
HAL Id: hal-00780521
https://hal.archives-ouvertes.fr/hal-00780521v2

Submitted on 9 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing the Compilation of Synchronous Dataflow
Programs with a Combined Numerical-Boolean

Abstraction
Paul Feautrier, Abdoulaye Gamatié, Laure Gonnord

To cite this version:
Paul Feautrier, Abdoulaye Gamatié, Laure Gonnord. Enhancing the Compilation of Synchronous
Dataflow Programs with a Combined Numerical-Boolean Abstraction. 2013. �hal-00780521v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49771379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00780521v2
https://hal.archives-ouvertes.fr

Research Report

Paul Feautrier, Abdoulaye Gamatié and L. Gonnord
July 2013 (V2)

LIP, University of Lyon, France

and LIRMM, CNRS, France

and LIFL, University of Lille, France

Enhancing the Compilation of
Synchronous Dataflow Programs with

a Combined Numerical-Boolean
Abstraction

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

Abstract

In this research report, we propose an enhancement of the compilation of synchronous pro-
grams with a combined numerical-Boolean abstraction. While our approach applies to synchronous
dataflow languages in general, here, we consider the Signal language for illustration. In the new
abstraction, every signal in a program is associated with a pair of the form (clock, value), where
clock is a Boolean function and value is a Boolean or numeric function. Given the performance
level reached by recent progress in Satisfiability Modulo Theory (SMT), we use an SMT solver
reason on this abstraction. Through sample examples, we show how our solution is used to de-
termine absence of reaction captured by empty clocks; mutual exclusion captured by two or more
clocks whose associated signals never occur at the same time; or hierarchical control of component
activations via clock inclusion. We also show this analysis improves the quality of the code gen-
erated automatically by a compiler, e.g., a code with smaller footprint, or a code executed more
efficiently thanks to optimizations enabled by the new abstraction. The implementation of the
whole approach includes a translator of synchronous programs towards the standard input format
of SMT solvers, and an ad hoc SMT solver that integrates advanced functionalities to cope with
the issues of interest in this work.

2/23

Enhancing the Compilation of Synchronous Dataflow Programs with

a Combined Numerical-Boolean Abstraction

Paul Feautrier∗, Abdoulaye Gamatié†, and Laure Gonnord ‡

July 9, 2013

1 Introduction

Embedded systems are omnipresent in our daily life. They are typically found in consumer electronics,
automotive and avionic systems, and medical systems. In most of these application domains, systems
are safety-critical. They therefore call for well-suited design approaches that can fulfill their stringent
requirements.

Synchronous languages [1] have been introduced in the early 80’s in order to address the reliable
development of safety-critical embedded systems. Some of these languages are Lustre [2], Esterel [3]
and Signal [4]. Nowadays, they are successfully adopted by the European industry as illustrated by
the use of the Scade tool to develop the Airbus A380 control and display system. Among the features
that make synchronous programming suitable for the design of safety-critical systems, we mention
their mathematical foundation that offers a precise semantics of programs, a trustworthy reasoning
on program properties, and automatic generation of correct-by-construction implementations.

Synchronous languages consider a high abstraction level for system design. A central assumption is
that computation and communications are instantaneous from the viewpoint of a logical time, referred
to as ”synchrony hypothesis”. This favors deterministic models of system behaviors for safe analysis.
The existing synchronous languages distinguish themselves from each other by adopting different
programming styles, e.g., Esterel has an imperative style suitable for control-dominant applications
while Lustre and Signal1 respectively borrow functional and relational styles suitable for dataflow-
oriented applications. In this paper, we mainly concentrate on the last family of languages, i.e.,
dataflow synchronous languages.

The design approach of an embedded system with the Lustre language usually assumes a reference
clock providing the time scale for all system sub-parts. In terms of set of instants, the activation clocks
of sub-parts are subsets of this reference clock. While this “synchronized” model of a system is suitable
for guaranteeing determinism, it suggests a monolithic vision of design so that one cannot focus on
the activity of a given sub-part of a system regardless of the reference clock.

The design model adopted in the Signal language is different from that of Lustre: the description
of system sub-parts is enabled, without assuming any reference clock. It is referred to as polychronous
model [4]. In this model, abstract clocks, consisting of discrete sets of logical instants at which events
occur in system sub-parts, play a fundamental role in designs. They are used to describe all the
control part: triggering of system components and interaction between different components. The
control flow expressed by abstract clocks serves to derive an optimized control structure in automatic
code generation. Thus, the quality of clock analysis has a strong impact on the correctness and
efficiency of implementations.

∗Paul Feautrier is with École Normale Supérieure de Lyon (LIP, INRIA, CNRS, UCBL), France.
†Abdoulaye Gamati is with LIRMM, CNRS/University of Montpellier, France.
‡Laure Gonnord is with LIFL, CNRS/University of Lille 1, France.
1Note however that the multi-clock design model associated with Signal is also relevant for describing control aspects.

3

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

1.1 Compilation of programs: limitations

Beyond the usual syntax and type checking, the compilers of synchronous languages implement pow-
erful static analysis and code optimization, allowing for a correct and efficient code generation.

In Signal, the static analysis relies on a Boolean abstraction of programs, internally represented
as binary decision diagrams (BDDs) [5] for an efficient reasoning [6]. However, one main limitation of
this static analysis arises when the Signal compiler addresses clock properties of a program defined
by numerical expressions. Indeed, the adopted Boolean abstraction loses relevant information, which
makes it quite inadequate for such a program. This has a strong impact on the analysis precision and
the quality of generated code. Such an issue occurs when defining the activation clocks of a system
as sets of events that occur when the values of some signals satisfy a numerical property. An example
scenario is the activation of a (rescue) computation node in a fault-tolerant embedded system when
a signal from executing nodes reaches a particular numerical value. In order to suitably address this
issue, a new abstraction is required, which fully takes into account the numerical part beside the
Boolean part of Signal programs.

In the Lustre compilation [7], the same kind of Boolean abstraction is used before code generation.
Thus, it suffers from the same lack of precision. Nevertheless, the static analysis of Lustre programs
has been studied with various precise methods, for instance in [8] and more recently in [9], but the
purpose was verification, and not the improvement of the compilation.

1.2 Contribution of this paper

We propose an enhancement of the compilation of synchronous dataflow programs with a combined
numerical-Boolean sound abstraction. Here, this is mainly illustrated on Signal programs. However,
we believe the same workflow can be easily adapted to other synchronous dataflow languages, such as
Lustre or MRICDF (Multi-Rate Instantaneous Channel connected Data Flow) [10]. Note that the
current paper is an extended version of a previous one [11]. Our solution permits an analysis that
significantly enhances the quality of the subsequent code generated by compilers, e.g., a code with
smaller footprint, a code executed more efficiently thanks to further optimizations.

The present tool is also an invaluable aid to debugging. For instance, as will be shown in Section 7
or in the discussion of the Bathtub example, we are able to statically detect empty clocks. Depending
on the context, this can be interpreted as a proof of safety (an alarm will never sound), or as a bug
(an operation on signals with incompatible clocks).

In the new abstraction, every signal in a program is associated with a pair of the form (clock,
value), where clock is a Boolean function and value is a Boolean or numeric function. Given the
performance level reached by recent progress in Satisfiability Modulo Theory (SMT) [12], we use an
SMT solver to reason on the new abstraction. We show through a few examples, how relations between
abstract clocks defined with numerical and logical expressions are adequately analyzed, to determine
for instance absence of reactivity captured by empty clocks; mutual exclusion captured by two or more
clocks whose associated signals never occur at the same time; or a better control of node activations
via clock inclusion.

The advocated approach is depicted by Fig. 1. Given a synchronous dataflow program P , we
define a corresponding abstraction, used to check the satisfiability of properties of interest, i.e., those
involving numerical expressions. For this purpose, we use an ad hoc SMT solver offering tailored
functionality for an adequate usage in our approach. Once identified, all properties of interest are
concretized into synchronous dataflow programs, which are later composed with the initial program P .
The resulting composed program is equivalent to P in which properties involving numerical expressions
have been made explicit in a form that is suitably addressable by a synchronous language compiler.
Then, it becomes easier for the compiler to do an efficient analysis and code generation. The main
part of our contribution is on the right-hand side of Fig. 1. Notice that an important advantage of
this contribution is its modular, i.e., non-intrusive, implementation regarding compilers. This clearly
facilitates its integration to a given compiler and makes it easy to isolate a bug in the global framework
(in comparison to a compiler-intrusive solution).

