22,728 research outputs found

    GIS Characterization of Beaver Watershed

    Get PDF
    Beaver Reservoir watershed is located in Northwest Arkansas including portions of Madison, Washington, Benton, Carroll, Franklin and Crawford counties. This watershed is important to the Northwest Arkansas region because it supplies most of the drinking water for the major towns and cities, and several rural water systems. The watershed consists of 308,971 ha with elevations ranging from approximately 341 m to 731 m above mean sea level. It includes the Springfield Plateau and the Boston Mountains provinces within the Ozark Plateau physiographic region. There are approximately 581 km of streams, 532 km of shore line, and 3712 km of roads in the watershed most of which are city streets and rural roads. The soils in the watershed vary extensively and are quite complex due to the differences in parent material, topography and time. Most parent material of the soils in the Springfield Plateau is limestone, whereas in the Boston Mountains the dominant parent material is sandstone and shale. The differences in soils have led to the differences in landuse and land cover. The near surface geology in the watershed is also divided by physiographic provinces. Most of the Springfield Plateau surface geology is limestone, whereas the Boston Mountains are primarily sandstone and shale. Spatial details of the streams, roads, soils and geology attributes in the watershed are presented in this report. The GIS database and characterization of the watershed offers an excellent beginning to future research and modeling of various water quality parameters in this and other watersheds

    Source-tracking cadmium in New Zealand agricultural soils: a stable isotope approach

    Get PDF
    Cadmium (Cd) is a toxic heavy metal, which is accumulated by plants and animals and therefore enters the human food chain. In New Zealand (NZ), where Cd mainly originates from the application of phosphate fertilisers, stable isotopes can be used to trace the fate of Cd in soils and potentially the wider environment due to the limited number of sources in this setting. Prior to 1997, extraneous Cd added to soils in P fertilisers was essentially limited to a single source, the small pacific island of Nauru. Analysis of Cd isotope ratios (ɛ114/110Cd) in Nauru rock phosphate, pre-1997 superphosphate fertilisers, and Canterbury (Lismore Stony Silt Loam) topsoils (Winchmore Research Farm) has demonstrated their close similarity with respect to ɛ114/110Cd. We report a consistent ɛ114/110Cd signature in fertiliser-derived Cd throughout the latter twentieth century. This finding is useful because it allows the application of mixing models to determine the proportions of fertiliser-derived Cd in the wider environment. We believe this approach has good potential because we also found the ɛ114/110Cd in fertilisers to be distinct from unfertilised Canterbury subsoils. In our analysis of the Winchmore topsoil series (1949-2015), the ɛ114/110Cd remained quite constant following the change from Nauru to other rock phosphate sources in 1997, despite a corresponding shift in fertiliser ɛ114/110Cd at this time. We can conclude that to the present day, the Cd in topsoil at Winchmore still mainly originates from historical phosphate fertilisers. One implication of this finding is that the current applications of P fertiliser are not resulting in further Cd accumulation. We aim to continue our research into Cd fate, mobility and transformations in the NZ environment by applying Cd isotopes in soils and aquatic environments across the country

    REMOTE SENSING OF FOLIAR NITROGEN IN CULTIVATED GRASSLANDS OF HUMAN DOMINATED LANDSCAPES

    Get PDF
    Foliar nitrogen (N) concentration of plant canopies plays a central role in a number of important ecosystem processes and continues to be an active subject in the field of remote sensing. Previous efforts to estimate foliar N at the landscape scale have primarily focused on intact forests and grasslands using aircraft imaging spectrometry and various techniques of statistical calibration and modeling. The present study was designed to extend this work by examining the potential to estimate the foliar N concentration of residential, agricultural and other cultivated grassland areas within a suburbanizing watershed. In conjunction with ground-based vegetation sampling, we developed Partial Least Squares (PLS) models for predicting mass-based foliar N across management types using input from airborne and field based imaging spectrometers. Results yielded strong predictive relationships for both ground- and aircraft-based sensors across sites that included turf grass, grazed pasture, hayfields and fallow fields. We also report on relationships between imaging spectrometer data and other important variables such as canopy height, biomass, and water content, results from which show strong promise for detection with high quality imaging spectrometry data and suggest that cultivated grassland offer opportunity for empirical study of canopy light dynamics. Finally, we discuss the potential for application of our results, and potential challenges, with data from the planned HyspIRI satellite, which will provide global coverage of data useful for vegetation N estimation

    Dutch and Victorian approaches to land appraisal

    Get PDF
    Stiboka onderzoe

    Accuracy assessment

    Get PDF
    • …
    corecore