
HAL Id: hal-01377288
https://hal.inria.fr/hal-01377288

Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Temporal Properties of Neuronal
Archetypes Modeled as Synchronous Reactive Systems

Elisabetta de Maria, Alexandre Muzy, Daniel Gaffé, Annie Ressouche, Franck
Grammont

To cite this version:
Elisabetta de Maria, Alexandre Muzy, Daniel Gaffé, Annie Ressouche, Franck Grammont. Verification
of Temporal Properties of Neuronal Archetypes Modeled as Synchronous Reactive Systems. HSB
2016 - 5th International Workshop Hybrid Systems Biology, Oct 2016, Grenoble, France. pp.15,
�10.1007/978-3-319-47151-8_7�. �hal-01377288�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49330739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01377288
https://hal.archives-ouvertes.fr


Verification of Temporal Properties of
Neuronal Archetypes Modeled as
Synchronous Reactive Systems

Elisabetta de Maria1, Alexandre Muzy1, Daniel Gaffé2, Annie Ressouche3, and
Franck Grammont4

1 Université Côte d’Azur, CNRS, I3S, France
edemaria@i3s.unice.fr, muzy@i3s.unice.fr

2 Université Côte d’Azur, CNRS, LEAT, France
Daniel.GAFFE@unice.fr

3 Université Côte d’Azur, Inria, France
annie.ressouche@inria.fr

4 Université Côte d’Azur, CNRS, LJAD, France
grammont@unice.fr

Abstract. There exists many ways to connect two, three or more neu-
rons together to form different graphs. We call archetypes only the graphs
whose properties can be associated with specific classes of biologically rel-
evant structures and behaviors. These archetypes are supposed to be the
basis of typical instances of neuronal information processing. To model
different representative archetypes and express their temporal properties,
we use a synchronous programming language dedicated to reactive sys-
tems (Lustre). The properties are then automatically validated thanks
to several model checkers supporting data types. The respective results
are compared and depend on their underlying abstraction methods.

1 Introduction

Since a few years, the investigation of neuronal micro-circuits has become an
emerging question in Neuroscience, notably in the perspective of their integration
with neurocomputing approaches [15]. We call archetypes specific graphs of a few
neurons with biologically relevant structures and behaviors. These archetypes
correspond to elementary and fundamental elements of neuronal information
processing. Several archetypes can be coupled to constitute the elementary bricks
of bigger neuronal circuits in charge of specific functions. For instance, locomo-
tive motion and other rhythmic behaviors are controlled by well-known specific
neuronal circuits called Central Generator Pattern (CPG) [16]. These CPG have
the capacity to generate oscillatory activities, at various regimes, thanks to some
specific properties at the neuronal and circuit levels.

The goal of this work is to formally study the behavior of different repre-
sentative archetypes. At this aim, we model the archetypes using a synchronous
language for the description of reactive systems (Lustre). Each archetype (and



corresponding assumed behavior in terms of neuronal information processing) is
validated thanks to model checkers.

Different approaches have been proposed in the literature to model neural
networks (Artificial Neural Networks [4], Spiking Neural Networks [13], etc.).
In this paper we focus on Boolean Spiking Neural Networks where the neurons
electrical properties are described via an integrate-and-fire model [7]. Notice that
discrete modeling is well suited because neuronal activity, as with any recorded
physical event, is only known through discrete recording (the recording sampling
rate is usually set at a significantly higher resolution than the one of the recorded
system, so that there is no loss of information). We describe neural networks
as weighted directed graphs whose nodes represent neurons and whose edges
stand for synaptic connections. At each time unit, all the neurons compute their
membrane potential accounting not only for the current input signals but also
for the ones received along a given temporal window. Each neuron can emit a
spike according to the overtaking of a given threshold. Such a modeling is more
sophisticated than the one proposed by McCulloch and Pitts in [17], where the
behavior of a neural network is expressed in terms of propositional logic and the
present activity of each neuron does not depend on past events.

