus also for
P-cubes and P-clauses), φ̂ = φ[XP/P] ∧ ∃X.(

∧
p∈P xp ↔ p(X)).

The key point of IC3+IA is to use an abstract version of the check (1) to prove that
an abstract clause ĉ is inductive relative to the abstract frame F̂ :

AbsRelInd(F, T, c,P) := F (X) ∧ c(X) ∧
EQP(X,X) ∧ T (X,X ′) ∧ EQP(X

′
, X ′) ∧ ¬c(X ′) (3)

Theorem 1. Consider a set P of predicates, P-formulas F and a P-clause c.
RelInd(F̂ , T̂ , ĉ) is satisfiable iff AbsRelInd(F, T, c,P) is satisfiable. In particular,
if s |= AbsRelInd(F, T, c,P), then ŝ |= RelInd(F̂ , T̂ , ĉ).

Proof. Suppose s |= AbsRelInd(F, T, c,P). Let us denote with t and t the projections
of s respectively overX∪X ′ and overX∪X ′. Then t |= T and therefore t̂ |= T̂ . Since
s |= EQP(X,X) ∧ EQP(X

′
, X ′), t̂ and t̂ are the same abstract transition and therefore

t̂ |= T̂ . Since t |= F ∧ c, then t̂ |= F̂ ∧ ĉ. Since t |= ¬c′, then t̂ |= (̂¬c′) and since c is
a Boolean combination of P, then t̂ |= ¬ĉ′. Thus, ŝ |= t̂ |= RelInd(F̂ , T̂ , ĉ).

For the other direction, suppose t |= RelInd(F̂ , T̂ , ĉ). Then there exists an as-
signment t to X ∪ X ′ such that t |= T and t̂ = t. Therefore, t |= F (X) ∧ c(X) ∧
EQP(X,X) ∧ T (X,X ′) ∧ EQP(X

′, X ′) ∧ ¬c(X ′), which concludes the proof.

3.2 The algorithm

The IC3+IA algorithm is shown in Figure 2. The IC3+IA has the same structure of
IC3 as described in [11]. Additionally, it keeps a set of predicates P, which are used
to compute new clauses. The only points where IC3+IA differs from IC3 (shown in
red in Fig. 2) are in picking P-cubes instead of concrete states, the use of AbsRelInd
instead of RelInd, and in the fact that a spurious counterexample may be found and, in
that case, new predicates must be added.

More specifically, the algorithm consists of a loop, in which each iteration is divided
into the blocking and the propagation phase. The blocking phase starts by picking a cube
c of predicates representing an abstract state in the last frame violating the property.
This is recursively blocked along the trace by checking if AbsRelInd(Fi−1, T,¬c,P)

bool IC3+IA (I , T , P , P):
1. P = P ∪ {p | p is a predicate in I or in P}
2. trace = [I] # first elem of trace is init formula
3. trace.push() # add a new frame to the trace
4. while True:

blocking phase
5. while there exists a P-cube c s.t. c |= trace.last() ∧ ¬P :
6. if not recBlock(c, trace.size()− 1):

a pair (s0, 0) is generated
7. if the simulation of π = (s0, 0); . . . ; (sk, k) fails:
8. P := P ∪ refine(I, T, P,P, π)
9. else return False # counterexample found

propagation phase
10. trace.push()
11. for i = 1 to trace.size()− 1:
12. for each clause c ∈ trace[i]:
13. if AbsRelInd(trace[i], T, c,P) |= ⊥:
14. add c to trace[i+1]
15. if trace[i] == trace[i+1]: return True # property proved

simplified recursive description, in practice based on priority queue [5, 11]
bool recBlock(s, i):
1. if i == 0: return False # reached initial states
2. while AbsRelInd(trace[i-1], T,¬s,P) 6|= ⊥:
3. extract a P-cube c from the Boolean model of AbsRelInd(trace[i-1], T,¬s,P)

c is an (abstract) predecessor of s
4. if not recBlock(c, i− 1): return False
5. g = generalize(¬s, i) # standard IC3 generalization [5, 11] (using AbsRelInd)
6. add g to trace[i]
7. return True

