177 research outputs found

    Conceptualizing a Knowledge Society in China: A Ubiquitous Network Perspective

    Get PDF
    Developing Ubiquitous Network Societies (UNS) has been a subject of investigation in last decade. Several policy and technological projects have been proposed and implemented at global level to promote ubiquitous network. This paper focuses on China’s preparation towards UNS by analyzing and evaluating the prerequisite technological developments that enable the construction of UNS. The objective of this paper is to identify the notable features of UNS in context to China. Being the nascent area of study our research approach is from technological perspective

    6G—Enabling the New Smart City: A Survey

    Get PDF
    Smart cities and 6G are technological areas that have the potential to transform the way we live and work in the years to come. Until this transformation comes into place, there is the need, underlined by research and market studies, for a critical reassessment of the entire wireless communication sector for smart cities, which should include the IoT infrastructure, economic factors that could improve their adoption rate, and strategies that enable smart city operations. Therefore, from a technical point of view, a series of stringent issues, such as interoperability, data privacy, security, the digital divide, and implementation issues have to be addressed. Notably, to concentrate the scrutiny on smart cities and the forthcoming influence of 6G, the groundwork laid by the current 5G, with its multifaceted role and inherent limitations within the domain of smart cities, is embraced as a foundational standpoint. This examination culminates in a panoramic exposition, extending beyond the mere delineation of the 6G standard toward the unveiling of the extensive gamut of potential applications that this emergent standard promises to introduce to the smart cities arena. This paper provides an update on the SC ecosystem around the novel paradigm of 6G, aggregating a series of enabling technologies accompanied by the descriptions of their roles and specific employment schemes

    Journal of Telecommunications and Information Technology, 2009, nr 1

    Get PDF
    kwartalni

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services

    SDN Testbed for Evaluation of Large Exo-Atmospheric EMP Attacks

    Get PDF
    Large-scale nuclear electromagnetic pulse (EMP) attacks and natural disasters can cause extensive network failures across wide geographic regions. Although operational networks are designed to handle most single or dual faults, recent efforts have also focused on more capable multi-failure disaster recovery schemes. Concurrently, advances in software-defined networking (SDN) technologies have delivered highly-adaptable frameworks for implementing new and improved service provisioning and recovery paradigms in real-world settings. Hence this study leverages these new innovations to develop a robust disaster recovery (counter-EMP) framework for large backbone networks. Detailed findings from an experimental testbed study are also presented

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system

    A White Paper on Broadband Connectivity in 6G

    Get PDF
    Executive Summary This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting. Finally, the three levels of enablers must be utilized not only to deliver better broadband services in urban areas, but also to provide full-coverage broadband connectivity must be one of the key outcomes of 6G

    An overview of machine learning and 5G for people with disabilities

    Get PDF
    Currently, over a billion people, including children (or about 15% of the world’s population), are estimated to be living with disability, and this figure is going to increase to beyond two billion by 2050. People with disabilities generally experience poorer levels of health, fewer achievements in education, fewer economic opportunities, and higher rates of poverty. Artificial intelligence and 5G can make major contributions towards the assistance of people with disabilities, so they can achieve a good quality of life. In this paper, an overview of machine learning and 5G for people with disabilities is provided. For this purpose, the proposed 5G network slicing architecture for disabled people is introduced. Different application scenarios and their main benefits are considered to illustrate the interaction of machine learning and 5G. Critical challenges have been identified and addressed.This work has been supported by the Agencia Estatal de Investigación of Ministerio de Ciencia e Innovación of Spain under project PID2019-108713RB-C51 MCIN/ AEI /10.13039/501100011033.Postprint (published version
    corecore