Spiking neural networks can be considered as reactive systems: their inputs
are physiological signals coming from input synapses, and their outputs rep-
resent the signals emitted in reaction. This class of systems fits well with the
synchronous approach based on the notion of a logical time: time is considered
as a sequence of logical discrete instants. An instant is a point in time where
external input events can be observed, along with the internal events that are
a consequence of the latter. The synchronous paradigm can be implemented
using synchronous programming languages. In this approach we can model an
activity according to a logical time framing: the activity is characterized by
a set of events expected at each logical instant and by their expected conse-
quences. A synchronous system evolves only at these instants and is "frozen"
otherwise (nothing changes between instants). At each logical instant, all events
are instantaneously broadcasted, if necessary, to all parts of the system whose
instantaneous reaction to these events contributes to the global system state.
Synchronous programming languages being initially dedicated to digital circuits,
this neural implementation could be easily mapped into a physical one.

Each instant is triggered by input events (the core information completed
with the internal state computed from instantaneous broadcast performed during
the instant frame). As a consequence, inputs and resulting outputs all occur si-
multaneously. This (ideal) synchrony hypothesis is the main characteristics of the
synchronous paradigm [9]. Another major feature is also that it supports concur-
rency through a deterministic parallel composition. The synchronous paradigm
is now well established relying on a rigorous semantics and on tools for simulation
and verification.

Several synchronous languages respect this synchronous paradigm. All these
languages have a similar expressivity. However, we choose here Lustre [9] syn-
chronous language to express neuron behaviors more easily. Lustre defines op-



erator networks interconnected with data flows and it is particularly well suited
to express neuron networks. Lustre respects the synchrony hypothesis which di-
vides time into discrete instants. It is a data flow language offering two main
advantages: (1) it is functional with no complex side effects, making it well
adapted to formal verification and safe program transformation; also, reuse is
made easier, which is an interesting feature for reliable programming concerns;
(2) it is a parallel model, where any sequencing and synchronization depends
on data dependencies. Moreover, the Lustre formalism is close to temporal logic
and this allows the language to be used for both writing programs and express-
ing properties as observers. Hence, Lustre offers an original verification means
to prove that, as long as the environment behaves properly (i.e., satisfies some
assumption), the program satisfies a given property. If we consider only safety
properties, both the assumption and the property can be expressed by some pro-
grams, called synchronous observers [10]. An observer of a safety property is a
program, taking as inputs the inputs/outputs of the program under verification,
and deciding (e.g., by emitting an alarm signal) at each instant whether the
property is violated. Running in parallel with the program, an observer of the
desired property and an observer of the assumption made about the environ-
ment have just to check that either the alarm signal is never emitted (property
satisfied) or the alarm signal is emitted (property violated). This can be done
by a simple traversal of the reachable states of the compound program.

There exists several model checkers for Lustre that are well suited to our
purpose: Lesar [11], Nbac [12], Luke [1], Rantanplan [6] and kind2 [8]. Verifi-
cation with Lesar is performed on an abstract (finite) model of the program.
Concretely, for purely logical systems the proof is complete, whereas in general
(in particular when numerical values are involved) the proof can be only partial.
Indeed, properties related to values depend on the abstraction performed by the
tool. In our experiment, some properties can be validated with Lesar, but some
others need powerful abstraction techniques. Hence, we use Lustre tools such as
Nbac, Luke, Rantanplan and kind2. To perform abstractions, Lesar and NBac
use convex polyhedra [14] representation of integers and reals. On the other
hand, Luke is also another k-induction model checker, however it is based on
propositional logic. Finally, Rantanplan and kind2 rely on SMT (Satisfiabitily
Modulo Theories) based k-induction. kind2 has been specifically developed to
prove safety properties of Lustre models, it combines several resolution engines
and it turns out that it is the most powerful model checker used in this paper.
This overall approach is used here to verify temporal properties of archetypes
using model-checking techniques.

The paper is organized as follows. In Sect. 2 we present the computational
model we adopt. In Sect. 3 we introduce the basic archetypes (series, series with
multiple outputs, parallel composition, negative loop, inhibition of a behavior,
contralateral inhibition) and we show how they can be modeled using Lustre.
More precisely, we illustrate how the behavior of a single neuron can be encoded
in a Lustre node and how two or more neurons can be connected to form a circuit.
In Sect. 4 we express in Lustre important temporal properties concerning the



described archetypes and we verify the satisfaction of these properties using the
above-mentioned model checkers. Finally, Sect. 5 is devoted to a final discussion
on the obtained results and on the future work. For a quick introduction to
Lustre and the code of all the tested properties, the reader can refer to [5].