Fig. 2. High-level description of IC3+IA (with changes wrt. the Boolean IC3 in red).

is satisfiable. If the relative induction check succeeds, Fi is strengthened with a gen-
eralization of ¬c. If the check fails, the recursive blocking continues with an abstract
predecessor of c, that is, a P-cube in Fi ∧ ¬c that leads to c in one step. This recursive
blocking results in either strengthening of the trace or in the generation of an abstract
counterexample. If the counterexample can be simulated on the concrete transition sys-
tem, then the algorithm terminates with a violation of the property. Otherwise, it refines
the abstraction, adding new predicates to P so that the abstract counterexample is no
more a path of the abstract system. In the propagation phase, P-clauses of a frame Fi

that are inductive relative to Fi using T̂ are propagated to the following frame Fi+1.
As for IC3, if two consecutive frames are equal, we can conclude that the property is
satisfied by the abstract transition system, and therefore also by the concrete one.

3.3 Simulation and refinement

During the search the procedure may find a counterexample in the abstract space. As
usual in the CEGAR framework, we simulate the counterexample in the concrete system

to either find a real counterexample or to refine the abstraction, adding new predicates
to P. Technically, IC3+IA finds a set of counterexamples π = (s0, 0); . . . ; (sk, k) in-
stead of a single counterexample, as described in [7] (i.e. this behaviour depends on the
generalization of a cube performed by ternary simulation or don’t care detection). We
simulate π as usual via bounded model checking. Formally, we encode all the paths of S
up to k steps restricted to π with: I(X0)∧

∧
i<k T (X

i, Xi+1)∧P (Xk)∧
∧

i≤k sk(X
k).

If the formula is satisfiable, then there exists a concrete counterexample that witnesses
S 6|= P , otherwise π is spurious and we refine the abstraction adding new predicates.
The refine(I, T,P, π) procedure is orthogonal to IC3+IA, and can be carried out with
several techniques, like interpolation, unsat core extraction or weakest precondition, for
which there is a wide literature. The only requirement of the refinement is to remove the
spurious counterexamples π. In our implementation we used interpolation to discover
predicates, similarly to [15].

Also, note that in our approach the set of predicates increases monotonically after a
refinement (i.e. we always add new predicates to the existing set of predicates). Thus,
the transition relation is monotonically strengthened (i.e. since P ⊆ P′, T̂P′ → T̂P). This
allows us to keep all the clauses in the IC3+IA frames after a refinement, enabling a
fully incremental approach.

3.4 Correctness

Lemma 1 (Invariants). The following conditions are invariants of IC3+IA:
1. F0 = I;
2. for all i < k, Fi |= Fi+1;
3. for all i < k, Fi(X) ∧ EQP(X,X) ∧ T (X,X ′) ∧ EQP(X

′
, X ′) |= Fi+1(X

′);
4. for all i < k, Fi |= P .

Proof. Condition 1 holds, since initially F0 = I , and F0 is never changed. We prove
that the conditions (2-4) are loop invariants for the main IC3+IA loop (line 4). The
invariant conditions trivially hold when entering the loop.

Then, the invariants are preserved by the inner loop at line 5. The loop may change
the content of a frame Fi+1 adding a new clause c while recursively blocking a cube
(p, i+1). c is added toFi+1 if the abstract relative inductive checkAbsRelInd(Fi, T, c,P)
holds. Clearly, this preserves the conditions 2-3. In the loop the set of predicates P may
change at line 8. Note that the invariant conditions still hold in this case. In particular,
3 holds because if P ⊆ P′, then EQP′ |= EQP. When the inner loop ends, we are guar-
anteed that Fk |= PP holds. Thus, condition 4 is preserved when a new frame is added
to the abstraction in line 10. Finally, the propagation phase clearly maintains all the in-
variants (2-4), by the definition of abstract relative induction AbsRelInd(Fi, T, c,P′).