Compared to our preliminary publication [11], the present article brings new improvements re-

4/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

Synchronous
language
compiler

Abstraction
of P

Program P

SMT
solver

Concretization
of properties of P

Analysis Code
generation

Figure 1: Overview of the proposed approach.

garding the following aspects:

• definition of an “ad hoc” SMT solver, while the off-the-shelf Yices solver was considered previ-
ously. This enables us to implement property search inside the new solver, thus avoiding costly
pretty printing and parsing;

• a proposal within the same solver to compute strongly connected components of the clock im-
plication graph for determining an enhanced clock hierachy useful to efficient code generation;

• additional examples illustrating the relevance of our solution.

1.3 Outline

The remainder of this paper is organized as follows. Section 2 compares the proposed approach to
some relevant existing works. Section 3 gives an overview of Signal. Section 4 discusses the current
limitations of the static analysis achieved by the Signal compiler, regarding clock analysis and code
generation. Section 5 exposes a new combined numerical-Boolean abstraction for improving this static
analysis by using first-order logic formulas. Section 6 presents an implementation of our approach.
Section 7 addresses typical application examples for which our proposal is very useful. Finally, Section
8 gives concluding remarks.

2 Related work

We discuss in this section some relevant studies about static analysis techniques for synchronous
programming. Since these techniques apply both to verification and compilation, we distinguish them
w.r.t. both topics.

2.1 Static analysis for verification

A few combinations of numerical and Boolean verification techniques have been studied for Lustre

verification. In [8], the technique used is a dynamic partitioning of the control flow obtained by
Lustre compilation with respect to constraints coming from a given proof goal. Our approach does
not depend on any proof goal. A recent work [13] proposed a method based on a combination of
abstract acceleration techniques [14] and control-flow refinement [8] in order to prove reachability.
The results are very accurate, but the analysis is very expensive to be integrated to a compiler for the
moment. Our analysis is cheaper and does not suffer from the same state explosion problem.

An important work is the polyhedral-based static analysis for synchronous languages, and in
particular, for the Signal language [15]. The authors give a technique based on fix-point iteration
on a lattice combining Boolean and affine constraints. More recently, a polyhedral analysis library
has been integrated to the Signal open-source compiler in order to compute safe operating ranges

5/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

for input variables of programs [16]. This was intended for an improvement of the causality analysis
of Signal programs. Our technique is less precise than [15] and [16] because it cannot deal with
polyhedral invariants. But, the complexity of the analysis in our case is lesser and the implementation
is much simpler.

In another study, a clock language CL has been introduced to capture the static control part of
Signal programs [17]. The author also considers SAT decision procedures to prove clock properties.
However, statements involving the delay construct are not taken into account in this study. This
reduces the scope of the proposed analysis. Our proposition aims to cover programs containing any
construct of the Signal language. In particular, regarding the delay construct, we propose here
two abstractions with different precision levels: one solution that only captures the synchronization
property related to manipulated variables (note that this property can be also addressed with CL
even though not considered by its author); and a more precise solution that refines the first one with
additional constraints on data values carried by manipulated variables. Thus, our approach slightly
offers more expressivity than CL. In addition, while the main motivation of the abstraction considered
for CL is to prove clock properties of a subset of Signal, the goal of our approach goes beyond that
by focusing more generally on Signal program compilation, including both clock property analysis
and code generation optimization. Furthermore, compared to [17] that considers SAT solvers, here
the use of SMT solvers provides a more powerful analysis, especially on numerical properties.

Finally, SMT techniques were used to verify safety properties in Lustre [18]. The authors consider
a specific form of Lustre language and propose a modeling in a typed first order logic with uninter-
preted function symbols and built-in integers and rationals. While this work also aims at benefiting
from SMT solving in synchronous programming, it misses all useful clock analysis achieved by the
Signal compiler in our case. Such an analysis includes suitable heuristics to address polychronous
specifications. Neither an SMT solver nor the Lustre compiler makes this analysis possible.

2.2 Static analysis for compilation

In [19, 20], an interval-based data structure referred to as interval-decision diagram (IDD) is considered
for the analysis of numerical properties in Signal programs. While the main idea is similar to that
of this paper, the choice of SMT solvers appears however more judicious. First, in IDDs, intervals are
only defined on integers. As a result, to deal with other numerical types such as reals, IDDs require
a prior encoding into integers. With SMT solvers, a wide range of arithmetic theories are made
possible, which allows a more expressive analysis without much effort compared to IDDs. Second,
from a practical point of view, the integration of IDDs in the Signal compiler is more difficult since
it requires a very careful coupling with the other data structures used during the static analysis. One
important question is how to make efficient and costless the management of binary decision diagrams
(BDDs), which are part of IDDs and are already present in the compiler. In this paper, we rather
consider the modular solution shown in Fig. 1.

The optimization of synchronous programs described as synchronous guarded actions is studied in
[21]. From such descriptions, extended finite state machines (EFSMs) are generated, in which each
state is associated with dataflow guarded actions to be executed in this state. EFSMs make explicit
the control-flow of the sequential code to be generated from input synchronous programs (while the
dataflow part is captured symbolically). Based on EFSMs, authors use an SMT solver to check the
validity of guards. Valid guards lead to actions that are executed every time, while invalid guards refer
to actions that are never executed, i.e., dead code. Our solution is similar to this approach. However,
the abstraction we consider for SMT reasoning covers both the control part, i.e., clocks, and the data
part, i.e., values.

Finally, in [22, 23], authors address the static analysis and code generation for applications defined
in MRICDF, which is a visual actor-oriented polychronous formalism, strongly inspired by Signal.
The static analysis in MRICDF also relies on a Boolean encoding of specifications, thus ignoring non-
Boolean properties. In [22, 23], an SMT-based implementation of this static analysis is proposed as an
efficient alternative to the initial implementation using a prime implicant generator. This implemen-
tation showed a noticeable speed-up. The combined numerical-Boolean abstraction proposed in the
current paper can be seen as one major improvement applicable to this SMT-based implementation,

6/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

Table 1: Trace semantics for Signal primitives.
process P semantics of P: [[P]]

y:= R(x1,...,xn)
{ T ∈ T ⊥

{x1,...,xn,y}
/ ∀t ∈ N,

(
∀i, T (t)(xi) = T (t)(y) =⊥

)
or(

T (t)(y) 6=⊥ and ∀i, T (t)(xi) 6=⊥ and T (t)(y) = R(T (t)(x1), . . . , T (t)(xn))
)
}

y:= x $ 1 init c

{ T ∈ T ⊥
{x,y}/ ∀t ∈ N,

(
T (t)(x) = T (t)(y) =⊥

)
or(

T (t)(y) 6=⊥ and T (t)(x) 6=⊥ and T (t0)(y) = c and
(
(t ≥ t0) ⇒ (∃i, t = ti, T (ti+1)(y) = T (t)(x))

))

with t0 = inf{t/T (t)(x) 6=⊥} and ti+1 = inf{t/t > ti ∧ T (t)(x) 6=⊥} }

y:= x when b
{ T ∈ T ⊥

{x,b,y}/ ∀t ∈ N,
(
T (t)(b) = true and T (t)(y) = T (t)(x)

)
or(

T (t)(b) 6= true and T (t)(y) =⊥
)
}

z:= x default y
{ T ∈ T ⊥

{x,y,z}/ ∀t ∈ N,
(
T (t)(x) 6=⊥ and T (t)(z) = T (t)(x)

)
or(

T (t)(x) =⊥ and T (t)(z) = T (t)(y)
)
}

P1|P2 Assuming that [[P1]] ⊆ T ⊥
X1, [[P2]] ⊆ T ⊥

X2, { T ∈ T ⊥
X1∪X2/ X1.T ∈ [[P1]] and X2.T ∈ [[P2]]}

P1 where x Assuming that [[P1]] ⊆ T ⊥
X1, {T ∈ T ⊥

X1−{x}/∃ T1 ∈ [[P1]], (X1− {x}).T1 = T}

as for Signal.