2 Synchronous Reactive Neuron Model

We refer here to synchronous reactive systems as systems reacting under the
synchronous assumption, i.e., as computing their states and sending instanta-
neously their output events when receiving input events. Synchronous reactive
systems can be conceived as an abstraction of digital circuits. Therefore, to fit
electronic/computational discreteness and finiteness, some assumptions accord-
ing to the synchronous paradigm will be introduced.

We describe here first the structure of a neuron network as a graph. The
dynamics of usual leaky integrate-and-fire spiking networks is presented later.

Definition 1. A network of neurons is a weighted directed graph (G,w), where
G = (N,A) is a directed graph with N = {1, 2, . . . , n} the set of neuron indexes
and A = {(i, j) | i, j ∈ N} the set of ordered pairs of neuron indexes (synapses),
and w : A→ R is the synapse weight function5.

In a leaky integrate-and-fire neuron, the membrane potential of the neuron
integrates the values of the action potentials received from its input neurons.

Definition 2. A usual leaky integrate-and-fire model is a structure LIFi =
(Xi, Yi, Si, Ti, ∆i, Λi), where Xi = Bm is the vector of boolean input values of
size m; Yi = B is the boolean output value; Si = R is the set of states defined
as the set of values of membrane potential; Ti = R+

0 ∪ {+∞} is the time base;
∆i : X

m
i × Si × Ti → Si is the transition function defined as

p′i = ∆i(xi1 , . . . , xim , pi, ti) =

{
Σj∈Pred(i)wjixj if pi ≥ τi

ri(ti)pi +Σj∈Pred(i)wjixj otherwise

where Pred(i) is the set of m predecessors of neuron i ∈ N , xj is the input of
neuron i ∈ N received from neuron j ∈ Pred(i), wji = w(j, i) ∈ R is the synapse
weight from neuron j ∈ N to neuron i ∈ N , ri(ti) is the remaining potential
coefficient (a decreasing function in time, usually ri(ti) = exp(−αti), with α a
positive constant), and τi ∈ R+

0 is the firing threshold; and Λi : Si → Yi is the

output function defined as Λi(pi) = yi =

{
1 if pi ≥ τi
0 otherwise

.

For each synapse (j, i) ∈ A between a neuron j ∈ N and a neuron i ∈ N , yi ∈ B
is the output spike value emitted by neuron i, and xj ∈ B is the input spike
value of neuron i received from neuron j. If the membrane potential pi is above
the threshold τı̈, at the next transition the output spike value is set to yi = 1

5 With w : A→ Q for synchronous reactive neurons as discussed later.



and the membrane potential is reset to pi = 0. When the remaining potential
coefficient ri is a constant equal to 1, there is no leak, all the potential received
at last transition remains in the neuron soma. When ri(ti) = 0 for each ti, all
the potential received at last transition is lost (the model is then equivalent to
McCulloch & Pitts’ model [17]).

The usual leaky integrate-and-fire model presented in Definition 2 is not com-
patible with our synchronous reactive system assumption: both state and time
sets are possibly infinite (cf. ri(ti) = exp(−αti), the exponentially decreasing
function defined for ti ∈ [0,+∞]). We will show now how to approximate and
limit potential values to fit the synchronous reactive system assumption.

Let us define, for each neuron, the remaining potential r(t) = exp(−αt) as
re, where r is a constant (e.g., r = exp(−α) or r ∈ [0, 1]) and e ∈ R+

0 ∪ {+∞}
is the time elapsed until the current time t ∈ R+

0 ∪ {+∞}. The membrane
potential can now be defined as a sum of input values and a power law of
remaining potentials, leading to p(t) = Σ+∞

e=0Σ
m
j=1r

exj(t − e)6, where the input
value x(t−e) and the potential p(t) are functions depending on the current time t.
The membrane potential integrates both current input values and what remains
from previous inputs. As remaining input potentials decrease with time following
a power law, inputs received a long time ago can nevertheless be neglected. Only
remaining input potentials greater than a threshold error ε can be considered,
i.e., re ≥ ε. Thus only elapsed times e ≤ ln(ε)

ln(r) can be taken into account, where

σ = ln(ε)
ln(r) is the integration time window, i.e., the period over which the neuron

