113 research outputs found

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Multi-view image coding with wavelet lifting and in-band disparity compensation

    Get PDF

    Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering

    Get PDF
    In this dissertation, a fully scalable video coding system is proposed. This system achieves full temporal, resolution, and fidelity scalability by combining mesh-based motion-compensated temporal filtering, multihypothesis motion compensation, and an embedded 3D wavelet-coefficient coder. The first major contribution of this work is the introduction of the redundant-wavelet multihypothesis paradigm into motion-compensated temporal filtering, which is achieved by deploying temporal filtering in the domain of a spatially redundant wavelet transform. A regular triangle mesh is used to track motion between frames, and an affine transform between mesh triangles implements motion compensation within a lifting-based temporal transform. Experimental results reveal that the incorporation of redundant-wavelet multihypothesis into mesh-based motion-compensated temporal filtering significantly improves the rate-distortion performance of the scalable coder. The second major contribution is the introduction of a sliding-window implementation of motion-compensated temporal filtering such that video sequences of arbitrarily length may be temporally filtered using a finite-length frame buffer without suffering from severe degradation at buffer boundaries. Finally, as a third major contribution, a novel 3D coder is designed for the coding of the 3D volume of coefficients resulting from the redundant-wavelet based temporal filtering. This coder employs an explicit estimate of the probability of coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple software implementation. Additionally, the coder offers the possibility of a high degree of vectorization particularly well suited to the data-parallel capabilities of modern general-purpose processors or customized hardware. Results show that the proposed coder yields nearly the same rate-distortion performance as a more complicated coefficient coder considered to be state of the art

    Motion estimation and signaling techniques for 2D+t scalable video coding

    Get PDF
    We describe a fully scalable wavelet-based 2D+t (in-band) video coding architecture. We propose new coding tools specifically designed for this framework aimed at two goals: reduce the computational complexity at the encoder without sacrificing compression; improve the coding efficiency, especially at low bitrates. To this end, we focus our attention on motion estimation and motion vector encoding. We propose a fast motion estimation algorithm that works in the wavelet domain and exploits the geometrical properties of the wavelet subbands. We show that the computational complexity grows linearly with the size of the search window, yet approaching the performance of a full search strategy. We extend the proposed motion estimation algorithm to work with blocks of variable sizes, in order to better capture local motion characteristics, thus improving in terms of rate-distortion behavior. Given this motion field representation, we propose a motion vector coding algorithm that allows to adaptively scale the motion bit budget according to the target bitrate, improving the coding efficiency at low bitrates. Finally, we show how to optimally scale the motion field when the sequence is decoded at reduced spatial resolution. Experimental results illustrate the advantages of each individual coding tool presented in this paper. Based on these simulations, we define the best configuration of coding parameters and we compare the proposed codec with MC-EZBC, a widely used reference codec implementing the t+2D framework

    Motion Estimation and Compensation in the Redundant Wavelet Domain

    Get PDF
    Despite being the prefered approach for still-image compression for nearly a decade, wavelet-based coding for video has been slow to emerge, due primarily to the fact that the shift variance of the discrete wavelet transform hinders motion estimation and compensation crucial to modern video coders. Recently it has been recognized that a redundant, or overcomplete, wavelet transform is shift invariant and thus permits motion prediction in the wavelet domain. In this dissertation, other uses for the redundancy of overcomplete wavelet transforms in video coding are explored. First, it is demonstrated that the redundant-wavelet domain facilitates the placement of an irregular triangular mesh to video images, thereby exploiting transform redundancy to implement geometries for motion estimation and compensation more general than the traditional block structure widely employed. As the second contribution of this dissertation, a new form of multihypothesis prediction, redundant wavelet multihypothesis, is presented. This new approach to motion estimation and compensation produces motion predictions that are diverse in transform phase to increase prediction accuracy. Finally, it is demonstrated that the proposed redundant-wavelet strategies complement existing advanced video-coding techniques and produce significant performance improvements in a battery of experimental results