3 Overview of the Signal language

Signal [4] [24] is a data-flow relational language that handles unbounded series of typed values (xt)t∈N,
called signals, implicitly indexed by discrete time, and denoted as x. For instance, a signal can be
either of Boolean or integer or real types. At any logical instant t ∈ N, a signal may be present,
at which point it holds a value; or absent and denoted by ⊥ in the semantic notation. There is a
particular type of signal called event. A signal of this type always holds the value true when it is
present. The set of instants at which a signal x is present is referred to as its clock, noted ^x. A
process is a system of equations over signals, specifying relations between values and clocks of the
signals. A program is a process. Before presenting the primitive statements (or constructs) of Signal,
we introduce a denotational semantic model used to formally define these statements.

3.1 A trace denotational semantic model

We present the basic elements of a trace semantics [25] for Signal. Let us consider a finite set
X = {x1, . . . , xn} of typed variables called ports. For each xi ∈ X, Dxi

is its domain of values. In
addition, we have:

D =

n⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ 6∈ D denotes the absence of value associated with a port at a given instant. The domains D⊥
xi

and D⊥
X1

are defined in a similar way with X1 ⊆ X.

Definition 1 (events) Given a non-empty set X1 ⊆ X, the set of events on X1, denoted by EX1, is
the set of all applications (functions) m defined from X1 to D⊥

X1
. 2

The expression m(x) = ⊥ means x holds no value while m(x) = v means that x holds the value v,
and m(X1) = {m(x)/x ∈ X1}. The set of events on X1 is denoted by EX1

= X1 → D⊥
X1

, and the set
of all possible events is therefore E =

⋃
X1⊆X EX1

. By convention, the event on an empty set of ports
is noted by E∅ = {∅}.

Definition 2 (traces) Given a non-empty set X1 ⊆ X, the set of traces on X1, denoted by T ⊥
X1 :

N → EX1, is defined by the set of applications T defined from the set N of natural numbers to EX1
. 2

7/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

The set of all possible traces is T ⊥ =
⋃

X1⊆X T ⊥
X1. Moreover, T∅ = 1 = N → E∅.

Definition 3 (trace restriction) Given a non-empty set X1 ⊆ X, and a set X2 ⊂ X1 with a trace
T being defined on X1, the restriction of T (t) to X2, noted X2.T : N → EX2

, satisfies: ∀t ∈ N, ∀x ∈
X2 X2.T (t)(x) = T (t)(x). 2

We have ∅.T ∈ T∅ (which is a singleton).
We extend the notion of trace restriction to a set T of traces on a set of variables X ⊆ XT as

follows: X.T = {X.T |T ∈ T }.
A process on a set of variables X1 ⊆ X is a set of constrained traces on X1. In other words, it is

a subset of T ⊥
X1. The semantics of statements defining a process P is denoted by a set of traces [[P]].

3.2 Primitive constructs of the language

Signal relies on six primitive constructs: the core language. The syntax of the constructs is given
below, with some informal explanations. Their formal semantics according to the trace model is
summarized in Table 1.

• Instantaneous relations: y:= R(x1,...,xn) where y, x1, ..., xn are signals and R is a point-wise
n-ary relation/function extended canonically to signals. This construct imposes y, x1, ..., xn
i) to be simultaneously present, i.e. ^y = ^x1 = ...= ^xn (i.e. synchronous signals), and ii) to
hold values satisfying y = R(x1,...,xn) whenever they occur.

• Delay: y:= x $ 1 init c where y, x are signals and c is an initialization constant. It imposes
i) x and y to be synchronous, i.e. ^y = ^x, while ii) y must hold the value carried by x on its
previous occurrence.

• Under-sampling: y:= x when b where y, x are signals and b is of Boolean type. This construct
imposes i) y to be present only when x is present and b holds the value true, i.e. ^y = ^x ∩ [b]
(where [b]∪ [¬b] = ^b and [b]∩ [¬b] = ∅), while ii) y holds the value of x at those logical instants.
The sub-clock [b] (resp. [¬b]) denotes the set of instants where b is true (resp. false).

• Deterministic merging: z:= x default y where x, y and z are signals. This construct imposes
i) z to be present when either x or y are present, i.e. ^z = ^x ∪ ^y, while ii) z holds the value
of x if present, otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2 are processes. It denotes the union of equations defined
in processes, leading to the conjunction of the constraints associated with these processes. A
signal variable cannot be assigned a value in P1 and P2 at the same time. Signal adopts single
assignment. A variable defined in P1 can be an input of P2, and vice versa. The composition
operator is commutative and associative.

• Restriction (or Hiding): P ≡ P1 where x, where P1 and x are respectively a process and a signal.
It states that x is a local signal of process P1. The process P holds the same constraints as P1.

The core language of Signal is expressive enough to derive new constructs of the language for
programming comfort and structuring. In particular, Signal allows one to explicitly manipulate clocks
through some derived constructs that can be rewritten in terms of primitive ones. For instance, the
clock extraction statement y:= ^x, meaning y is defined as the clock of x, is equivalent to y:= (x = x)

in the core language. A similar statement y:= when b, defining y as the set of instants where the
Boolean signal b is present and true, is equivalent to y:= b when b. The clock union y:= x1 ^+ x2,
rewritten as y:= ^x1 default ^x2, denotes the set of instants at which at least a signal xi occurs. In
the same way, clock intersection y:= x1 ^∗ x2 and difference y:= x1 ^− x2 are respectively defined
as: y:= ^x1 when ^x2 and y:= when(not(^x2) default ^x1). The synchronizer x1 ^= x2 that
constrains x1 and x2 to have the same clock, is rewritten as (| x:= ^x1 = ^x2 |) where x. The
empty clock is denoted by ^0.

8/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

For syntactical convenience, Signal enables a modular definition of processes by providing a notion
of subprocess (or local process). The statement P1 where P2, where P1 and P2 are processes, denotes
the fact that the latter process is a subprocess of the former process. Then, the body of P1, i.e.,
its associated set of equations, contains (at least) a call to process P2. The compilation process of
Signal basically inlines the body of P2 in P1 (with variable substitution). Note that a process P1
may have more than one subprocess, and those subprocesses may have themselves sub-subprocesses,
ad infinitum.

3.3 Example: a bathtub model in Signal

The simple Signal process shown in Fig. 2 specifies the status of a bathtub [15]. It has no input
signal (line 02), but has three output signals (line 03).

--

01:process Bathtub =

02:(?

03: ! integer level; boolean alarm, ghost_alarm;)

04:(|(| level := zlevel + faucet - pump

05: | zlevel := level$1 init 1

06: | faucet := zfaucet + (1 when zlevel <= 4)

07: | zfaucet := faucet$1 init 0

08: | pump := zpump + (1 when zlevel >= 7)

09: | zpump := pump$1 init 0 |)

10: |(| overflow := level >= 9

11: | scarce := 0 >= level

12: | alarm := scarce or overflow

13: | ghost_alarm:= (true when scarce when overflow)

14 default false |)|)

15: where

16: integer zlevel,zfaucet,zpump,faucet,pump;

17: boolean overflow,scarce;

18:end;

--

Figure 2: A bathtub model in Signal.

The signal level, defined at line 04, reflects the water level in the bathtub at any instant. It is
determined by considering two signals, faucet and pump, which are respectively used to increase and
decrease the water level. These signals are increased by one under some specific conditions (lines 06
and 08), in order to maintain the water level in a suitable range of values.

An alarm signal is defined at line 12 whenever the water overflows (line 10) or becomes scarce
(line 11) in the bathtub. An additional “ghost” alarm is defined at line 13/14, which is not expected
to occur. Here, it is just introduced to illustrate one limitation of the static analysis of Signal. The
clock of this signal is not completely specified in Bathtub. As stated in the previous section, this clock
is the union of those associated with the two arguments of the default operator. The clock of the left
argument is exactly known. The clock of the right-hand one is contextual because the argument is a
constant (that is, a constant signal is always available whenever required by its context of usage): it is
equal to the difference of ghost alarm’s clock and first argument’s clock. Since, this difference cannot
be defined exactly from the program, further clock constraints on ghost alarm will be required from
the environment of Bathtub for an execution.

4 A limitation in the Signal compiler

The static analysis of Signal programs, referred to as clock calculus, primarily aims at proving the
consistency of clock relations as well as the absence of cyclic data dependencies induced by program
definition. This is necessary in order to prove the reactivity and the determinism of a modeled system.
For instance, the presence of empty clocks in a program reduces its reactivity since the concerned
signals are always absent. Unless such behaviors are absolutely required, they have to be avoided,
in particular for the reactivity of embedded real-time systems. Determinism is characterized by the
inference of a single master clock from a program. All system events are observed according to this

9/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

clock. Another property is clock mutual exclusion, which ensures some events never occur at the same
time.