integrates past input values. For example, an error ε = 1% and a remaining
coefficient r = 50% correspond to an integration window σ = 6.64. This means
that, sliding the integration window of a width equal to σ, at each time t, no
input older that e = 6.64 will be considered, leading to an error of ε = 1% in
the membrane potential. The time-dependence of the membrane potential is not
anymore infinite but bounded to [t−σ, t]. State changes need now to be finite. If we
discretize each time step with t, e ∈ N0 (leading to σ = dσe = d6.64e = 7 for the
previous example), the membrane potential p(t) consists of a sum Σm

j=1xj(t) +

rΣm
j=1xj(t − 1) + r2Σm

j=1xj(t − 2) + r3Σm
j=1xj(t − 3) + . . . + rσΣm

j=1xj(t − σ),
i.e., p(t) = Σσ

e=0r
eΣm

j=1xj(t− e).
Thanks to the previous time boundness and discreteness, each time t can be

considered as a particular transition. The computation of the membrane potential
now depends on a finite memory of maximum size m× (σ+1), with m,σ ∈ N0.

A last simplification of the usual leaky integrate-and-fire model presented in
Definition 2 concerns the real values of both membrane potential and synaptic
weights. Indeed, real numbers are approximated by computers as floating-point
values. However, rational numbers are needed to get efficient results from model
checkers.

6 For the sake of simplicity, we assume that all the synaptic weights are equal to 1;
supposing that neuron i hasm predecessors, we write Σm

j=1xj to denote Σj∈Pred(i)xj ;
when there is no ambiguity on the neuron index, we do not indicate it.



In our case, notice that this assumption well fits with remaining coefficients
(that can easily be approximated by Taylor series or simple percentages).

Accounting for all the previous assumptions on usual leaky integrate-and-
fire neurons, the following definition can be provided for their mapping to syn-
chronous reactive systems (finite state automata are proved to be equivalent to
synchronous programs as Lustre or Esterel [3]).

Definition 3. A synchronous reactive neuron implements a leaky integrate and
fire model as a finite state machine (FSM) SRNi = (Xi, Yi, Si, ∆i, Λi), where
Xi = Bm is the vector of boolean input values of size m; Yi = B is the boolean
output value; Si = Q is the set of membrane potential values; ∆i : X

m×(σi+1)
i →

Si is the transition function defined as pi = ∆i(X) = WXR, where

• Each past input value xej ∈ X is reset (i.e., xej = 0 for e ∈ {1, ..., σi} and
j ∈ {1, ...,m}) when pi ≥ τi, with τi ∈ Q,

• W = [w1, w2, . . . , wm] is the vector of synaptic weights (each column corre-
sponds to an input j ∈ {1, . . . ,m} and wj ∈ Q),

• X =


x10 x11 · · · x1σi

x20 x21 · · · x2σi

...
...

. . .
...

xm0 xm1 · · · xmσi

 is a matrix of Boolean stored input values (each

row corresponds to an input j ∈ {1, . . . ,m} and each column to an elapsed
time ei ∈ {0, . . . ,σi} with σi ∈ N0), and

• R =


1
ri
...
rσi
i

 is the vector of remaining coefficients with ri ∈ Q and ri ∈]0, 1].

Lastly, Λi : Si → Yi is the output function, with Λi(pi) =
{

1 if pi ≥ τi
0 otherwise.

This formalization allows for the characterization of each neuron through a pa-
rameter triplet (τi, ri, σi) ∈ Q×Q×N0, i.e., the firing threshold τi, the remaining
coefficient ri, and the integration window σi.

3 Encoding Neuronal Archetypes in Lustre

The basic archetypes we take into account are the following ones (see Fig. 1).



S
1

S
2

S
n

(a) Simple series

S
n

S

S
1

S
2

(c) Parallel composition

S
1

S
2

(e) Inhibition of a behavior

S
1

S
2

(f) Contralateral inhibition

S
1

S
2

S
n

(b) Series with multiple outputs

S
2

S
1

(d) Negative loop

Fig. 1. The basic neuronal archetypes.

– Simple series. It is a sequence of neurons where each element of the chain
receives as input the output of the preceding one. The input (resp. output)
of the first (resp. last) neuron is the input (resp. output) of the network.
The spike emission of each neuron is constrained by the one of the preceding
neuron.