Lemma 2. If IC3+IA (I , T , P , P) returns true, then ŜP |= P̂P.

Proof. The invariant conditions of the IC3 algorithm hold for the abstract frames: 1)
F̂0 = Î; for all i < k, 2) F̂i |= F̂i+1; 3) F̂i ∧ T̂ |= F̂ ′i+1; and 4) F̂i |= P̂ .

Conditions 1), 2), and 4) follow from Lemma 1, since I , P , and Fi are P-cubes.
Condition 3) follows from Lemma 1, since T̂ = ∃X,X ′.EQP(X,X) ∧ T (X,X ′) ∧
EQP(X

′
, X ′) by definition.

By assumption IC3+IA returns true and thus F̂k−1 = F̂k. Since the conditions
(1-4) hold, we have that F̂k−1 is an inductive invariant that proves Ŝ |= P̂ .

Theorem 2 (Soundness). Let S = 〈X, I, T 〉 be a transition system and P a safety
property and P be a set of predicates over X . The result of IC3+IA (I , T , P , P) is
correct.

Proof. If IC3+IA (I , T , P , P) returns true, then ŜP |= P̂P by Lemma 2, and thus
S |= P . If IC3+IA (I , T , P , P) returns false, then the simulation of the abstract coun-
terexample in the concrete system succeeded, and thus S 6|= P .

Lemma 3 (Abstract counterexample). If IC3+IA finds a counterexample π, then π̂
is a path of Ŝ violating P̂ .

Proof. For all i, 0 ≤ i ≤ trace.size, if π[i] = (si, i) then si is a P-cube satisfying
Fi. Moreover, sk |= ¬P . By Lemma 1, F0 = I and therefore s0 |= I . Since s0,
sk, I , and P are P-formulas, ŝ0 |= Î and ŝk |= ¬P̂ . Again by Lemma 1, for all i,
Fi(X) ∧ EQP(X,X) ∧ T (X,X ′) ∧ EQP(X

′
, X ′) |= Fi+1(X

′), and thus si ∧ s′i+1 |=
∃X,X ′.EQP(X,X) ∧ T (X,X ′) ∧ EQP(X

′
, X ′). Therefore, ŝi ∧ ŝi+1

′ |= T̂ .

Theorem 3 (Relative completeness). Suppose that for some set P of predicates, Ŝ |=
P̂ . If, at a certain iteration of the main loop, IC3+IA has P as set of predicates, then
IC3+IA returns true.

Proof. Let us consider the case in which, at a certain iteration of the main loop, P is as
defined in the premises of theorem. At every following iteration of the loop, IC3+IA
either finds an abstract counterexample π or strengthens a frame Fi with a new P-clause.
The first case is not possible, since, by Lemma 3, π̂ would be a path of Ŝ violating the
property. Therefore, at every iteration, IC3+IA strengthens some frame with a new P-
clause. Since the number of P-clauses is finite and, by Lemma 1, for all i, Fi |= Fi+1,
IC3+IA will eventually find that Fi = Fi+1 for some i and return true.

4 Related Work

This work combines two lines of research in verification, abstraction and IC3.
Among the existing abstraction techniques, predicate abstraction [12] has been suc-

cessfully applied to the verification of infinite-state transition systems, such as soft-
ware [20]. Implicit abstraction [23] was first used with k-induction to avoid the explicit
computation of the abstract system. In our work, we exploit implicit abstraction in IC3
to avoid theory-specific generalization techniques, widening the applicability of IC3 to
transition systems expressed over some background theories. Moreover, we provided
the first integration of implicit abstraction in a CEGAR loop.

The IC3 [5] algorithm has been widely applied to the hardware domain [11, 6] to
prove safety and also as a backend to prove liveness [4]. In [24], IC3 is combined with
a lazy abstraction technique in the context of hardware verification. The approach has
some similarities with our work, but it is limited to Boolean systems, it uses a “visible

variables” abstraction rather than PA, and applies a modified concrete version of IC3
for refinement.