In Signal, clocks are fundamentally the main means to express control (synchronizations between
signals). Together with their associated relations, they are formalized through a clock algebra [6]. In
particular, the set of clocks associated with set inclusion forms a lattice. Based on clock inclusion, the
Signal compiler computes a clock hierarchy on which the automatic code generation strongly relies
. However, for the under-sampling construct, remember that the clock of the Boolean expression b is
partitioned into [b] and [¬b], which are referred to as condition-clocks. If b is defined by a numerical
expression such as an integer comparison, [b] and [¬b] are seen as black boxes when compared separately
to other clock expressions. This reduces the power of the clock calculus analysis whenever a program
contains numerical expressions.

4.1 Clock analysis for the bathtub model

01:(| CLK_level := ^level

02: | CLK_level ^= alarm ^= zlevel^= faucet^= pump

02b: ^= overflow ^= scarce

03: | CLK_zfaucet ^= when (zlevel<=4)

04: | CLK_zpump ^= when (zlevel>=7)

05: | (| CLK_level ^= CLK_zpump

06: | CLK_level ^= CLK_zfaucet

07: |)%**WARNING: Clocks constraints%

08: | CLK_22 := when level>=9

09: | CLK_25 := when 0>=level

10: | CLK_36 := CLK_22 ^* CLK_25

11: | (| CLK_ghost_alarm ^= CLK_36 default (not CLK_29)

12: | CLK_29 := CLK_ghost_alarm ^- CLK_36

13: | (| ghost_alarm := CLK_36 default (not CLK_29)

14: |) |) ... |)

Figure 3: A sketch of clock calculus.

Fig. 3 partially shows the result of the clock calculus generated automatically by the compiler in
Polychrony. Here, we focus on two issues that the clock analysis was not able to fix adequately.
First, a clock constraint is generated, stating that signals CLK_level, CLK_zfaucet and CLK_zpump

must have the same clock (lines 05–07), while signals CLK_zfaucet and CLK_zpump have exclusive
clocks (lines 03–04). Second, at line 11, the right-hand side of the synchronization equation about
CLK ghost alarm should be (not CLK_29) since the clock CLK_36 is empty by definition (line 10).

The previous two issues illustrate typical limitations of the Boolean abstraction in the clock cal-
culus. This does not enable to verify simple static properties of a program, such as clock exclusion or
emptiness, since numerical expressions are not suitably abstracted. A more expressive clock analysis
would detect the fact that CLK_level, CLK_zfaucet and CLK_zpump must be empty clocks in order
to satisfy the clock constraints of the Bathtub process. Section 7 discusses another issue about the
hierarchical control of component activations.

4.2 Code generation of the bathtub model

The above limitations also have an important impact on the quality of the code generated automatically
by the compiler since it relies on the clock hierarchy resulting from the analysis. Fig. 4 sketches a C
code generated automatically based on the clock analysis.

The previous clock constraint is implemented by exception statements (lines 04–05). This can be
seen currently as the way the compiler alerts a user that it was not able to solve the clock constraints
related to the exception statements generated from a Signal program. Of course, such a C code is
only useful for simulation.

Now, if the above C code is to be embedded in some real-life system, its quality could be significantly
improved by noticing that since CLK_level, CLK_zfaucet and CLK_zpump should be empty clocks,
statements between lines 02 and 11 are never executed (and consequently, the exception statements
are useless). As a result, the generated C code shown in Fig. 4 contains dead code. In a similar way,

10/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

01: if (C_level)

02: { C_zfaucet = level <= 4;

03: C_zpump = level >= 7;

04: if ((C_zpump) != (C_level))

04b: polychrony_exception("...");

05: if ((C_zfaucet) != (C_level))

05b polychrony_exception(" ... ");

06: if (C_zfaucet) { faucet = zfaucet + 1; }

07: if (C_zpump) { pump = zpump + 1; }

08: level = (level + faucet) - pump;

09: overflow = level >= 9; scarce = 0 >= level;

10: alarm = scarce || overflow; ...

/*production of level and alarm*/

11: C_106 = overflow && scarce;} ...

12: C_109 = (C_level ? C_106 : FALSE);

13: if (C_ghost_alarm)

14: { if (C_109) ghost_alarm = TRUE;

14b: else ghost_alarm = FALSE;

15: ... /* production of ghost_alarm */ } ...

Figure 4: A sketch of the generated C code.

the if statement at line 14/14b also contains a dead code since the variable ghost_alarm is always
set to false.

5 Our numerical-Boolean abstraction

We define an abstraction for Signal program analysis. All considered programs are supposed to be
in the syntax of the core language.

Our abstraction for program P is a logical formula Φ on the variables and clocks of P in a decidable
theory (here, linear arithmetic of integers or reals) such that at any logical instant in an execution of
P , the current values of signals and clocks satisfy Φ. In other words, at any instant in an execution
of P , its variables and clocks are a model of Φ.

5.1 Notations and restrictions

Let P be a Signal program. We denote by XP = {x1, x2 . . . xn} the set of all variables of P. Here, we
consider scalar variables only. With each variable xi (numerical, Boolean or event), we associate two
abstract values: x̂i and x̃i encoding respectively its clock and values.

The abstract semantics of the program, is a set of couples of the form (̂, ˜) where:

• function ̂: XP → B = {true, false} assigns to a variable a Boolean value;

• function ˜: XP → R ∪ B assigns to a variable a numerical or Boolean value.

This abstract set is represented as a first order logic formula ΦP in which atoms are x̃i and x̂i, and
the operators are usual logic operators and integer comparison functions.

5.2 Abstraction for expressions

Our abstraction strongly relies on an abstraction for expressions, detailed in the sequel.
We restrict ourselves to the following subset of numerical and Boolean expressions in Signal

statements. For sake of simplicity and readability, here we simplify the abstraction previously provided
in [11].

nexp ::= cst | nexp ♦ nexp | nexp ♦′ cst | var

bexp ::= true | false | not bexp | var | bexp

and bexp | bexp or bexp | nexp ⊲⊳ nexp

11/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

where the symbols cst and var respectively denote a constant and a signal variable (x, y, . . .), ⊲⊳∈
{<, >, = }, ♦ ∈ { +, -} and ♦′ ∈ { /, *}

The abstraction of a given numerical Signal expression nexp (resp a Boolean expression bexp)
will be a numerical expression (resp. a Boolean expression) that expresses its behavior.

We define an abstraction φ for these expressions by induction on their structure as follows:

• atoms: given a signal x, if x is of Boolean or numeric type, φ(x) = x̃; if x is of event type,
φ(x) = true,

• φ(true) = true and φ(false) = false, and if c is a numerical constant, φ(c) = c,

• if b1 and b2 denote Boolean expressions, then φ(b1 and b2) = φ(b1) ∧ φ(b2); φ(b1 or b2) =
φ(b1) ∨ φ(b2); φ(not b1) = ¬φ(b1),

• if n1 and n2 denote numerical expressions, then φ(n1 < n2) = φ(n1) < φ(n2), φ(n1 > n2) =
φ(n1) > φ(n2) and φ(n1 = n2) = φ(n1) = φ(n2).

• if n1 and n2 denote numerical expressions, then φ(n1 + n2) = φ(n1) + φ(n2) and φ(n1 - n2) =
φ(n1)− φ(n2)

• if n is a numerical expression and c a constant, then φ(c * n) = c.φ(n) and φ(n / c) = φ(n)
c

.

The φ function is used to compute numerical and Boolean exact abstractions for our subset of ex-
pressions. Some approximations will be made in case of other signal expressions such as multiplication
of variables, or modulo (an example will be found later in Section 7).

Example 1 Let b = (x + y = 4) and (y < 10) be a Boolean expression. Its abstraction is φ(b) =
x̃+ ỹ = 4 ∧ ỹ < 10.

5.3 Abstraction of Signal primitive constructs

We define ΦP as the intersection of the abstractions of statements stmi of P:

ΦP =

n∧

i

Φ(stmi)

where n is the number of statements composed in P.
Each Φ(stmt) will be a formula of quantifier-free linear integer arithmetic (QF LIA) or quantifier-

free linear real arithmetic (QF LRA).
In the next, we distinguish two possible definitions of Φ for each primitive construct of Signal,

according to the type of signal y in each equation: (a) when y is of numerical type and (b) when y is
of logical type.