– Series with multiple outputs. It is a series where, at each time unit, we
are interested in knowing the outputs of all the neurons (i.e., all the neurons
are considered as output ones).

– Parallel composition. There is a set of neurons receiving as input the
output of a given neuron. All neurons working in parallel are considered as
output ones.

– Negative loop. It is a loop consisting of two neurons: the first neuron acti-
vates the second one while the latter inhibits the former one. The inhibited
neuron is supposed to oscillate.

– Inhibition of a behavior. There are two neurons, the first one inhibiting
the second one. After a certain delay, the first neuron is supposed to be
activated and the second one to be inhibited.

– Contralateral inhibition. There are two or more neurons, each one in-
hibiting the other ones. The expected behavior is of the kind "winner takes



all", that is, starting from a given time only one neuron becomes (and stays)
activated and all the other ones are inhibited.

In the following we provide a Lustre implementation of neurons and archetypes.
A Boolean neuron with one predecessor (that is, one input neuron), can be mod-
eled as the Lustre node described in Program 1.

Program 1 Basic neuron node.
node neuron105 (X:bool) returns(S:bool);
var
V:int;
threshold:int;
w:int;
rvector: int^5;
mem:int^1*5;
localS: bool;

let
w=10; threshold=105; rvector=[10,5,3,2,1];
mem[0]=if X then w else 0;
mem[1..4]=0^4->if pre(S) then 0^4 else pre(mem[0..3]);
V=mem[0]*rvector[0]+mem[1]*rvector[1]+mem[2]*rvector[2]

+mem[3]*rvector[3]+mem[4]*rvector[4];
localS=(V>=threshold);
S= false -> pre(localS);

tel

In the node neuron105 (where the firing threshold is set to 105), X is the
Boolean flow representing the input signal of the neuron, w is the synaptic weight
of the input edge, rvector is the vector containing the different values the
remaining coefficient can take along the integration window (from the biggest to
the smallest one), and the vector mem keeps trace of the received signals (from
the current one to the one received at the time t− σ)7. More precisely, at each
time unit the first column of vector mem contains the current input (multiplied
by the synaptic weight of the input edge) and, for each i greater than 0, the
value of the column i is defined as follows: (i) it equals 0 at the first time unit
(initialization) and (ii) for all following time units it is reset to 0 in case of spike
emission at the preceding time unit and it takes the previous time unit value of
the column i− 1 otherwise. Variable localS is used to introduce a delay in the
spike emission.

7 Observe that all the parameters are multiplied by 10 in order to only deal with
integer numbers (and thus to be able to use all the model checkers available to
Lustre).



The generalization to a node with m predecessors is straightforward. Thanks
to the modularity of Lustre, archetypes can be easily encoded starting from
basic neurons. As an example, a simple series composed of three neurons of type
neuron105 is described in Program 2.

Program 2 Simple series of three neurons.
node series3 (X:bool) returns(S:bool);
var
chain:bool^3;

let
chain[0]=neuron105(X);
chain[1..2]=neuron105(chain[0..1]);
S=chain[2];

tel

In the node series3, each position of the vector chain refers to a different
neuron of the chain. As far as the first neuron is concerned, it is enough to call
the node neuron105 with the input of the series as input. For the other neurons
of the chain, their behavior is modeled by calling neuron105 with the output
of the preceding neuron as input. The output of the node is the one of the last
neuron of the series.

4 Encoding and Verifying Temporal Properties of
Archetypes in Lustre

The behavior of each archetype can be validated thanks to the use of model
checkers such as Lesar, Nbac, Luke, Rantanplan, and kind2 (the last four ones
have been used to deal with some properties involving integer constraints Lesar
is not able to treat). For each archetype, one or two properties have been encoded
as Lustre nodes and tested on some instances of the archetype. To illustrate our
purpose, we show the encoding of the first two properties (the implementation
of the other properties can be found in [5]). Most of the properties are tested
here for all possible inputs and one or more set(s) of parameters for the given
archetype.

