163,504 research outputs found

    Spectral and Dynamical Properties in Classes of Sparse Networks with Mesoscopic Inhomogeneities

    Full text link
    We study structure, eigenvalue spectra and diffusion dynamics in a wide class of networks with subgraphs (modules) at mesoscopic scale. The networks are grown within the model with three parameters controlling the number of modules, their internal structure as scale-free and correlated subgraphs, and the topology of connecting network. Within the exhaustive spectral analysis for both the adjacency matrix and the normalized Laplacian matrix we identify the spectral properties which characterize the mesoscopic structure of sparse cyclic graphs and trees. The minimally connected nodes, clustering, and the average connectivity affect the central part of the spectrum. The number of distinct modules leads to an extra peak at the lower part of the Laplacian spectrum in cyclic graphs. Such a peak does not occur in the case of topologically distinct tree-subgraphs connected on a tree. Whereas the associated eigenvectors remain localized on the subgraphs both in trees and cyclic graphs. We also find a characteristic pattern of periodic localization along the chains on the tree for the eigenvector components associated with the largest eigenvalue equal 2 of the Laplacian. We corroborate the results with simulations of the random walk on several types of networks. Our results for the distribution of return-time of the walk to the origin (autocorrelator) agree well with recent analytical solution for trees, and it appear to be independent on their mesoscopic and global structure. For the cyclic graphs we find new results with twice larger stretching exponent of the tail of the distribution, which is virtually independent on the size of cycles. The modularity and clustering contribute to a power-law decay at short return times

    The statistical geometry of scale-free random trees

    Full text link
    The properties of scale-free random trees are investigated using both preconditioning on non-extinction and fixed size averages, in order to study the thermodynamic limit. The scaling form of volume probability is found, the connectivity dimensions are determined and compared with other exponents which describe the growth. The (local) spectral dimension is also determined, through the study of the massless limit of the Gaussian model on such trees.Comment: 21 pages, 2 figures, revtex4, minor changes (published version

    Causal and homogeneous networks

    Full text link
    Growing networks have a causal structure. We show that the causality strongly influences the scaling and geometrical properties of the network. In particular the average distance between nodes is smaller for causal networks than for corresponding homogeneous networks. We explain the origin of this effect and illustrate it using as an example a solvable model of random trees. We also discuss the issue of stability of the scale-free node degree distribution. We show that a surplus of links may lead to the emergence of a singular node with the degree proportional to the total number of links. This effect is closely related to the backgammon condensation known from the balls-in-boxes model.Comment: short review submitted to AIP proceedings, CNET2004 conference; changes in the discussion of the distance distribution for growing trees, Fig. 6-right change

    Process Flow Diagram of an Ammonia Plant as a Complex Network

    Full text link
    Complex networks have attracted increasing interests in almost all disciplines of natural and social sciences. However, few efforts have been afforded in the field of chemical engineering. We present in this work an example of complex technological network, investigating the process flow of an ammonia plant (AP). We show that the AP network is a small-world network with scale-free distribution of degrees. Adopting Newman's maximum modularity algorithm for the detection of communities in complex networks, evident modular structures are identified in the AP network, which stem from the modular sections in chemical plants. In addition, we find that the resultant AP tree exhibits excellent allometric scaling.Comment: 15 pages including 4 eps figure

    Enumeration of spanning trees in a pseudofractal scale-free web

    Full text link
    Spanning trees are an important quantity characterizing the reliability of a network, however, explicitly determining the number of spanning trees in networks is a theoretical challenge. In this paper, we study the number of spanning trees in a small-world scale-free network and obtain the exact expressions. We find that the entropy of spanning trees in the studied network is less than 1, which is in sharp contrast to previous result for the regular lattice with the same average degree, the entropy of which is higher than 1. Thus, the number of spanning trees in the scale-free network is much less than that of the corresponding regular lattice. We present that this difference lies in disparate structure of the two networks. Since scale-free networks are more robust than regular networks under random attack, our result can lead to the counterintuitive conclusion that a network with more spanning trees may be relatively unreliable.Comment: Definitive version accepted for publication in EPL (Europhysics Letters

    Exotic trees

    Full text link
    We discuss the scaling properties of free branched polymers. The scaling behaviour of the model is classified by the Hausdorff dimensions for the internal geometry: d_L and d_H, and for the external one: D_L and D_H. The dimensions d_H and D_H characterize the behaviour for long distances while d_L and D_L for short distances. We show that the internal Hausdorff dimension is d_L=2 for generic and scale-free trees, contrary to d_H which is known be equal two for generic trees and to vary between two and infinity for scale-free trees. We show that the external Hausdorff dimension D_H is directly related to the internal one as D_H = \alpha d_H, where \alpha is the stability index of the embedding weights for the nearest-vertex interactions. The index is \alpha=2 for weights from the gaussian domain of attraction and 0<\alpha <2 for those from the L\'evy domain of attraction. If the dimension D of the target space is larger than D_H one finds D_L=D_H, or otherwise D_L=D. The latter result means that the fractal structure cannot develop in a target space which has too low dimension.Comment: 33 pages, 6 eps figure

    Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Extended Version)

    Get PDF
    Although the ``scale-free'' literature is large and growing, it gives neither a precise definition of scale-free graphs nor rigorous proofs of many of their claimed properties. In fact, it is easily shown that the existing theory has many inherent contradictions and verifiably false claims. In this paper, we propose a new, mathematically precise, and structural definition of the extent to which a graph is scale-free, and prove a series of results that recover many of the claimed properties while suggesting the potential for a rich and interesting theory. With this definition, scale-free (or its opposite, scale-rich) is closely related to other structural graph properties such as various notions of self-similarity (or respectively, self-dissimilarity). Scale-free graphs are also shown to be the likely outcome of random construction processes, consistent with the heuristic definitions implicit in existing random graph approaches. Our approach clarifies much of the confusion surrounding the sensational qualitative claims in the scale-free literature, and offers rigorous and quantitative alternatives.Comment: 44 pages, 16 figures. The primary version is to appear in Internet Mathematics (2005
    corecore