Several approaches adapted the original IC3 algorithm to deal with infinite-state
systems [7, 16, 18, 25]. The techniques presented in [7, 16] extend IC3 to verify systems
described in the linear real arithmetic theory. In contrast to both approaches, we do not
rely on theory specific generalization procedures, which may be expensive, such as
quantifier elimination [7] or may hinder some of the IC3 features, like generalization
(e.g. the interpolant-based generalization of [16] does not exploit relative induction).
Moreover, IC3+IA searches for a proof in the abstract space. The approach presented
in [18] is restricted to timed automata since it exploits the finite partitioning of the
region graph. While we could restrict the set of predicates that we use to regions, our
technique is applicable to a much broader class of systems, and it also allows us to apply
conservative abstractions. IC3 was also extended to the bit-vector theory in [25] with
an ad-hoc extension, that may not handle efficiently some bit-vector operators. Instead,
our approach is not specific for bit-vectors.

5 Experimental Evaluation

We have implemented the algorithm described in the previous section in the SMT exten-
sion of IC3 presented in [7]. The tool uses MATHSAT [8] as backend SMT solver, and
takes as input either a symbolic transition system or a system with an explicit control-
flow graph (CFG), in the latter case invoking a specialized “CFG-aware” variant of
IC3 (TreeIC3, also described in [7]). The discovery of new predicates for abstraction
refinement is performed using the interpolation procedures implemented in MATH-
SAT, following [15]. In this section, we experimentally evaluate the effectiveness of
our new technique. We will call our implementation of the various algorithms as fol-
lows: IC3(LRA) is the “concrete” IC3 extension for Linear Rational Arithmetic (LRA)
as presented in [7]; TREEIC3+ITP(LRA) is the CFG-based variant of [7], also work-
ing only over LRA, and exploiting interpolants whenever possible2; IC3+IA(T) is IC3
with Implicit Abstraction for an arbitrary theory T; TREEIC3+IA(T) is the CFG-based
IC3 with Implicit Abstraction for an arbitrary theory T.

All the experiments have been performed on a cluster of 64-bit Linux machines with
a 2.7 Ghz Intel Xeon X5650 CPU, with a memory limit set to 3Gb and a time limit of
1200 seconds (unless otherwise specified). The tools and benchmarks used in the ex-
periments are available at https://es.fbk.eu/people/griggio/papers/
tacas14-ic3ia.tar.bz2.

5.1 Performance Benefits of Implicit Abstraction

In the first part of our experiments, we evaluate the impact of Implicit Abstraction for
the performance of IC3 modulo theories. In order to do so, we compare IC3+IA(LRA)
and TREEIC3+IA(LRA) against IC3(LRA) and TREEIC3+ITP(LRA) on the same
set of benchmarks used in [7], expressed in the LRA theory. We also compare both

2 See [7] for more details.

IC
3+

IA
(L

R
A

)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

T
R

E
E

IC
3+

IA
(L

R
A

)

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

IC3(LRA) TREEIC3+ITP(LRA)

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Total time

IC3+IA(LRA)
TreeIC3+IA(LRA)

TreeIC3+ITP(LRA)
Z3

IC3(LRA)

Algorithm/Tool # solved Tot time
IC3+IA(LRA) 82 5836
TREEIC3+IA(LRA) 75 8825
TREEIC3+ITP(LRA) 70 10478
Z3 66 2923
IC3(LRA) 62 9637

Fig. 3. Experimental results on LRA benchmarks from [7].

variants against the SMT extension of IC3 for LRA presented in [16] and implemented
in the Z3 SMT solver.3

The results are reported in Figure 3. In the scatter plots at the top, safe instances
are shown as blue squares, and unsafe ones as red circles. The plot at the bottom re-
ports the number of solved instances and the total accumulated execution time for
each tool. From the results, we can clearly see that using abstraction has a very sig-
nificant positive impact on performance. This is true for both the fully symbolic and
the CFG-based IC3, but it is particularly important in the fully symbolic case: not only
IC3+IA(LRA) solves 20 more instances than IC3(LRA), but it is also more than one
order of magnitude faster in many cases, and there is no instance that IC3(LRA) can
solve but IC3+IA(LRA) can’t. In fact, Implicit Abstraction is so effective for these
benchmarks that IC3+IA(LRA) outperforms also TREEIC3+IA(LRA), even though
IC3(LRA) is significantly less efficient than TREEIC3+ITP(LRA). One of the rea-
sons for the smaller performance gain obtained in the CFG-based algorithm might be