4.1 Simple Series (see Fig. 1(a))

Given two series with the same triplets of parameters (τ, r, σ) ∈ Q×Q×N0 and
the same synaptic weights, the first series being shorter than the second one, we
want to check whether the first series is always in advance with respect to the
second one. More precisely, the property we test is the following one:



Property 1. [Comparison of series with same parameters] Given two
series with the same neuron parameters and different length (i.e., with a different
number of neurons), at each step, the number of spikes emitted by the shorter
series is greater or equal than the number of spikes emitted by the longer one.
The node prop1 (described in Program 3) expresses an observer of Property 1
in Lustre.

Program 3 Observer of Property 1
node prop1(X:bool) returns(S:bool);
var
A1,A2:bool;
C1,C2;

let
A1=seriesA_sp(X);
A2=seriesB_sp(X);
C1=bool2int(A1)->if A1 then pre(C1)+1 else pre(C1);
C2=bool2int(A2)->if A2 then pre(C2)+1 else pre(C2);
S=(C1-C2)>=0;

tel
.

Let seriesA_sp (resp. seriesB_sp) be the Lustre node encoding the first
(resp. second) series (corresponding neurons in the two series have the same
parameter triplets). In the node prop1, C1 (resp. C2) keeps trace of the number
of spikes emitted by the first (resp. second) series until the current time unit.
The model checkers Lesar, Nbac, Luke, Rantanplan and kind2 verify whether,
whatever is the value of the input flow variable X (which is common to the two
series), the property is true, that is, C1 is greater or equal than C2.

Another interesting property concerning simple series is the following one:
Property 2. [Comparison of series with different parameters] Given
two series with different neuron parameters and different length, they always
have the same behavior.
The node prop2 (described in Program 4) encodes such a property in Lustre.

Program 4 Observer of Property 2
node prop2 (X:bool) returns(S:bool);
var
s1,s2:bool;

let
s1=seriesA_dp(X);
s2=seriesB_dp(X);
S=(s1=s2);

tel



At each step, the output of the node is true if the output of the two series
seriesA_dp and seriesB_dp is the same (provided that they receive the same
input flow X). Such a property can be exploited in order to reduce a given neural
network (if a given series has exactly the same behavior than a shorter one, it can
be replaced by the second one). As an example, we found a series of 3 neurons
showing the same behavior than a series of length 4 (neurons in the two series
have different firing thresholds and synaptic weights).

4.2 Series with Multiple Outputs (see Fig. 1(b))

When dealing with a series with multiple outputs, we are interested in checking
whether, soon or later, all the neurons of the sequence are able to emit a spike.
It may not be the case if the parameters are not well chosen (for example, if the
threshold of the first neuron is too high). The corresponding property formalized
here is the following one:

Property 3. [Firing ability in a series] Given a series with multiple outputs
where the different neurons can have different parameters, there exists a time unit
such that all the neurons have emitted.

Let prop3 be the node encoding the observer of Property 3. The output of prop3
becomes (and stays) true after all the neurons of the series have emitted at least
one spike. As an example of property violation, we have found a series of length
4 where, even if a flow of 1 (encoded as true in Lustre) is given as input, the last
neuron is never able to emit. Observe that, given a series where all the neurons
are able to emit, prop3 only becomes true when the last neuron of the series
emits a spike. In order to force the property to be immediately true, it is possible
to take advantage of the node always_since from Lustre distribution library.

4.3 Parallel Composition (see Fig. 1(c))

We are interested in knowing a lower and an upper bound to the number of
neurons that can emit a spike at each time unit. The lower (resp. upper) bound
is not necessarily 0 (resp. the number of parallel neurons). More precisely, the
property we test is the following one:

Property 4. [Lower/upper firing bounds in a parallel composition]
Given a parallel composition of neurons, all with the same parameters, at each
time unit, the number of emitted spike is in between a given interval.

Let the output variable of the node encoding the parallel composition rep-
resent the global number of spikes emitted at each time unit by all the neurons
in parallel. The observer of Property 4 checks whether the number of emitted
spikes is always in between a lower bound and an upper bound. As an example,
we have found a parallel composition of 3 neurons where the number of emitted
spikes is always strictly lower than 3 (more precisely, it is always in between 0
and 2). This is due to the fact that, for one of the parallel neurons, the synaptic
weight of the corresponding input edge is too low and it is never able to emit.



4.4 Negative Loop (see Fig. 1(d))

In this case the inhibited neuron is expected to oscillate. In Property 5 we express
an oscillation with a period of two time units.

