121,735 research outputs found

    Fundamental Radar Properties: Hidden Variables in Spacetime

    Get PDF
    A derivation of the properties of pulsed radiative imaging systems is presented with examples drawn from conventional, synthetic aperture, and interferometric radar. A geometric construction of the space and time components of a radar observation yields a simple underlying structural equivalence between many of the properties of radar, including resolution, range ambiguity, azimuth aliasing, signal strength, speckle, layover, Doppler shifts, obliquity and slant range resolution, finite antenna size, atmospheric delays, and beam and pulse limited configurations. The same simple structure is shown to account for many interferometric properties of radar - height resolution, image decorrelation, surface velocity detection, and surface deformation measurement. What emerges is a simple, unified description of the complex phenomena of radar observations. The formulation comes from fundamental physical concepts in relativistic field theory, of which the essential elements are presented. In the terminology of physics, radar properties are projections of hidden variables - curved worldlines from a broken symmetry in Minkowski spacetime - onto a time-serial receiver.Comment: 24 pages, 18 figures Accepted JOSA-

    Heterodyne range imaging as an alternative to photogrammetry

    Get PDF
    Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry

    Wireless Health Monitoring using Passive WiFi Sensing

    Full text link
    This paper presents a two-dimensional phase extraction system using passive WiFi sensing to monitor three basic elderly care activities including breathing rate, essential tremor and falls. Specifically, a WiFi signal is acquired through two channels where the first channel is the reference one, whereas the other signal is acquired by a passive receiver after reflection from the human target. Using signal processing of cross-ambiguity function, various features in the signal are extracted. The entire implementations are performed using software defined radios having directional antennas. We report the accuracy of our system in different conditions and environments and show that breathing rate can be measured with an accuracy of 87% when there are no obstacles. We also show a 98% accuracy in detecting falls and 93% accuracy in classifying tremor. The results indicate that passive WiFi systems show great promise in replacing typical invasive health devices as standard tools for health care.Comment: 6 pages, 8 figures, conference pape

    The processing of ambiguous sentences by first and second language learners of English

    Get PDF
    This study compares the way English-speaking children and adult second language learners of English resolve relative clause attachment ambiguities in sentences such as The dean liked the secretary of the professor who was reading a letter. Two groups of advanced L2 learners of English with Greek or German as their L1 participated in a set of off-line and on-line tasks. While the participants ' disambiguation preferences were influenced by lexical-semantic properties of the preposition linking the two potential antecedent NPs (of vs. with), there was no evidence that they were applying any structure-based ambiguity resolution strategies of the type that have been claimed to influence sentence processing in monolingual adults. These findings differ markedly from those obtained from 6 to 7 yearold monolingual English children in a parallel auditory study (Felser, Marinis, & Clahsen, submitted) in that the children's attachment preferences were not affected by the type of preposition at all. We argue that whereas children primarily rely on structure-based parsing principles during processing, adult L2 learners are guided mainly by non-structural informatio

    Compressive Matched-Field Processing

    Full text link
    Source localization by matched-field processing (MFP) generally involves solving a number of computationally intensive partial differential equations. This paper introduces a technique that mitigates this computational workload by "compressing" these computations. Drawing on key concepts from the recently developed field of compressed sensing, it shows how a low-dimensional proxy for the Green's function can be constructed by backpropagating a small set of random receiver vectors. Then, the source can be located by performing a number of "short" correlations between this proxy and the projection of the recorded acoustic data in the compressed space. Numerical experiments in a Pekeris ocean waveguide are presented which demonstrate that this compressed version of MFP is as effective as traditional MFP even when the compression is significant. The results are particularly promising in the broadband regime where using as few as two random backpropagations per frequency performs almost as well as the traditional broadband MFP, but with the added benefit of generic applicability. That is, the computationally intensive backpropagations may be computed offline independently from the received signals, and may be reused to locate any source within the search grid area

    Japanese/English Cross-Language Information Retrieval: Exploration of Query Translation and Transliteration

    Full text link
    Cross-language information retrieval (CLIR), where queries and documents are in different languages, has of late become one of the major topics within the information retrieval community. This paper proposes a Japanese/English CLIR system, where we combine a query translation and retrieval modules. We currently target the retrieval of technical documents, and therefore the performance of our system is highly dependent on the quality of the translation of technical terms. However, the technical term translation is still problematic in that technical terms are often compound words, and thus new terms are progressively created by combining existing base words. In addition, Japanese often represents loanwords based on its special phonogram. Consequently, existing dictionaries find it difficult to achieve sufficient coverage. To counter the first problem, we produce a Japanese/English dictionary for base words, and translate compound words on a word-by-word basis. We also use a probabilistic method to resolve translation ambiguity. For the second problem, we use a transliteration method, which corresponds words unlisted in the base word dictionary to their phonetic equivalents in the target language. We evaluate our system using a test collection for CLIR, and show that both the compound word translation and transliteration methods improve the system performance

    The goldstone real-time connected element interferometer

    Get PDF
    Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline
    • 

    corecore