• Instantaneous relations: y:= R(x1,...,xn). The abstraction Φ of instantaneous relations is de-
fined as follows:

∧
n

i=1
(ŷ ⇔ x̂i) ∧

(
ŷ ⇒ ỹ = φ(nexp)

)
(a)

∧
n

i=1
(ŷ ⇔ x̂i) ∧

(
ŷ ⇒

(
ỹ ⇔ φ(bexp)

))
(b)

where R(x1,...xn) is denoted by either nexp or bexp.

These expressions express the equalities between clocks and values that are induced by Signal

semantics.

12/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

• Delay: y:= x $ 1 init c. The abstraction Φ of the delay construct is defined as follows:

ŷ ⇔ x̂

The abstraction here only expresses the equalities between clocks. A better abstraction could be
performed if the user (or a pre-analysis) provides invariants for numerical variables. In that case,
the global abstraction would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒

(
(invar(x̃)[x̃/ỹ] ∨ (ỹ = c)))

where invar(x̃)[x̃/ỹ] denotes the substitution of ỹ in a formula that expresses a constraint on x’s
values. Such an invariant can be a result of the methods proposed in [15] or [16].

• Under-sampling: y:= x when b. The abstraction Φ of the under-sampling construct is defined as
follows:

(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
(a)(

ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)
)∧(

ŷ ⇒ (ỹ ⇔ x̃)
)

(b)

which expresses the fact that the signal y is present if and only if both signals b and x are present
and b is true. The constraints on values are straightforward.

• Deterministic merging: z:= x default y. The abstraction Φ of the deterministic merging con-
struct is defined as follows:

(
ŷ ⇔ (x̂ ∨ ẑ)

)∧
(
ŷ ⇒

(
(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))

))
(a)(

ŷ ⇔ (x̂ ∨ ẑ)
)∧

(
ŷ ⇒

(
(x̂ ∧ (ỹ ⇔ x̃)) ∨ (¬x̂ ∧ (ỹ ⇔ z̃))

))
(b)

The clock of variable y is the union of the clocks of x and z, and values are determined according
to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ of the composition operator is defined as follows:

Φ ≡ ΦP1 ∧ ΦP2

• Restriction (or Hiding): P ≡ P1 where x. The abstraction Φ of the restriction operator is defined
as follows:

Φ ≡ ∃x̃, ∃x̂ . ΦP1
(1)

This formula may be understood as follows. The states of P are identical to the states of P1, except
that we have decided to ignore the values of x̃ and x̂. Hence, we would like to remove from ΦP1

all
subformulas containing x̃ or x̂. However, ΦP1

may imply other formulas which do not use x̃ and x̂,
and are also satisfied by all states of P . This extended formula is precisely ∃x̃, ∃x̂ . ΦP1

and may
be found by a process of quantifier elimination. Conversely, it is obvious that a model of Φ can be
extended to a model of ΦP1

.

By applying the above rules, the following abstractions are obtained for derived constructs for
clock manipulation:

• Φ(y:= x1 ^+ x2) =
(
ŷ ⇔ x̂1 ∨ x̂2

)
∧ (ŷ ⇒ ỹ). Here, we apply the default abstraction rule with

x̃1 = x̃2 = true (as xi are events), and simplify the result.

• Φ(y:= x1 ^* x2) =
(
ŷ ⇔ (x̂1 ∧ x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(y:= x1 ^- x2) =
(
ŷ ⇔ (x̂1 ∧ ¬x̂2)

)
∧ (ŷ ⇒ ỹ)

• Φ(x1 ^= x2) = x̂1 ⇔ x̂2

13/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

For the purpose of modularity, we also define the abstraction of processes containing subprocesses,
such as in the statement P1 where P2, where P2 is a subprocess of P1. Let assume the following:

• (i1, ..., in) is the list of input parameters of P2,

• o is a single2 output parameter of P2,

which represents the signature of P2. It follows that the abstraction ΦP2
is a formula composed of

variables î1, ĩ1, ..., în, ĩn, ô, õ. To define the abstraction of P1 where P2, we first define the abstraction
of process call: y := P2(x1, ..., xn) in another process, here P1. The abstraction Φ(y := P2(x1, ..., xn))
is defined as follows:

(ŷ = r̂) ∧ (ỹ = r̃) ∧
(∧

i∈1..n

(x̂i = ẑi)
)
∧
(∧

i∈1..n

(x̃i = z̃i)
)

where r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n are fresh variables. This abstraction only relies on the previous signature of
P2. Now, by using the previous abstraction, we finally define Φ(P1 where P2) as follows:

∃(r̂, r̃, ẑ1, z̃1, ..., ẑn, z̃n).
ΦP1 ∧ ΦP2

∧

(r̂ = ô ∧ r̃ = õ)
∧

(
(ẑ1 = î1 ∧ z̃1 = ĩ1)... ∧ (ẑn = în ∧ z̃n = ĩn)

)
,

(2)

which establishes the adequate relation between the formal parameters of P2 and the actual parameters
defined in the function call within P1.

5.4 Application to the bathtub example

By applying our abstraction to Bathtub (see Fig. 2), which is divided into P1 (lines 04 to 09) and P2

(lines 10 to 14) according to the process hierarchy, we obtain ΦBathtub = ΦP1
∧ΦP2

, where ΦP1
equals

to:

(l̂evel ⇔ ẑlevel ⇔ f̂aucet ⇔ p̂ump ⇔ ̂bzfaucet)

∧ (l̃evel = z̃level + f̃aucet− p̃ump)

∧
(

̂zfaucet ⇔ (ẑlevel ∧ z̃level ≤ 4)
)

∧
(

̂zfaucet ⇒ f̃aucet = (˜zfaucet+ 1)
)

∧ (p̂ump ⇔ ẑpump)

∧
(
ẑpump ⇔ (ẑlevel ∧ z̃level ≥ 7)

)

∧
(
ẑpump ⇒ p̃ump = (z̃pump+ 1)

)

For ΦP2
, we first rewrite equation at line 13/14 as follows:

(| y1 := true when scarce

| y2 := y1 when overflow

| ghost_alarm := y2 default false |)

Then, we obtain that ΦP2
equals to:

(̂overflow ⇔ l̂evel ⇔ ŝcarce)

∧
(

˜overflow ⇔ (l̃evel ≥ 9)
)

∧ (s̃carce ⇔ (l̃evel ≤ 0)

∧ (âlarm ⇔ ŝcarce ⇔ ̂overflow)

∧ âlarm ⇒
(
ãlarm ⇔ (s̃carce ∨ ˜overflow)

)

∧
(
ŷ2 ⇔ (s̃carce ∧ ˜overflow ∧ ŝcarce ∧ ̂overflow)

)

∧ (ŷ2 ⇒ ỹ2) ∧ (ĝhost ⇔ (ŷ2 ∨ f̂alse))

∧
(
ĝhost ⇒

((
ŷ2 ∧ (g̃host ⇔ ỹ2)

)
∨
(
¬ŷ2 ∧ ¬g̃host

)))

2Here, we consider a single output only for the sake of simplicity. The same reasoning strictly applies for several
outputs.

14/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

5.5 Concretisation

Let us recall that X = {x1, . . . xn} denotes the set of all P variables. Intuitively, a valuation satisfying
Φ captures the numerical and Boolean values of signals at a given logical instant. Given a valuation
v = (̂, ˜), where all variables have been assigned some values, we first construct a set of events whose
values are assigned accordingly: Svalid(v) = {S ∈ EX |∀i, S(i) = if (x̂i = false) then ⊥ else x̃i}. The
set of all “valid” events is defined as Svalid(Φ) = ∪v|=ΦSvalid(v). Finally, the concretisation of Φ is the
set of traces whose instantaneous values always verify Φ :

Γ(Φ) = {T ∈ TX |∀t, T (t) ∈ Svalid(Φ)} (3)

Our abstraction is sound, in the sense that it preserves the behaviors of the abstracted programs: if
a property is true on the abstraction, then it is also the case on the program. A proof of its soundness
is given in [11].

5.6 Properties

Let P be a Signal process and Φ its abstraction. Assume that we can prove formulas of the form
Φ ⇒ Π, where Π is a formula on the atoms of Φ. It is clear that Φ and Φ∧Π have the same models.
Some such formulas have the property that they are abstraction of Signal processes. These processes
can be composed with P to the benefit of the Signal compiler without modifying the semantics of P .