3 We used the Git revision 3d910028bf of Z3.

that TREEIC3+ITP(LRA) already tries to avoid expensive quantifier elimination op-
erations whenever possible, by populating the frames with clauses extracted from in-
terpolants, and falling back to quantifier elimination only when this fails (see [7] for
details). Therefore, in many cases TREEIC3+ITP(LRA) and TREEIC3+IA(LRA)
end up computing very similar sets of clauses. However, implicit abstraction still
helps significantly in many instances, and there is only one problem that is solved by
TREEIC3+ITP(LRA) but not by TREEIC3+IA(LRA). Moreover, both abstraction-
based algorithms outperform all the other ones, including Z3.

We also tried a traditional CEGAR approach based on explicit predicate abstraction,
using a bit-level IC3 as model checking algorithm and the same interpolation procedure
of IC3+IA(LRA) for refinement. As we expected, this configuration ran out of time or
memory on most of the instances, and was able to solve only 10 of them.

Finally, we did a preliminary comparison with a variant of IC3 specific for timed
automata, ATMOC [18]. We randomly selected a subset of the properties provided with
ATMOC, ignoring the trivial ones (i.e. properties that are 1-step inductive or with a coun-
terexample of length < 3). IC3+IA(LRA) performs very well also in this case, solving
100 instances in 772 seconds, while ATMOC solved 41 instances in 3953 seconds (Z3
and IC3(LRA) solved 100 instances in 1535 seconds and 46 instances in 3347 seconds
respectively). For lack of space we do not report the plots.

Impact of number of predicates The refinement step may introduce more predicates
than those actually needed to rule out a spurious counterexample (e.g. the interpolation-
based refinement adds all the predicates found in the interpolant). In principle, such re-
dundant predicates might significantly hurt performance. Using the implicit abstraction
framework, however, we can easily implement a procedure that identifies and removes
(a subset of) redundant predicates after each successful refinement step. Suppose that
IC3+IA finds a spurious counterexample trace π = (s0, 0); . . . ; (sk, k) with the set of
predicates P, and that refine(I, T,P, π) finds a set Pn of new predicates. The reduction
procedure exploits the encoding of the set of paths of the abstract system SP∪Pn up to
k steps, BMCk

P∪Pn
. If P ∪ Pn are sufficient to rule out the spurious counterexample,

BMCk
P∪Pn

is unsatisfiable. We ask the SMT solver to compute the unsatisfiable core of
BMCk

P∪Pn
, and we keep only the predicates of Pn that appear in the unsatisfiable core.

In order to evaluate the effectiveness of this simple approach, we compare two ver-
sions of IC3+IA(LRA) with and without the reduction procedure. Perhaps surprisingly,
although the reduction procedure is almost always effective in reducing the total number
of predicates, the effects on the execution time are not very big. Although redundancy
removal seems to improve performance for the more difficult instances, overall the two
versions of IC3+IA(LRA) solve the same number of problems. However, this shows
that the algorithm is much less sensitive to the number of predicates added than ap-
proaches based on an explicit computation of the abstract transition relation e.g. via
All-SMT, which often show also in practice (and not just in theory) an exponential
increase in run time with the addition of new predicates. IC3+IA(LRA) manages to
solve problems for which it discovers several hundreds of predicates, reaching the peak
of 800 predicates and solving most of safe instances with more than a hundred predi-
cates. These numbers are typically way out of reach for explicit abstraction techniques,
which blow up with a few dozen predicates.