Property 5. [Oscillation in a negative loop] Given a negative loop (where
the two neurons do not necessarily have the same parameters), the inhibited
neuron oscillates with a pattern of the form false, false, true, true.

Let Out be the output of the inhibited neuron of the Lustre node encoding the
negative loop archetype. In the observer of Property 5, we check that (i) if Out
is true, then it was false two time units ago and (ii) if Out is false then it was
true two time units ago. For several parameters, if we inject only 1 as input of
the archetype, such a property is satisfied. Observe that, to test the property
satisfaction under some specific conditions, e.g., when the input variable X is
equal to true, it is sufficient to introduce a new output variable SS defined as the
disjunction of the current output variable S and the negation of the condition.
(e.g., SS=S or X=false).

4.5 Inhibition of a Behavior (see Fig. 1(e))

To validate this archetype we need to verify that, at a certain instant, the in-
hibited neuron stops emitting spikes. In particular, the property we encoded is
the following one:

Property 6. [Fixed point inhibition] Given an inhibition archetype (where
the two neurons do not necessarily have the same parameters), at a certain time
the inhibited neuron can only emit false values.

The output of the observer of Property 6 is true if the variable representing
the output of the inhibited neuron of the archetype cannot pass from false
to true. For appropriate parameter values, if we inject only 1 values, such a
property turns out to be true.

4.6 Contralateral Inhibition (see Fig. 1(f))

For such an archetype the expected behavior is of the kind "winner takes all",
that is, at a certain point only one neuron is activated and the other ones cannot
emit spikes.

Property 7. [Winner takes all in a contralateral inhibition] Given a
contralateral inhibition archetype with two neurons (where the two neurons do not
necessarily have the same parameters), at a given time, one neuron is activated
and the other one is inhibited.

In the observer of Property 7 we test whether, at each time unit, one neuron
is activated and the other one inhibited. Such a property turns out to be true
for several parameters (if only 1 values are injected). Let w2 (resp. w4) be the
synaptic weight of the inhibiting input edge of the first (resp. second) node. In



Fig. 2, blue points represent the pairs (w2, w4) for which the property is verified
starting from a time unit lower than or equal to 4 and red points are associated
to the pairs for which the property is not verified within 10 time units (for some
fixed parameter triplets).

0 −10 −20 −30 −40 −

0

−20

−30

−10

−40

8

−

8

Fig. 2. Verification of prop7 for the different values of (w2, w4).

4.7 Comparison of the Model Checkers

A synthesis of the outputs of the five model checkers is summarized for each
property in Table 1:

lesar nbac luke rantanplan kind2
Simple series (prop1) No Yes very long time! Yes Yes
Simple series (prop2) No exit before! Yes very long time! Yes
Series with multiple outputs No exit before! Yes Yes Yes
Parallel composition No exit before! Yes Yes Yes
Negative loop No exit before! Yes Yes Yes
Inhibition of a behavior No Yes Yes Yes Yes
Contralateral inhibition No Yes Yes Yes Yes

Table 1. Comparison of the five model checkers

Notice that, when a model checker gives a negative answer, it does not nec-
essarily mean that the property is false; it can be an indication of the fact that
the model checker is not able to conclude. In this experiment, Lesar has difficul-
ties to handle complex integer constraints. Nbac goes further but it is quickly



stopped by the polyhedra approach. Luke and its extension Rantanplan give sim-
ilar results with sometimes a very long computation time. kind2 works quickly
and it is able to prove more general properties than Luke and Rantanplan. For
instance, Luke and Rantanplan allow for the identification of the pair of weights
which stabilize the “Contralateral inhibition” (see Fig. 2) while kind2 is able to
straightly give us an infinite set of pair solutions. For the sake of completeness,
we also tested the nuXmv model checker [2] but perhaps we could not find the
good abstraction (neither too coarse, nor too thorough), so we could not get
satisfying results.

5 Discussion and Future Work

In this work, we show how the synchronous language Lustre can be an effective
tool to model, specify, and verify neuronal networks. More precisely, we illus-
trate how some basic neuronal archetypes and their expected properties can be
encoded as Lustre nodes and verified thanks to the use of model checkers. For
each archetype, we propose one or two representative properties that have been
identified after deep discussions with neurophysiologists and, in particular, with
the last author of this paper. As a first future work, we intend to propose a more
general version of some properties (e.g., expressing oscillation without exactly
knowing its period).