The properties we are interested in are clock emptiness: x̂ = false, which gives the equivalent
of dead code elimination, and clock inclusion: x̂ ⇒ ŷ or clock equivalence: x̂ ⇔ ŷ, which allow
simplification of the control code. There are two strategies for finding such properties. The first
one consists in guessing Π and proving Φ ⇒ Π with the help of an SMT solver, by showing that
¬(Φ ⇒ Π) is unsatisfiable. The second strategy consists in asking the SMT solver to construct the
set of (Boolean) models of Π, which is finite, and to scan it to identify interesting properties. For
instance, the algorithm for finding empty clocks is to start from the set of all clocks, to examine each
model in turn, removing a clock as soon as it appears to be true in the current model. This is the
approach we have adopted in our implementation.

6 Implementation

We present an implementation of the previous abstraction and the way relevant properties are inferred.
Our solution promotes a modular construction of this abstraction and its analysis.

6.1 Tools

The implemented tools follow Fig. 1. The box referred to as “Abstraction of P” in this figure is
achieved with the Sync2smt tool. Its output is given to an ad hoc SMT solver, which integrates the
concretization of inferred properties.

Sync2smt (5kLOC in Ocaml) basically implements the translation developed in Section 5 : after
a parsing phase, the internal representation of a Signal program is translated into a bunch of smtlib3

files, including a special “driver” file. Such a file is used as an input to our ad hoc SMT solver. Note
that our parser currently recognizes only a subpart of the grammar described in http://www.irisa.

fr/espresso/Polychrony/Signal-bnf.php.
There are two reasons for not using an off-the-shelf SMT solver like Yices or Z3. The first one is

that we need more than a sat or unsat answer. Our solver must construct the set of all models of
a satisfiable formula and return it for inspection. Usually, an SMT solver constructs just one model
(this is enough for proving satisfiability), which can be retrieved or not depending on the solver. It is
clear that our solver is less efficient than highly optimized softwares like Yices or Z3. However, since
we trade just one call to a slow solver against many calls to a fast solver, the overall comparison is not
obvious. Another point is that since the solver code is available to us, we have been able to implement
the property search inside it, thus avoiding costly pretty printing and parsing.

3http://www.smtlib.org/

15/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

Our SMT solver proceeds by constructing a semantic tableau [26], i.e., a tree whose nodes are
decorated by subformulas of the root formula. A branch of the tree is closed if it contains a formula
and its negation, or if the conjunction of its atomic formulas is unsatisfiable in the underlying theory,
in our case, linear or integer programming. The tree construction rules are such that from each open
branch, one can extract a model of the root formula. From then on, it is a simple matter to scan the
open branches and extract clock properties.

6.2 Modularity

While current SMT solvers are highly optimized tools, they may still take exponential time on large
problems. It is therefore necessary to take advantage of the modular features of Signal to improve
the analysis efficiency. The key to this approach is formula (1), which allows the elimination of local
variables when analyzing subprocesses.

Going from ΦP1
to Φ in (1) is a process of quantifier elimination, which is trivial for booleans:

∃b.Φ(b) ≡ Φ(true) ∨ Φ(false).

However, Φ usually contains many subformulas of the form x̂ ⇔ bexp (see Section 5.4 for examples).
Elimination of x̂ consists simply in replacing it everywhere by bexp, a process akin to Gaussian
elimination.

There are many quantifier elimination algorithms for reals, the simplest (but the less efficient)
being Fourier-Motzkin elimination [27]. Quantifier elimination for integers is much more difficult, and
may need the introduction of other operators like integer division or modulo. To apply this method,
our SMT solver has been extended with a quantifier elimination command, and several commands to
manipulate a stack of formulas.

Let us consider the simple case of a program of the form P1 where P2. From (2), the output of
Sync2smt consists first of the abstraction of P2. A “driver” file first acquires the P2 file and executes
elimination of the local variables. Another file contains the abstraction of P1, augmented with a system
of equations that identifies the actual arguments of P2 in P1 to the formal arguments of P2. The tool
constructs the conjunction of the two formulas, checks satisfiability, and deduces clock properties from
the resulting models.

In more complex examples, one can apply the same algorithm bottom-up to a tree of processes.
The properties found in this way for the top process can be plugged top-down into the subordinate
processes. One may have to use renaming to avoid symbol collision or capture.

7 Application to illustrative examples

We discuss the application of the previous abstraction on sample Signal programs, considered as
basic patterns, for improving their static analysis (Section 7.1) and the subsequent automatic code
generation (Section 7.2). Then, we give a detailed illustration on the Bathtub example (Section 7.3).

7.1 Some relevant program patterns

We present a few Signal program patterns for which our abstraction helps in detecting some clocks
anomalies. Such properties cannot be detected currently by the Signal compiler because they involve
numerical expressions, which are not addressed by a Boolean abstraction. Our abstraction allows their
easy detection.

For sake of simplicity, the illustrated programs are made small. But, the reader should have in
mind that such clock properties can potentially occur in more complex programs.

7.1.1 Program patterns involving exclusive clocks

The sample processes mentioned in this section involve signals with exclusive clocks, i.e., signals that
never occur at the same time.

16/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

1. In the following process Addition, the signals aa and bb, respectively defined at lines 05 and
06, never occur at the same time, while the converse is necessary (according to the semantics of
instantaneous functions in Signal) for a correct addition at line 04.

--

01: process Addition =

02: (? integer a, b, treshold;

03: ! integer c;)

04: (| c := aa + bb

05: | aa := a when (treshold > 7)

06: | bb := b when (treshold < 4)

07: |)

08: where

09: integer aa, bb;

10: end;

--

2. For a similar reason, in the following process AdditionBis, the addition of signals b and c, re-
spectively defined at lines 04 and 05, cannot be achieved in a correct way. Indeed, the conditions
specified for the definitions of b and c are exclusive. Note that the difference between Addition

and AdditionBis is mainly syntactical.

--

01: process AdditionBis =

02: (? integer a;

03: ! integer d;)

04: (| b := a when (a > 1)

05: | c := a when not (a > 0)

06: | d := b + c

07: |)

08: where

09: integer b, c;

10: end;

--

3. The last sample process shown below, involves signals with exclusive clocks, bmin and bmax,
defined respectively at lines 04 and 05. But, another signal binterval, defined at line 06 as an
under-sampling over bmin and bmax, has an empty clock because the two signals never occur at
the same time.

--

01: process Interval =

02: (? integer a;

03: ! event binterval;)

04: (| bmin := true when (a < 3)

05: | bmax := true when (a > 11)

06: | binterval := bmin when bmax

07: |)

08: where

09: event bmin, bmax;

10: end;

--

7.1.2 Program patterns involving identical clocks

Here, we show two sample processes involving signals with identical clocks. This is fixed by our
abstraction while the Boolean abstraction of the Signal compiler does not enable it.

1. In the following process, named AdditionTer, the addition of signals b and c, respectively
defined at lines 04 and 05, is actually correct. Indeed, the conditions specified for the definitions
of these two signals are proved to be equivalent.

--

01: process AdditionTer =

02: (? integer a;

17/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

03: ! integer d;)

04: (| b := 5+a when (a > 0)

05: | c := 6+a when (a >= 1)

06: | d := b + c

07: |);

08: where

09: integer b, c;

10: end;

--

2. The process Game shown below exhibits similar clock properties. More precisely, the product at
line 09 of the input signal amount and the local signal factor defined at lines 07--08, requires
that both signals have the same clock.

This is established by a careful interpretation of the modulo operator (used at line 06). Indeed,
the expression nvisit modulo 2 is abstracted by ∃q, r ∈ N, s.t. r = nvisit − 2q ∧ 0 ≤ r ≤
1 ∧ 2q ≤ nvisit ≤ 2q + 1, where q and r respectively denote the quotient and rest of integer
division.

--

01: process Game =

02: (? integer amount;

03: ! integer profit;)

04: (| nvisit := ((nvisit$1 init 0) + 1)

05: when (^amount)

06: | st := nvisit modulo 2

07: | factor := (15 when (st=0)) default

08: (0 when (st=1))

09: | profit := factor*amount

10: |)

11: where

12: integer st, factor, nvisit;

13: end;

--

7.2 Impact on code generation

Our abstraction is also usable for optimizing the control structure of the code generated by the Signal
compiler. As discussed in Section 4, the clock hierarchy resulting from the static analysis of programs
has a strong impact on the quality of the generated code. Since clocks are considered as trigger events
for the actions described in a program, they are translated as conditional statements in generated
code, e.g., in C.