 20

 40

 60

 80

 100

 120

 140

 160

 0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Total time

TreeIC3+IA(BV)
IC3+IA(BV)

ABC-dprove
Tip

IC3ref
ABC-PDR

Algorithm/Tool # solved Tot time
TREEIC3+IA(BV) 150 7056
IC3+IA(BV) 150 12753
ABC-DPROVE 120 4298
TIP 119 6361
IC3REF 110 9041
ABC-PDR 75 6447

Fig. 4. Experimental results on BV benchmarks from software verification.

5.2 Expressiveness Benefits of Implicit Abstraction

In the second part of our experimental analysis, we evaluate the effectiveness of Implicit
Abstraction as a way of applying IC3 to systems that are not supported by the methods
of [7], by instantiating IC3+IA(T) (and TREEIC3+IA(T)) over the theories of Linear
Integer Arithmetic (LIA) and of fixed-size bit-vectors (BV).

IC3 for BV For evaluating the performance of IC3+IA(BV) and TREEIC3+IA(BV),
we have collected over 200 benchmark instances from the domain of software verifica-
tion. More specifically, the benchmark set consists of: all the benchmarks used in §5.1,
but using BV instead of LRA as background theory; the instances of the bitvector
set of the Software Verification Competition SV-COMP [2]; the instances from the test
suite of InvGen [13], a subset of which was used also in [25].

We have compared the performance of our tools with various implementations of
the Boolean IC3 algorithm, run on the translations of the benchmarks to the bit-level
Aiger format: the PDR implementation in the ABC model checker (ABC-PDR) [11],
TIP [22], and IC3REF [3], the new implementation of the original IC3 algorithm as
described in [5]. Finally, we have also compared with the DPROVE algorithm of ABC
(ABC-DPROVE), which combines various different techniques for bit-level verification,
including IC3.4 We also tried Z3, but it ran out of memory on most instances. It seems
that Z3 uses a Datalog-based engine for BV, rather than PDR.

The results of the evaluation on BV are reported in Figure 4. As we can see, both
IC3+IA(BV) and TREEIC3+IA(BV) outperform the bit-level IC3 implementations.
In this case, the CFG-based algorithm performs slightly better than the fully-symbolic
one, although they both solve the same number of instances.

IC3 for LIA For our experiments on the LIA theory, we have generated benchmarks
using the Lustre programs available from the webpage of the KIND model checker for
Lustre [14]. Since such programs do not have an explicit CFG, we have only evaluated

4 We used ABC version 374286e9c7bc, TIP 4ef103d81e and IC3REF 8670762eaf.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Total time

IC3+IA(LIA)
Z3

pKind
Kind Algorithm/Tool # solved Tot time

IC3+IA(LIA) 933 2064
Z3 875 1654
PKIND 859 720
KIND 746 8493

Fig. 5. Experimental results on LIA benchmarks from Lustre programs [14].

IC3+IA(LIA), by comparing it with Z3 and with the latest versions of KIND as well as
its parallel version PKIND [17].5 The results are summarized in Figure 5. Also in this
case, IC3+IA(LIA) outperforms the other systems.

6 Conclusion

In this paper we have presented IC3+IA, a new approach to the verification of infinite
state transition systems, based on an extension of IC3 with implicit predicate abstrac-
tion. The distinguishing feature of our technique is that IC3 works in an abstract state
space, since the counterexamples to induction and the relative inductive clauses are ex-
pressed with the abstraction predicates. This is enabled by the use of implicit abstraction
to check (abstract) relative induction. Moreover, the refinement in our procedure is fully
incremental, allowing to keep all the clauses found in the previous iterations.

The approach has two key advantages. First, it is very general: the implementations
for the theories of LRA, BV, and LIA have been obtained with relatively little effort.
Second, it is extremely effective, being able to efficiently deal with large numbers of
predicates. Both advantages are confirmed by the experimental results, obtained on a
wide set of benchmarks, also in comparison against dedicated verification engines.

In the future, we plan to apply the approach to other theories (e.g. arrays, non-linear
arithmetic) investigating other forms of predicate discovery, and to extend the technique
to liveness properties.