    A Fully Scalable Video Coder with Inter-Scale Wavelet Prediction and Morphological Coding

    Get PDF
    In this paper a new fully scalable - wavelet based - video coding architecture is proposed, where motion compensated temporal filtered subbands of spatially scaled versions of a video sequence can be used as base layer for inter-scale predictions. These predictions take place between data at the same resolution level without the need of interpolation. The prediction residuals are further transformed by spatial wavelet decompositions. The resulting multi-scale spatiotemporal wavelet subbands are coded thanks to an embedded morphological dilation technique and context based arithmetic coding. Dyadic spatio-temporal scalability and progressive SNR scalability are achieved. Multiple adaptation decoding can be easily implemented without the need of knowing a predefined set of operating points. The proposed coding system allows to compensate some of the typical drawbacks of current wavelet based scalable video coding architectures and shows interesting visual results even when compared with the single operating point video coding standard AVC/H.264

    State-of-the-Art and Trends in Scalable Video Compression with Wavelet Based Approaches

    Get PDF
    3noScalable Video Coding (SVC) differs form traditional single point approaches mainly because it allows to encode in a unique bit stream several working points corresponding to different quality, picture size and frame rate. This work describes the current state-of-the-art in SVC, focusing on wavelet based motion-compensated approaches (WSVC). It reviews individual components that have been designed to address the problem over the years and how such components are typically combined to achieve meaningful WSVC architectures. Coding schemes which mainly differ from the space-time order in which the wavelet transforms operate are here compared, discussing strengths and weaknesses of the resulting implementations. An evaluation of the achievable coding performances is provided considering the reference architectures studied and developed by ISO/MPEG in its exploration on WSVC. The paper also attempts to draw a list of major differences between wavelet based solutions and the SVC standard jointly targeted by ITU and ISO/MPEG. A major emphasis is devoted to a promising WSVC solution, named STP-tool, which presents architectural similarities with respect to the SVC standard. The paper ends drawing some evolution trends for WSVC systems and giving insights on video coding applications which could benefit by a wavelet based approach.partially_openpartially_openADAMI N; SIGNORONI. A; R. LEONARDIAdami, Nicola; Signoroni, Alberto; Leonardi, Riccard

    Efficient Scalable Video Coding Based on Matching Pursuits

    Get PDF

    Variable Block Size Motion Compensation In The Redundant Wavelet Domain

    Get PDF
    Video is one of the most powerful forms of multimedia because of the extensive information it delivers. Video sequences are highly correlated both temporally and spatially, a fact which makes the compression of video possible. Modern video systems employ motion estimation and motion compensation (ME/MC) to de-correlate a video sequence temporally. ME/MC forms a prediction of the current frame using the frames which have been already encoded. Consequently, one needs to transmit the corresponding residual image instead of the original frame, as well as a set of motion vectors which describe the scene motion as observed at the encoder. The redundant wavelet transform (RDWT) provides several advantages over the conventional wavelet transform (DWT). The RDWT overcomes the shift invariant problem in DWT. Moreover, RDWT retains all the phase information of wavelet coefficients and provides multiple prediction possibilities for ME/MC in wavelet domain. The general idea of variable size block motion compensation (VSBMC) technique is to partition a frame in such a way that regions with uniform translational motions are divided into larger blocks while those containing complicated motions into smaller blocks, leading to an adaptive distribution of motion vectors (MV) across the frame. The research proposed new adaptive partitioning schemes and decision criteria in RDWT that utilize more effectively the motion content of a frame in terms of various block sizes. The research also proposed a selective subpixel accuracy algorithm for the motion vector using a multiband approach. The selective subpixel accuracy reduces the computations produced by the conventional subpixel algorithm while maintaining the same accuracy. In addition, the method of overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Finally, the research extends the applications of the proposed VSBMC to the 3D video sequences. The experimental results obtained here have shown that VSBMC in the RDWT domain can be a powerful tool for video compression
    • …
    corecore