Given two clocks clk 1 and clk 2 such that clk 2 is a sub-clock of clk 1, the corresponding
code is sketched in Fig. 5: the conditional statement corresponding to clk 2 is embedded in that
associated with clk 1 to reflect the clock inclusion. By this way, whenever the triggering condition of
clk 1 is false, there is no need to test the triggering condition of clk 2 because it is necessarily false
due to the clock inclusion. Avoiding such tests optimizes the execution of generated code. Note that
a major advantage of the multi-clock model addressed by Signal is to avoid the systematic trigger
testing inherent to synchronized embedded systems with a global clock. This reduces the computation
overhead resulting from the repeated wake up of computation nodes on the global clock tick in order
to check whether or not they are active.

clk_1

clk_2
clk_3

 if (clk_2)

 { ... };

 { ... };

 if (clk_3)

 { ...;

if (clk_1)

 if (clk_2 && clk_3)

 { if (clk_i)

 { ... };

 ...;

 }

 ...; }

clk_i

Figure 5: Clock hierarchy-based code generation.

18/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

Currently, when clocks are defined by numerical expressions, the static analysis of the Signal

compiler fails to optimize the control structure in the way discussed above.
Let us consider the sample process, named Inclusion, as follows.

--

01: process Inclusion =

02: (? integer a;

03: ! integer d, e;)

04: (| b := 5+a when ((a > 3) and (a < 7))

05: | c := 6+a when ((a > 1) and (a < 11))

06: | d := 42 when (b ^* c)

07: | e := 52 when (b ^+ c)

08: |)

09: where

10: integer b, c;

11: end;

The clock of signal b is a subset of that of c. But currently, the clock hierarchy computed by the
Signal compiler is depicted in Fig. 6. While the clocks of b and c appear to be sub-clocks of the
clock of a, the clock hierarchy between b and c is not reflected. This leads to a control structure in
generated code where the trigger testing related to b is always performed, even though that of c is
false while it is unnecessary.

����������

 { ... };

 { ... };

 }

 { ...;

clk_a

clk_b clk_c

if (clk_a)

 if (clk_b)

 if (clk_c)

Figure 6: Clock hierarchy for Inclusion process.

Our abstraction is able to prove the clock inclusion between b and c, with the following reasoning.
A clock x̂ is included in another clock ŷ if the property x̂ ⇒ ŷ is true in all models. Clock x̂ is
equivalent to clock ŷ if both x̂ ⇒ ŷ and ŷ ⇒ x̂ are true.

When all inclusions have been identified, one can construct a graph whose vertices are the clocks
and whose edges represent the inclusion relations. The strongly connected components (SCC) of
this graph represent classes of equivalent clocks, and the reduced graph, which is acyclic, represents
the clock inclusion hierarchy. As a particular case, if this graph has a maximum (an SCC without
successors) this SCC contains the largest clock of the whole process. The set of SCCs and the reduced
graph can easily be constructed by an algorithm due to Tarjan [28], which has been implemented in
our tool (more precisely in the solver part). As a matter of fact, since inclusion is transitive, the SCCs
of the clock graph are cliques. However, we do not believe that this property can be used to improve
on the complexity of Tarjan’s algorithm. Note also that as soon as the maximal SCC has more than
one element, the largest clock cannot be identified by searching for clocks without successors. Hence,
the construction of SCCs is necessary. As a final remark, if the SCC graph has more than one extrema,
the program has no sequential implementation.

In the Inclusion process above, one finds three SCCs, {b̂, d̂}, {ĉ, ê} and {â}, and each SCC is
included in the next one. It follows that â is the process largest clock, which provides the clock
inclusion hierarchy depicted in Fig. 7.

{ ...;

{ ...;

{ ... };

}

}

clk_a

clk_c

clk_b

if (clk_c)

if (clk_b)

if (clk_a)

Figure 7: Optimized clock hierarchy for Inclusion.

19/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

The ability to compute the above clock inclusions is a very useful information, which can be
exploited to efficiently construct clock hierarchy for Signal programs based on arborescent canonical
forms of clocks [6]. The identification of a master clock in a program relies on that clock hierarchy.

7.3 Application to the bathtub example

We consider the Bathtub program given in Fig. 2 to illustrate how relevant properties are identified
and checked against its abstraction. By making these properties explicit in the program, we show a
noticeable amelioration of both its static analysis and code generation by the Signal compiler.

Given the formula ΦBathtub obtained previously in Section 5.3, as the abstraction of the bathtub
Signal specification, the main properties of interest are the following:

1. pump and faucet have disjoint clocks: ¬(f̂aucet ∧ p̂ump),

2. The water cannot overflow and be scarce at the same time: ¬
(
s̃carce ∧ ˜overflow ∧ ŝcarce ∧

̂overflow
)
,

3. alarm and level have the same clock: âlarm ⇔ l̂evel.

Some of these properties are currently inferred directly from ΦBathtub by our considered SMT
solver. It is the case of properties 1) and 3). However, note that property 2) could also be inferred
provided an extension of the current implementation of the solver so that various combinations of
Boolean variables can be checked. Here, for more convenience, we reason on isolated parts of ΦBathtub,
which are relevant to a given property. But, since automating such an operation on an abstraction is
generally not easy, our implementation currently reasons on the whole abstraction.

These properties are easily verified on the abstraction of Bathtub process. As a result, their
corresponding concretisations can be safely composed with Bathtub without changing its semantics.
Possible concretisations of the above properties in Signal are as follows:

1. faucet ^* pump ^= ^0

2. true when scarce when overflow ^= ^0

3. alarm ^= level

By composing these statements with Bathtub, one obtains the semantically equivalent process,
named Bathtub_Bis, shown in the following:

--

01:process Bathtub_Bis =

02:(?

03: ! integer level; boolean alarm, ghost_alarm;)

04:(|(| level := zlevel + faucet - pump

...

13: | ghost_alarm:=(true when scarce when overflow)

13b: default false |)

14: |(| true when scarce when overflow ^= ^0

15: | faucet ^* pump ^= ^0

16: | alarm ^= level |) |)

17: where

18: integer zlevel,zfaucet,zpump,faucet,pump;

19 boolean overflow,scarce;

20:end;

--

The result of its analysis performed by the compiler is now as follows:

--

01: (| CLK_ghost_alarm := ^ghost_alarm

02: | CLK_ghost_alarm ^= ghost_alarm

03: | (| ghost_alarm := not CLK_ghost_alarm |)

04: |);%^0 ^= level ^= alarm

04b ^= zlevel ^= zfaucet ^= zpump

05: ***WARNING: null clock signals%

--

The whole set of constraints inferred by the compiler is now restricted to the fact that the
ghost_alarm signal is always equal to false. The compiler has also detected that the clocks of

20/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

the other signals are all empty (lines 04/04b). Finally, the corresponding generated code is provided
below, where the dead code is avoided.

--

01: { ghost_alarm = FALSE;

02: /* produce output value

03: for the signal ghost_alarm */ } ...

--

Sections 7.1, 7.2 and 7.3 demonstrate the relevance of our abstraction for analyzing clock properties
that combine both logical and numerical expressions. For instance, checking the mutual exclusion
between multiple computation nodes whose activation conditions consist of such clocks, is useful to
address sharing problems in a GALS system. In addition, establishing that some nodes or events
in a system never occur, via empty clocks, can serve to guarantee that undesired behaviors never
happen, or conversely to detect that some expected behaviors are never observed. Concerning the
code generated automatically by the Signal compiler, the gain expected in terms of optimizations
is also important. On the one hand, dead code elimination is made possible thanks to information
resulting from the analysis of our abstraction. It is usually of high importance in compilers [29]. On
the other hand, the control conditions of the code are better organized thanks to their evaluation
in the abstraction. As a result, optimized control structures can be derived, as it is done in [30] by
identifying regions in a control flow graph.

7.4 On the scalability of our approach

Beyond all examples mentioned in this paper, we have experimented further ones, including the dining
philosophers program provided in [24], which is relevant enough to assess the scalability of our tool-
chain, but which strains the present capabilities of our SMT solver.

Among applicable solutions that already hold for our approach in case of large programs to be
addressed, we suggest the systematic use of modularity to divide-and-conquer such programs. As a
matter of fact, given a property to be checked (or to be inferred) in an SMT formula F resulting
from the translation of a program, one can restrict the analysis to the sub-formulas Fi of this formula,
which are only required for the reasoning. Whenever a property is valid for Fi, it will be also valid for
F . Currently, identifying such sub-formulas is done only manually.