We choose to use Lustre because its declarative syntax is more adapted to our
class of problems than an imperative language such as Esterel and because sev-
eral model checkers integrating the symbolic manipulation of integer constraints
are at Lustre user’s disposition. However, these motivations do not prevent us
from considering to use Light-Esterel in the future; the third and fourth author of
this work are actually working on extending the expressivity of the declarative
part of this language and developing a dedicated model checker. Particularly,
this new model checker should integrate a new way to characterize and verify
properties based on Linear Decision Diagram (LDD). This representation would
allow to identify input parameter intervals of values for which a property holds.

As far as we know, this work constitutes the first attempt to automatically
verify the temporal properties of fundamental neuronal archetypes in terms of
neuronal information processing (e.g. a negative loop with certain parameters
presents a certain oscillating behavior). From there, we will now be able to apply
this new approach to all the possible archetypes of 2, 3 or more neurons, up to
falling on archetypes of archetypes. One of the questions to ask then will be:
are the properties of these archetypes of archetypes simply an addition of the
individual constituting archetypes properties or something more? Another one
will be: can we understand the computational properties of large ensembles of
neurons simply as the coupling of the properties of individual archetypes, as it
is for the alphabet and words, or is there something more again?



Acknowledgements

The authors would like to thank Gérard Berry for an inspiring talk at the Collège
de France (concerning the checking of temporal properties of neuronal struc-
tures) as well as for having indicated us the researchers competent at the use of
synchronous programming language libraries (in Sophia Antipolis).

References

1. Luke webpage. http://www.it.uu.se/edu/course/homepage/pins/vt11/lustre
2. Nuxmv webpage. https://nuxmv.fbk.eu/
3. Berry, G., Cosserat, L.: The esterel synchronous programming language and its

mathematical semantics. In: Seminar on Concurrency, Carnegie-Mellon University.
pp. 389–448. Springer-Verlag, London, UK (1985)

4. Das, S.: Elements of artificial neural networks [book reviews]. IEEE Transactions
on Neural Networks 9(1), 234–235 (1998)

5. De Maria, E., Muzy, A., Gaffé, D., Ressouche, A., Grammont, F.: Verification of
Temporal Properties of Neuronal Archetypes Using Synchronous Models. Research
Report 8937, UCA, Inria ; UCA, I3S ; UCA, LEAT ; UCA, LJAD (Jul 2016),
https://hal.inria.fr/hal-01349019

6. Franzén, A.: Using satisfiability modulo theories for inductive verification of lustre
programs. Electr. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)

7. Gerstner, W., Kistler, W.: Spiking Neuron Models: An Introduction. Cambridge
University Press, New York, NY, USA (2002)

8. Hagen, G., Tinelli, C.: Scaling up the formal verification of lustre programs with
smt-based techniques. In: Formal Methods in Computer-Aided Design, FMCAD
2008, Portland, Oregon, USA, 17-20 November 2008. pp. 1–9 (2008)

9. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic
(1993)

10. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verifi-
cation of reactive systems. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.)
Third Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93.
Workshops in Computing, Springer Verlag, Twente (June 1993)

11. Halbwachs, N., Raymond, P.: Validation of synchronous reactive systems: from
formal verification to automatic testing. In: ASIAN’99, Asian Computing Science
Conference. LNCS 1742, Springer Verlag, Phuket (Thailand) (December 1999)

12. Jeannet, B.: Dynamic partitioning in linear relation analysis. application to the
verification of reactive systems. Formal Methods in System Design 23(1), 5–37
(2003)

13. Maass, W., Graz, T.U.: Lower bounds for the computational power of networks of
spiking neurons. Neural Computation 8, 1–40 (1995)

14. Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral Approxi-
mation of Multivariate Polynomials using Handelman’s Theorem. In: International
Conference on Verification, Model Checking, and Abstract Interpretation 2016.
Barbara Jobstmann and Rustan Leino, St. Petersburg, United States (Jan 2016)

15. Markram, H.: The blue brain project. Nat Rev Neurosci 7(2), 153–160 (2006)
16. Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm

generators. Biological cybernetics 56(5-6), 345–353 (1987)
17. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics 5(4), 115–133 (1943)