Acknowledgments

This work was carried out within the D-MILS project, which is partially funded under
the European Commission’s Seventh Framework Programme (FP7).

5 We used version 1.8.6c of KIND and PKIND. PKIND differs from KIND because it runs
in parallel k-Induction and an automatic invariant generation procedure. We run KIND with
options “-compression -n 100000” and PKIND with options “-compression -with-inv-gen -n
100000”.

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Handbook of Satisfiability, vol. 185, pp. 825–885. IOS Press (2009)

2. Beyer, D.: Second Competition on Software Verification - (Summary of SV-COMP 2013). In:
Piterman, N., Smolka, S.A. (eds.) TACAS. LNCS, vol. 7795, pp. 594–609. Springer (2013)

3. Bradley, A.: IC3ref, https://github.com/arbrad/IC3ref
4. Bradley, A., Somenzi, F., Hassan, Z., Zhang, Y.: An incremental approach to model checking

progress properties. In: Proc. of FMCAD (2011)
5. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Proc. of VMCAI. LNCS,

vol. 6538, pp. 70–87. Springer (2011)
6. Chokler, H., Ivrii, A., Matsliah, A., Moran, S., Nevo, Z.: Incremental formal verification of

hardware. In: Proc. of FMCAD (2011)
7. Cimatti, A., Griggio, A.: Software Model Checking via IC3. In: CAV. pp. 277–293 (2012)
8. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT Solver. In:

Piterman, N., Smolka, S. (eds.) Proceedings of TACAS. LNCS, vol. 7795. Springer (2013)
9. Cimatti, A., Mover, S., Tonetta, S.: Smt-based scenario verification for hybrid systems. For-

mal Methods in System Design 42(1), 46–66 (2013)
10. Clarke, E., Grumberg, O., Long, D.: Model Checking and Abstraction. ACM Trans. Program.

Lang. Syst. 16(5), 1512–1542 (1994)
11. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property-directed reach-

ability. In: Proc. of FMCAD (2011)
12. Graf, S., Saı̈di, H.: Construction of Abstract State Graphs with PVS. In: CAV. pp. 72–83

(1997)
13. Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: Bouajjani, A.,

Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 634–640. Springer (2009)
14. Hagen, G., Tinelli, C.: Scaling Up the Formal Verification of Lustre Programs with SMT-

Based Techniques. In: Cimatti, A., Jones, R.B. (eds.) FMCAD. pp. 1–9. IEEE (2008)
15. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs. In: POPL.

pp. 232–244 (2004)
16. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: SAT. pp. 157–171

(2012)
17. Kahsai, T., Tinelli, C.: Pkind: A parallel k-induction based model checker. In: Barnat, J.,

Heljanko, K. (eds.) PDMC. EPTCS, vol. 72, pp. 55–62 (2011)
18. Kindermann, R., Junttila, T.A., Niemelä, I.: Smt-based induction methods for timed systems.

In: Jurdzinski, M., Nickovic, D. (eds.) FORMATS. LNCS, vol. 7595, pp. 171–187. Springer
(2012)

19. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: Smt techniques for fast predicate abstraction. In:
CAV. pp. 424–437 (2006)

20. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Proc. of CAV. LNCS, vol. 4144, pp.
123–136. Springer (2006)

21. Sharygina, N., Tonetta, S., Tsitovich, A.: The synergy of precise and fast abstractions for
program verification. In: SAC. pp. 566–573 (2009)

22. Sorensson, N., Claessen, K.: Tip, https://github.com/niklasso/tip
23. Tonetta, S.: Abstract Model Checking without Computing the Abstraction. In: FM. pp. 89–

105 (2009)
24. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and SAT-based reachability in hard-

ware model checking. In: Cabodi, G., Singh, S. (eds.) FMCAD. pp. 173–181. IEEE (2012)
25. Welp, T., Kuehlmann, A.: QF BV model checking with property directed reachability. In:

Macii, E. (ed.) DATE. pp. 791–796 (2013)