For the aforementioned dining philosophers program, which is around one hundred and seventy
lines of code in Signal, our translation tool automatically generates (in less than a second) an ab-
straction in the “smt2” format composed of: four hundred and fourty variables and, four hundred
and eighty six clauses. Since this generated abstraction is not currently tractable by our SMT solver,
we manually applied a divide-and-conquer strategy to check that two adjacent philosophers cannot
simultaneously eat because only one of them can hold their shared fork at any time.

8 Conclusion

In this paper, we presented an enhancement of the compilation of synchronous dataflow programs
with a combined numerical-Boolean abstraction. We considered Signal language as an illustrative
language. The analysis and code generation achieved by its compiler, which is based on a Boolean
abstraction, has been extended in a modular way by defining a sound and more expressive abstraction.
This makes it possible to suitably address both numerical and logical properties specified via abstract
clock relations and data dependencies.

Clocks play a central role in Signal: they fundamentally express the control in programs and
typical properties of embedded systems, such as reactivity or determinism, are dealt with by analyzing
clock relations. Moreover, their related properties are extensively exploited by the Signal compiler for
optimizing the automatic code generation process. We showed via our approach, in a pragmatic way,
how the new abstraction combined with SMT solving infers very useful information, which strongly
help the compiler to solve more clock constraints and generate high-quality code, e.g., by avoiding
dead code. Several sample examples have been presented in order to exhibit the add-on of our solution.

21/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

To implement the whole approach, we developed a translator of synchronous programs towards
the standard input format of SMT solvers, and an ad hoc SMT solver that integrates advanced
functionalities to cope with the issues of interest in this work. These tools are just proof-of concept
implementations; we do not claim that they can be used on lifesize programs in their present state.
Improvements are needed in four directions:

• replace our home-made SMT solver by a state-of-the-art one, provided that its source code is
available and that it can be be adjusted to implement the supplementary facilities we need;

• improve the Sync2smt translator to obtain a more compact abstraction;

• implement an interval pre-analysis to get value ranges for numerical variables and thus provide
a better abstraction for delays;

• systematically use modularity to divide-and-conquer large programs.

References

[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone, “The synchronous languages twelve
years later.” in Special issue on Embedded Systems, IEEE, 2003.

[2] N. Halbwachs, “A synchronous language at work: the story of Lustre,” in 3th ACM-IEEE International Conference on
Formal Methods and Models for Codesign (MEMOCODE’05), Verona, Italy, july 2005.

[3] G. Berry, “The foundations of Esterel,” in Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT
Press, 2000.

[4] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for System Design,” Journal for Circuits, Systems and Computers,
vol. 12, no. 3, pp. 261–304, April 2003.

[5] R. Bryant, “Graph-based algorithms for boolean function manipulation.” IEEE transactions on computers, vol. C-35, no. 8,
pp. 677–691, August 1986.

[6] T. Amagbegnon, L. Besnard, and P. Le Guernic, “Arborescent canonical form of Boolean expressions,” INRIA, Tech. Rep.
2290, June 1994. [Online]. Available: http://www.inria.fr/rrrt/rr-2290.html

[7] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying real-time systems by means of the synchronous data-flow
programming language Lustre.” IEEE Transactions on Software Engineering, Special Issue on the Specification and Analysis
of Real-Time Systems, September 1992.

[8] B. Jeannet, “Dynamic partitioning in linear relation analysis. application to the verification of reactive systems,” Formal
Methods in System Design, vol. 23, no. 1, pp. 5–37, July 2003.

[9] P. Schrammel, “Logico-Numerical Verification Methods for Discrete and Hybrid Systems,” Ph.D. dissertation, Université de
Grenoble, 2012.

[10] B. A. Jose and S. K. Shukla, “An alternative polychronous model and synthesis methodology for model-driven embedded
software,” in Proceedings of the 2010 Asia and South Pacific Design Automation Conference, ser. ASPDAC ’10. Piscataway,
NJ, USA: IEEE Press, 2010, pp. 13–18. [Online]. Available: http://dl.acm.org/citation.cfm?id=1899721.1899725

[11] A. Gamatié and L. Gonnord, “Static analysis of synchronous programs in signal for efficient design of multi-clocked embedded
systems,” in International conference on Languages, Compilers and Tools for Embedded Systems, LCTES’11, Chicago, USA,
Mar. 2011.

[12] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence
and Applications. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2009.

[13] P. Schrammel and B. Jeannet, “From hybrid data-flow languages to hybrid automata: A complete translation,” in Hybrid
Systems: Computation and Control. ACM, 2012, pp. 167–176.

[14] L. Gonnord and N. Halbwachs, “Combining widening and acceleration in linear relation analysis,” in 13th International Static
Analysis Symposium, SAS’06, Seoul, Korea, Aug. 2006.

[15] F. Besson, T. Jensen, and J.-P. Talpin, “Polyhedral analysis for synchronous languages,” in Proceedings of the 6th International
Symposium on Static Analysis, volume 1694 of Lecture Notes in Computer Science. Springer-Verlag, September 1999, pp.
51–68.

[16] M. Nanjundappa, M. Kracht, J. Ouy, and S. Shukla, “Synthesizing embedded software with safety wrappers through polyhedral
analysis in a polychronous framework,” in Electronic System Level Synthesis Conference (ESLsyn), 2012, june 2012, pp. 24
–29.

[17] M. Nebut, “Specification and analysis of synchronous reactions,” Formal Aspects of Computing, vol. 16, no. 3, pp. 263–291,
august 2004.

22/23

Feautrier & Gamatié & Gonnord Enhanced Static Analysis in Synchronous Compilation

[18] G. Hagen and C. Tinelli, “Scaling up the formal verification of lustre programs with smt-based techniques,” in FMCAD ’08:
Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design. Piscataway, NJ, USA:
IEEE Press, 2008, pp. 1–9.

[19] A. Gamatié, T. Gautier, and P. Le Guernic, “Towards static analysis of Signal programs using interval techniques.” in
Synchronous Languages, Applications, and Programming (SLAP’06), March 2006.

[20] A. Gamatié, T. Gautier, and L. Besnard, “An Interval-Based Solution for Static Analysis in the Signal Language,” in 15th
Annual IEEE International Conference and Workshop on Engineering of Computer Based Systems (ECBS’2008), Belfast,
Northern Ireland, April 2008, pp. 182–190.

[21] Y. Bai, J. Brandt, and K. Schneider, “Smt-based optimization for synchronous programs,” in Proceedings of the 14th
International Workshop on Software and Compilers for Embedded Systems, ser. SCOPES ’11. New York, NY, USA: ACM,
2011, pp. 11–20. [Online]. Available: http://doi.acm.org/10.1145/1988932.1988935

[22] B. A. Jose, A. Gamatié, J. Ouy, and S. K. Shukla, “SMT Based False Causal loop Detection during Code Synthesis from
Polychronous Specifications,” in ACM/IEEE Ninth International Conference on Formal Methods and Models for Codesign
(MEMOCODE), 2011, pp. 109 –118.

[23] B. A. Jose, A. Gamatié, M. Kracht, and S. K. Shukla, “Improved False Causal Loop Detection in Polychronous Specification
of Embedded Software, Research report,” 2011. [Online]. Available: http://hal.inria.fr/inria-00637582

[24] A. Gamatié, Designing Embedded Systems with the Signal Programming Language: Synchronous, Reactive Specification.
Springer, New York, 2009.

[25] P. Le Guernic and T. Gautier, Advanced Topics in Data-Flow Computing. Prentice-Hall, J.-L. Gaudiot and L. Bic eds., 1991,
ch. Data-Flow to von Neumann: the Signal approach, pp. 413–438.

[26] R. M. Smullyan, First Order Logic. Dover, 1968.

[27] A. Schrijver, Theory of linear and integer programming. NewYork: Wiley, 1986.

[28] R. E. Tarjan, “Depth first search and linear graph algorithms,” SIAM J. on Computing, vol. 1, pp. 146–160, 1972.

[29] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently computing static single assignment
form and the control dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, pp. 451–490, October 1991. [Online].
Available: http://doi.acm.org/10.1145/115372.115320

[30] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its use in optimization,” ACM Trans.
Program. Lang. Syst., vol. 9, pp. 319–349, July 1987. [Online]. Available: http://doi.acm.org/10.1145/24039.24041

23/23

